固体氧化物燃料电池镍基阳极改性及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)由于自身众多优点而正成为燃料电池的主流方向。然而,在走向实用化进程中,还有若干问题需要解决。首先,尽管SOFC与其他类型的燃料电池相比,具有燃料适应性强、Ni基阳极催化性能优异等优点,但廉价易得的碳氢化合物燃料易使SOFC发生碳沉积和硫毒化。Ni基阳极抗积碳、耐硫毒化能力差,这直接限制了其在直接碳氢燃料电池中的应用。这个问题虽经长期研究但一直没得到很好的解决。其次,目前SOFC的燃料仍以氢气为主,而氢气无论是存储还是运输都存在很大困难。对于商业化中小型、便携式的分散电源,应首选液体燃料或易液化的燃料以便运输和存储。针对以上问题,本论文开展了SOFC新型阳极的制备和改性研究,主要进行了阳极的耐硫抗积碳性能及以液氨为燃料的SOFC阳极材料的探索,同时对新结构的对称电池电极材料及电池性能作了初步的研究。
     研究了BaO对传统Ni-YSZ基阳极SOFC耐硫性能的影响:以Ni/YSZ为SOFC的阳极材料,YSZ为电解质,通过流延法制备阳极支撑电池,采用浸渍法把BaO引入到Ni/YSZ阳极上。利用甘氨酸瞬间火焰燃烧使BaO粒子达到纳米尺度。使用含不同浓度H_2S的湿氢气为燃料考察BaO对传统Ni基SOFC耐硫性能的影响。EDS结果表明电池阳极中BaO的含量约为5%。电池恒流放电测试表明当燃料从氢气切换到浓度为50ppmH_2S的湿氢气时,电池功率密度没有明显变化,即没有观察到传统Ni基阳极在通入硫化氢后的明显电压降。湿氢气中H_2S浓度从5逐渐变化到50ppm时,电池放电性能保持了良好的稳定性。在800oC时功率密度可达963mW·cm-2。EDS和XPS结果显示在硫毒化测试后没有硫污染电池阳极。实验结果表明:BaO/Ni界面不仅具有优良的抗积碳性能同时也具有良好的耐硫毒化能力。
     进行了稀土双掺杂Ni基CeO_2阳极的抗积碳耐硫毒化能力的研究:采用Y和Yb对CeO_2进行双掺杂来研究稀土协同作用对材料耐硫抗积碳性能的影响。采用甘氨酸燃烧法制备超细Ce_(0.8)YxYb_(0.2)-xO_(1.9)(x=0,0.1,0.2)、GDC(Ce0.9Gd0.1O1.95)粉体,对材料进行XRD、EDS、SEM、电导率和热性能测试。制备了GDC电解质支撑,Ni-Ce_(0.8)Y_(0.1)Yb_(0.1)O_(1.9)、Ni-Ce_(0.8)Y(0.2)O_(1.9)、Ni-Ce_(0.8)Yb_(0.2)O_(1.9)分别为阳极、Ce_(0.9)Gd_(0.1)O_(1.95)+La_(0.6)r_(0.4)Co_(0.2)Fe_(0.8)O_3-δ(GDC+LSCF)为阴极的全电池。电化学测试表明:Ni-Ce_(0.8)Y_(0.1)Yb_(0.1)O_(1.9)在750oC以干甲烷为燃料时,以200mA·cm-2恒流放电120小时功率输出无衰减,而传统的Ni-YSZ阳极以甲烷为燃料时出现了严重的积碳现象。此阳极在700oC以下,H_2S浓度为5ppm和20ppm时,性能衰2EDS结果表明:测试后Ni-Ce_(0.8)Y_(0.1)Yb_(0.1)O_(1.9)阳极无碳沉积也未检出硫及硫化物。表明对于直接碳氢燃料电池,稀土共掺杂CeO_2/Ni阳极是一种很有吸引力的阳极材料。
     研究以氨为燃料的SOFC阳极的制备与电化学性能:本章采用电导率较高的SSZ做电解质,流延法制备Ni-YSZ|Ni-SSZ|SSZ半电池,采用浸渍法向Ni/SSZ功能层中引入Fe制备了电池Fe-Ni-YSZ|Fe-Ni-SSZ|SSZ|LSM-SSZ并进行了电化学性能测试。同时用同种方法制备未掺铁的SOFC电池。测试结果表明:Fe的引入可以提高电池的性能。使用氨气作为燃料时竟获得了比纯氢气为燃料时更高的功率密度。考虑到电解质可以做得更薄及Fe/Ni对氨的良好催化活性,Fe/Ni基阳极将是很好的氨燃料电池阳极材料。
     对新型SOFC对称电池电极材料及电池性能进行了初步探索:本章采用掺杂的CeO_2-LaFeO_3作为对称电池的阴阳极,Sc_(0.1)Zr_(0.9)O_(1.95)(SSZ)作为电解质构建对称电池,掺杂的CeO_2-LaFeO_3作为对称电池电极的结构可行性和电化学性能得到了详细的评估和验证。结果证明:在长时间放电测试后发现有Fe和MnO从体相材料中析出,而Fe和MnO的析出有利于电池性能的提高而不是性能下降。在氢气气氛下恒流放电120h后,电池输出功率提高了8%。EIS测试表明电池的极化电阻随着电流的增加而减小。
Solid oxide fuel cells (SOFCs) are the interesting topic due to the obvious merits.It is the challenge for the existing fuel cell technologies to provide a commercialpath. The system costs and fuel infrastructures are the main critical bottlenecks. Oneof the merits of the SOFCs is the good fuel flexibility. Therefore, many gases, suchas hydrocarbon, can be used as the fuels. However, the investigation of the practicalsystem has been still hampered by some problems, such as the coking on thewell-known conventional nickel-based anode once using hydrocarbon fuel such asmethane or propane that the occurance of severe degradation will compromise thecell performance. During the current time, SOFCs are being directly oriented to theportable devices, which require liquid fuel favorable for SOFC operation. Accordingto the above problems, we concentrated on the anodes which can work steadily withtolerance to sulfur and coking for a long time and the anodes which are suitable forammonia-fueled SOFC. At the same time, we studied some materials which can beused as the symmetrical electrode.
     The sulfur tolerance improvement of Ni-YSZ anode by alkaline earth metal oxideBaO for solid oxide fuel cells was studied: The anodic performance of Ni-Y2O3stabilized ZrO2(Ni-YSZ) modified by alkaline earth metal oxide BaO wasinvestigated for solid oxide fuel cells operating in H_2S-containing hydrogen fuels.The EDS results indicated that the amount of BaO was about5%. The cell withBaO/Ni-YSZ anode exhibited almost constant peak power densities when the fuelwas switched from wet hydrogen to50ppm H_2S contaminated wet hydrogen andgood stability in wet H_2S-contained hydrogen fuels with H_2S concentrationgradually increased from5to50ppm. The EDS and XPS results demonstrated thatno element S was detectable after sulfur poisoning testing. High water adsorptionability of BaO could be the primary reason for the high sulfur tolerance. Theobtained results confirmed the previous conclusion that BaO/Ni interfaces can resistnot only deactivation by coking but also sulfur poisoning of a conventional Ni-YSZanode.
     The enhanced sulfur and carbon coking tolerance of novel Co-doped Ceria basedanode for solid oxide fuel cells were concentrated: Doubly doped CeO_2based anodewith Y and Yb was considered for direct methane solid oxide fuel cells. The poweroutput of the cell with Ni-Ce_(0.8)Y_(0.1)Yb_(0.1)O_(1.9)anode and stability at varioustemperatures were investigated when air was used as oxidant and pure H_2,5ppmH_2S containing H_2and dry CH_4as fuel, respectively. At750oC, the cell displayedstable power output for120h at200mA cm-2when fueled with dry CH_4, suggesting the carbon deposit was largely absent on the anode, which was confirmed by theSEM observation and EDS results. The results also proved that the rare earthelements Y and Yb affected the sulfur tolerance performance of the anode in acooperative fashion leading to good anode stability in the contaminated fuel. TheSEM and EDS results provided evidence that the cell with Ni-Ce_(0.8)Y_(0.1)Yb_(0.1)O_(1.9)anode was tolerant toward the H_2S contamination. The remarkable performancessuggested that co-doped CeO_2anode was an attractive electrode component fordirect hydrocarbon solid oxide fuel cells and might also be used as a catalyst forreforming of hydrocarbon fuels and for removal of fuel gas contaminations such assulfur.
     The improved performance of ammonia-fueled solid oxide fuel cell with SSZ thinfilm electrolyte and Ni-SSZ anode functional layer was investigated: Ammoniaoffers several advantages over hydrogen as an alternative fuel. However, usingammonia as a hydrogen source for fuel cells has not been received enough attentions.In this chapter, Scandia-stabilized Zirconia (SSZ) thin film electrolyte and Ni-SSZanode functional layer were developed by tape casting in order to obtain high poweroutput performance in ammonia, the results of a SOFC running on ammonia weredescribed and its performance was compared with that when running on hydrogen.In order to improve the performance of the cell at higher temperatures, the anodewas modified by iron through infiltration. A direct comparison of the performance ofthe modified cell running on either hydrogen or ammonia showed that the cell inammonia generated slightly higher power densities at700and750oC. Theperformance in ammonia, using the anode catalyst, was comparable to that inhydrogen. The results indicated that ammonia could be treated as a promisingalternative fuel by selecting an appropriate catalyst.
     A novel doped CeO_2-LaFeO_3composite oxide as both the anode and cathode forsymmetrical solid oxide fuel cells was studied: A novel composite oxideCe(Mn,Fe)O2-La(Sr)Fe(Mn)O3(CFM-LSFM) was synthesized and evaluated as theelectrode material for a symmetrical solid oxide fuel cell. The symmetrical cell withCFM-LSFM electrodes was fabricated by tape-casting and screen printing technique.The power-generating performance of this cell was comparable to that of the cellwith the Ni-SSZ anode and LSM-SSZ cathode. During the120h long-term test inhydrogen at800oC, the performance increased by8.6%from256up to278mWcm-2. This was attributed to the decrease of polarization resistance and ohmicresistance during the test. The XRD results showed the presence of Fe, MnO andsome unknown second phases after heat-treating the electrode materials in H_2whichmay be beneficial to the anode process. The phenomenon of the gradual decrease of polarization resistance as the increase of current density possibly resulted from theincreasing content of water in the anode.
引文
[1] Stambouli A B, Traversa E. Renewable and Sustainable Energy Reviews[J],2002,6:433-455.
    [2]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备[M].北京:科学出版社,2004:2-38.
    [3]马千里.氨燃料质子导体固态氧化物燃料电池的研究[D].合肥:中国科学技术大学,2007:10-60.
    [4] Appleby A J, Foulkes F R. A Fuel Cell Handbook,2ndEd. Kreiger Pulishing Co.,P.22Bloom H., Cutman F.(Eds.)(1981) Electrochemistry, Plenum Press,1993,121-124.
    [5] Minh N Q, Takahashi T. Science and Technology of Ceramic Fuel Cell.Amsterdam, the Netherlands,1995.
    [6] Yahiro H, Eguchi K, Arai H. Electrical Properties and Reducibilities ofCeria-rare Earth Oxide Systems and Their Application to Solid Oxide FuelCell[J]. Solid State Ionics,1989,36:71-75.
    [7]燕萍,胡筱敏,祁阳,包岩,徐敏,于微微. Ce02基固体氧化物燃料电池电解质研究[J].材料与冶金学报,2009,8:100-105.
    [8] Xiong Y, Yamaji K, Sakai N, et al. Electronic Conductivity of ZrO2-CeO2-YO1.5Solid Solutions[J]. Journal of Electrochemical Society,2001,148: E489-E492.
    [9]邸婧,陈明鸣,王成扬,范良栋,朱斌.低温SOFC的SDC-碳酸盐复合物电解质[J].电源技术,2011,35:144-147.
    [10]Xiong Y, Yamaji K, Horita T, et al. Electronic Conductivity of20mol%YO1.5Doped CeO2[J]. Journal of Electrochemical Society,2002,149, E450-E454.
    [11]Ehira Y, Sameshima S, Hirata Y. Proceedings of the19th Korea–JapanInternational Seminar on Ceramics, November2002, Seoul, The OrganizingCommittee of the19th Korea-Japan International Seminar on Ceramics, Seoul,Korea,2002,26-36.
    [12]Jue J F, Jusko J, Virkar A V. Electrochemical Vapor Deposition of CeO2:Kinetics of Deposition of a Composite, Two-Layer Electrolyte[J]. Journal ofElectrochemical Society,1992,139:2458-2465.
    [13]刘凤军.高效环保的燃料电池发电系统及其应用[M].北京:机械工业出版社,2004,180-201.
    [14]孙帆,郑勇,高小龙,王秋红.固体氧化物燃料电池电解质和电极材料的研究进展[J].金属功能材料,2010,17:75-80.
    [15]Kimpton J, Randle T H, Drennan J. Investigation of Electrical Conductivity as aFunction of Dopant-ion Radius in the Systems Zr0.75Ce0.08M0.17O1.92(M=Nd,Sm, Gd, Dy, Ho, Y, Er, Yb, Sc)[J]. Solid State Ionics,2002,149:89-98.
    [16]Ji Y, Liu J, Lu Z, et al. The Effect of Pr Co-dopant on the Performance of SolidOxide Fuel Cells with Sm-doped Ceria Electrolyte[J]. Solid State Ionics,1999,126:277-283
    [17]Hirano M, Watanabe S, Kato E, et al. High Electrical Conductivity and HighFracture Strength of Sc2O3-Doped Zirconia Ceramics with SubmicrometerGrains[J]. Journal of the American Ceramic Society,1999,82:2861-2925.
    [18]Selcuk A, Atkinson A. Strength and Toughness of Tape-Cast Yttria-StabilizedZirconia[J]. Journal of the American Ceramic Society,2000,83:2029-2035.
    [19]Will J, Mitterdorfer A, Kleinlogel C, et al. Fabrication of Thin Electrolytes forSecond-generation Solid Oxide Fuel Cells[J]. Solid State Ionics2000,131:79-96.
    [20]Arachi Y, Yamamoto O, Takeda Y, et al. Characteristics of Substrate Type SOFCusing Sc-doped Zirconia Electrolytes. In: Singhal SC, Dokiya M, editors. Solidoxide fuel cells VI. Proc. Electrochem. Soc.1999; PV99-19:179-184.
    [21]Ishihara T, Kilner J A, Honda M, et al. Oxygen Surface Exchange and Diffusionin the New Perovskite Oxide Ion Conductor LaGaO3[J]. Journal of theAmerican Chemical Society1997,119:2747-2748.
    [22]Suzuki T, Hasan Z, Funahashi Y, et al. Impact of Anode Microstructure onSolid Oxide Fuel Cells[J]. Science2009,325:325-330.
    [23]Kosacki I, Anderson H U, Mizutani Y, et al. Nonstoichiometry and ElectricalTransport in Sc-doped Zirconia[J]. Solid State Ionics2002,152-153:431-438.
    [24]Minh N, Anumakonda A, Chung B, et al. Development of Reduced-temperatureSolid Oxide Fuel Cell Power Systems. In: Singhal SC, Dokiya M, editors. Solidoxide fuel cells VI. Proc Electrochem Soc1999, PV99-19:68–74.
    [25]Steele B C H, Heinzel A. Materials for Fuel-cell Technologies[J]. Nature2001,414:345-352.
    [26]Singhal S C. High Temperature Solid Oxide Fuel Cells: Fundermetals, Designand Applications[M]. Elsevier Ltd,2003.
    [27]Cherry M, Islam M S, Catlow C R A. Oxygen Ion Migration in Perovskite-TypeOxides[J]. Journal of Solid State chemistry,1995,118:125-132.
    [28]Huang K, Tichy R S, Goodenough J B. Superior Perovskite Oxide-IonConductor; Strontium-and Magnesium-Doped LaGaO3: I, Phase Relationshipsand Electrical Properties[J]. Journal of the American Ceramic Society,1998,81:2565-2575.
    [29]Huang K, Wan J H, Goodenough J B. Increasing Power Density ofLSGM-Based Solid Oxide Fuel Cells Using New Anode Materials[J]. Journalof the Electrochemical Society,2001,148(7): A788-A794.
    [30]Ishihara T, Matsuda H, Takita Y. Effects of Rare Earth Cations Doped for La siteon the Oxide Ionic Conductivity of LaGaO3-based Perovskite Type Oxide[J].Solid State Ionics,1995,79:147-151.
    [31]Ishihara T, Eto H, Zhong H, et al. Intermediate Temperature Solid Oxide FuelCells Using LaGaO3Based Perovskite Oxide for Electrolyte[J].Electrochemistry,2009,77:115-122.
    [32]Ormerod R M. Solid Oxide Fuel Cells[J]. Chemical Society Reviews,2003,32:17-28.
    [33]Atkinson A, Barnett S, Gorte R J, et al. Advanced Anodes for High-temperatureFuel Cells[J]. Nature Materials,2004,3:17-27.
    [34]Flytzani-Stephanopoulos M, Sakbodin M, Wang Z. Regenerative Adsorptionand Removal of H2S from Hot Fuel Gas Streams by Rare Earth Oxides[J].Science,2006,312:1508-1510.
    [35]Park S, Vohs J M, Gorte R J. Direct Oxidation of Hydrocarbons in a Solid-oxideFuel Cell[J]. Nature,2000,404:265-267.
    [36]Zhan Z, Barnett S A. An Octane-Fueled Solid Oxide Fuel Cell[J]. Science,2005,308:844-847.
    [37]Tao S, Irvine J T S. A Redox-stable Efficient Anode for Solid-oxide FuelCells[J]. Nature Materials,2003,2:320-323.
    [38]Huang Y H, Dass R I, Xing Z L, et al. Double Perovskites as Anode Materialsfor Solid-Oxide Fuel Cells[J]. Science,2006,312:254-257.
    [39]Ruiz-Morales J C, Canales-Vazquez J, Savaniu C, et al. Disruption of ExtendedDefects in Solid Oxide Fuel Cell Anodes for Methane Oxidation[J]. Nature,2006,439:568-571.
    [40]Niakolas D K, Ouweltjes J P, Rietveld G, et al. Au-doped Ni/GDC as a NewAnode for SOFCs Operating under rich CH4Internal Steam Reforming[J].International Journal of Hydrogen Energy,2010,35:7898-7904.
    [41]Neagu D, Irvine J T S. Structure and Properties of La0.4Sr0.4TiO3Ceramics forUse as Anode Materials in Solid Oxide Fuel Cells[J]. Chemistry of Materials,2010,22:5042-5053.
    [42]Pillai M R, Kim I, Bierschenk D M, et al. Fuel-flexible Operation of a SolidOxide Fuel Cell with Sr0.8La0.2TiO3Support[J]. Journal of Power Sources,2008,185:1086-1093.
    [43]Yang L, Wang S Z, Blinn K, et al. Enhanced Sulfur and Coking Tolerance of aMixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ[J]. Science,2009,326:126-129.
    [44]Zhou X L, Liu L M, Zhen J M, et al. Ionic Conductivity, Sintering and ThermalExpansion Behaviors of Mixed Ion Conductor BaZr0.1Ce0.7Y0.1Yb0.1O3-δPrepared by Ethylene Diamine Tetraacetic Acid Assisted Glycine NitrateProcess[J]. Journal of Power Sources,2011,196:5000-5006.
    [45]雷泽,朱庆山,韩敏芳. Cu-CeO2基阳极直接甲烷SOFC的制备及其性能[J].物理化学学报,2010,26(3):583-587.
    [46]Suzuki T, Yamaguchi T, Hamamoto K, et al. A Functional Layer for Direct Useof Hydrocarbon Fuel in Low Temperature Solid Oxide Fuel Cells[J]. Energy&Environmental Science,2011,4:940-943.
    [47]Flytzani-Stephanopoulos M, Sakbodin M, Wang Z. Regenerative Adsorptionand Removal of H2S from Hot Fuel Gas Streams by Rare Earth Oxides[J].Science,2006,312:1508-1510.
    [48]Xu C C, Zondlo J W, Gong M Y, et al. Tolerance Tests of H2S-laden BiogasFuel on Solid Oxide Fuel Cells[J]. Journal of Power Sources,2010,195:4583-4592.
    [49]Kan H, Lee H. Enhanced Stability of Ni-Fe/GDC Solid Oxide Fuel Cell Anodesfor Dry Methane Fuel[J]. Catalysis Communications,2010,12:36-39.
    [50]Atkinson A, Barnett S, Gorte R J, et al. Advanced Anodes for High-temperatureFuel Cells[J]. Nature Materials,2004,3:17-27.
    [51]刘凤军.高效环保的燃料电池发电系统及其应用[M].北京,机械工业出版社,2005,10:281-290.
    [52]Ohbayashi H, Kudo T, Gejo T, Japanese Journal of Applied Physics,1974,13:1.
    [53]Godickemerer M, Sasaki K, Gaukler L J, et al. Perovskite Cathodes for SolidOxide Fuel Cells based on Ceria Electrolytes[J] Solid State Ionics,1996,86-88:691-701.
    [54]Tu H Y, Takeda Y, Imanishi N, et al. Ln1xSrxCoO3(Ln=Sm, Dy) for theElectrode of Solid Oxide Fuel Cells[J] Solid State Ionics,1997,100:283-288.
    [55]Ishihara T, Honda M, Nishiguchi H, et al. in: Solid Oxide Fuel Cells V., U.Stimming, S.C. Singhal, H. Tagawa, and W. Lahnert (Eds), PV97-40, p.301,The Electrochemical Society Proceedings Series, Pennington, NJ1997.
    [56]Tu H Y, Takeda Y, Imanishi N, et al. Ln0.4Sr0.6Co0.8Fe0.2O3δ(Ln=La, Pr, Nd, Sm,Gd) for the Electrode in Solid Oxide Fuel Cells[J] Solid State Ionics,1999,117:277-281.
    [57]Fergus J W. Lanthanum Chromite-based Materials for Solid Oxide Fuel CellInterconnects[J] Solid State Ionics,2004,171:1-15.
    [58]Suzuki M, Sasaki H, Kajirnura A. Oxide Ionic Conductivity of DopedLanthanum Chromite thin Film Interconnectors[J]. Solid State Ionics,1997,96:83-88.
    [59]Sammes N M, Hatchwell C E. Optimization of Slip-cast La0.8Sr0.2CrO3Perovskite Material for Use as an Interconnect in SOFC Applications[J].Materials Letters,1997,32:339-345.
    [60]Karakoussis V, Brandon N P, Leach M, et al. The Environmental Impact ofManufacturing Planar and Tubular Solid Oxide Fuel Cells[J] Journal of PowerSources,2001,101:10-26.
    [61]Gindorf C, Singheiser L, Hilpert K, et al. in: Solid Oxide Fuel Cells VI.(Eds)S.C. Singhal and M. Dokiya, PV99-19, p.775, The Electrochemical SocietyProceedings Series, Pennington, NJ (1999).
    [62]孟广耀,高建峰,夏长荣,等.中国专利, ZL02262552.6,2002.
    [63]Liu H C, Wang H, Shen J H, et al. Preparation, Characterization and Activitiesof the Nano-sized Ni/SBA-15Catalyst for Producing COx-free Hydrogen fromAmmonia[J]. Applied Catalysis A: General,2008,337:138-147.
    [64]Siamak F, Feridun H. Conceptual Design of a Novel Ammonia-fuelled PortableSolid Oxide Fuel Cell System[J]. Journal of Power Sources,2010,195:3084-3090.
    [65]Ni M, Leung M K H, Leung D Y C. Technological Development of HydrogenProduction by Solid Oxide Electrolyzer Cell (SOEC)[J]. International Journalof Hydrogen Energy,2008,33:2337-2354.
    [66]Vayenas C G, Farr R D. Co-generation of Electric Energy and Nitric-oxide[J].Science,1980,208:593-594.
    [67]Wojcik A, Middleton H, Damopous I, et al. Ammonia as a Fuel in Solid OxideFuel Cells[J]. Journal of Power Sources,2003,118:342-348.
    [68]Maffei N, Pelletier L, Charland J P, et al. An Intermediate Temperature DirectAmmonia Fuel Cell using a Proton Conducting Electrolyte[J]. Journal of PowerSources,2005,140:264-267.
    [69]Pelletier L, MaFarlan A, Maffei N. Ammonia Fuel Cell using Doped BariumCerate Proton Conducting Solid Electrolytes[J]. Journal of Power Sources,2005,145:262-265.
    [70]Zhang L M, Cong Y, Yang W S, et al. A Direct Ammonia Tubular Solid OxideFuel Cell[J]. Chinese Journal of Catalysis,2007,28(9):749-751.
    [71]Zhang L M, Yang W S. Direct Ammonia Solid Oxide Fuel Cell based on ThinProton-conducting Electrolyte[J]. Journal of Power Sources,2008,179:92-95.
    [72]Lin Y, Ran R, Guo Y M, et al. Proton-conducting Fuel Cells Operating onHydrogen, Ammonia and Hydrazine at Intermediate Temperatures[J].International Journal of Hydrogen Energy,2010,35:2637-2642.
    [73]Ma Q L, Peng R R, Tian L Z, et al. Direct Utilization of Ammonia inIntermediate-temperature Solid Oxide Fuel Cells[J]. ElectrochemistryCommunications,2006,8:1791-1795.
    [74]Ma Q L, Ma J J, Zhou S, et al. A High-performance Ammonia-fueled SOFCBased on a YSZ Thin Film Electrolyte[J]. Journal of Power Sources,2007,164:86-89.
    [75]Meng G Y, Jiang C R, Ma J J, et al. Comparative Study on the Performance of aSDC-based SOFC Fueled by Ammonia and Hydrogen[J]. Journal of PowerSources,2007,173:189-193.
    [76]Bredikhin S, Maeda K, Awano M. NO Decomposition by an ElectrochemicalCell with Mixed Oxide Working Electrode[J]. Solid State Ionics,2001,144:1-9.
    [77]Hamamoto K, Fujishiro Y, Awano M. Simultaneous Removal of NitrogenOxides and Diesel Soot Particulate in Nano-structured ElectrochemicalReactor[J]. Solid State Ionics,2006,177:2297-2300.
    [78]Kammer K. Electrochemical DeNOxin Solid Electrolyte Cells—an Overview[J].Applied Catalysis B: Environmental,2005;58:33-39.
    [79]Huang T J, Chou C L. Effect of Temperature and Concentration on Reductionand Oxidation of NO Over SOFC Cathode of Cu-added(LaSr)(CoFe)O3-(Ce,Gd)O2-x[J]. Chemical Engineering Journal,2010,162:515-520.
    [80]Huang T J, Hsiao I C. Nitric Oxide Removal from Simulated Lean-burn EngineExhaust Using a Solid Oxide Fuel Cell with V-added (LaSr)MnO3Cathode[J].Chemical Engineering Journal,2010,165:234-239.
    [81]Huang T J, Wu C Y, Wu C C. Effect of Temperature and Concentration onTreating NO in Simulated Diesel Exhaust via SOFCs with Cu-added(LaSr)MnO3Cathode[J]. Chemical Engineering Journal,2011,168:672-677.
    [82]Huang T J, Wu C Y, Lin Y H. Electrochemical Enhancement of Nitric OxideRemoval from Simulated Lean-Burn Engine Exhaust via Solid Oxide FuelCells[J]. Environmental Science&Technolog,2011,45(13):5683-5688.
    [83]Pancharatnam S, Huggins R A, Mason D M. Catalytic Decomposition of NitricOxide on Zirconia by Electrolytic Removal of Oxygen[J]. Journal of theElectrochemical Society,1975,122:869-875.
    [84]Iwayama K, Wang X. Selective Decomposition of Nitrogen Monoxide toNitrogen in the Presence of Oxygen on RuO2/Ag(cathode)/yttria-stabilizedzirconia/Pd(anode)[J]. Applied Catalysis B: Environmental,1998,19:137-142.
    [85]Wachsman E D, Jayaweera P, Krishnan G, et al. Electrocatalytic Reduction ofNOxon La1-xAxB1-yByO3δ: Evidence of Electrically Enhanced Activity[J].Solid State Ionics,2000,136-137:775-782.
    [86]Moon J W, Hwang H J, Fujishiro Y, et al. Dielectric Materials, Devices, andCircuits[J]. Journal of Ceramic Society of Japan,2002,110:706-720.
    [87]Huang T J, Chou C L. Feasibility of Simultaneous NO Reduction and ElectricityGeneration in SOFCs with V2O5or Cu added LSCF-GDC Cathodes[J].Electrochemistry Communications,2009,11:477-480.
    [88]Huang T J, Wu C Y, Hsu S H, et al. Complete Emissions Control for HighlyFuel-efficient Automobiles via a Simulated Stack of Electrochemical-catalyticCells[J]. Energy&Environmental Science,2011,4:4061-4067.
    [89]Yang L, Choi Y M, Qin W T, et al. Promotion of Water-mediated CarbonRemoval by Nanostructured Barium oxide/nickel Interfaces in Solid OxideFuel Cells[J]. Nature Communications,2010,2:1-9.
    [90]Zhan Z, Barnett S A. An Octane-Fueled Solid Oxide Fuel Cell[J]. Science,2005,308:844-847.
    [91]Cheng Z, Wang J H, Choi Y M, et al. From Ni-YSZ to Sulfur-tolerant AnodeMaterials for SOFCs: Electrochemical Behavior, in Situ Characterization,Modeling, and Future Perspectives[J]. Energy&Environmental Science,2011,4:4380-4409.
    [92]Zhou X L, Sun K N, Gao J, et al. Microstructure and ElectrochemicalCharacterization of Solid Oxide Fuel Cells Fabricated by Co-tape Casting[J].Journal of Power Sources,2009,191:528-533.
    [93]Sasaki K, Susuki K, Iyoshi A, et al. H2S Poisoning of Solid Oxide Fuel Cells[J].Journal of the Electrochemical Society,2006,153(11): A2023-A2029.
    [94]Zhang L, Jiang S P, He H Q, et al. A Comparative Study of H2S Poisoning onElectrode Behavior of Ni/YSZ and Ni/GDC Anodes of Solid Oxide FuelCells[J]. International Journal of Hydrogen Energy,2010,35:12359-12368.
    [95]Xu C, Gansor P, Zondlo J W, et al. An H2S-Tolerant Ni-GDC Anode with aGDC Barrier Layer[J]. Journal of the Electrochemical Society,2011,158(11):B1405-B1416.
    [96]Omar S, Wachsman E D, Nino J C. A Co-doping Approach Towards EnhancedIonic Conductivity in Fluorite-based Electrolytes[J]. Solid State Ionics,2006,177:3199-3203.
    [97]Wang F Y, Chen S Y, Cheng S F. Gd3+and Sm3+Co-doped Ceria BasedElectrolytes for Intermediate Temperature Solid Oxide Fuel Cells[J].Electrochemistry Communications,2004,6:743-746.
    [98]Guan X F, Zhou H P, Liu Z H, et al. High Performance Gd3+and Y3+Co-dopedCeria-based Electrolytes for Intermediate Temperature Solid Oxide FuelCells[J]. Materials Research Bulletin,2008,43:1046-1054.
    [99]Liu Y Y, Li B, Wei X, et al. Citric-Nitrate Combustion Synthesis and ElectricalConductivity of the Sm3+and Nd3+Co-Doped Ceria Electrolyte[J]. Journal ofthe American Ceramic Society,2008,91:3926-3930.
    [100]Yao H C, Zhang Y X, Liu J J, et al. Synthesis and Characterization of Gd3+andNd3+Co-doped Ceria by Using Citric Acid–nitrate Combustion Method[J].Materials Research Bulletin,2011,46:75-80.
    [101]Andersson D A, Simak S I, Skorodumova N V, et al. Optimization of IonicConductivity in Doped Ceria[J]. Proceeding of the National Academy ofScience of the United State of America,2006,103:3518-3521.
    [102]Boisena, Dahls, Norskovjk, et al. Why the Optimal Ammonia SynthesisCatalyst is not the Optimal Ammonia Decomposition Catalyst [J]. Journal ofCatalysis,2005,230(2):309-312.
    [103]Zhang Q H, Qin Y N. The Effect of Supporter and Promoter on NiO CatalystIn Ammonia Decomposition Reaction[J]. Acta Petrolei Sinica,2002,18(4):43-46.(In Chinese)
    [104]Zhang J, Xu H Y, Jin X L, et al. Characterizations and Activities of theNano-sized Ni/Al2O3and Ni/La–Al2O3Catalysts for NH3Decomposition[J].Applied Catalysis A: General,2005,290:87-96.
    [105]Staniforth J, Ormerod R M. Clean Destruction of Waste Ammonia withConsummate Production of Electrical Power Within a Solid Oxide Fuel Cellsystem[J]. Green Chemistry,2003,5:606-609.
    [106]Ni M, Leung D Y C, Leung M K H. Thermodynamic Analysis of AmmoniaFed Solid Oxide Fuel Cells: Comparison Between Proton-conductingElectrolyte and Oxygen Ion-conducting Electrolyte[J]. Journal of PowerSources,2008,183:682-686.
    [107]Collins J P, Way J D. Catalytic Decomposition of Ammonia in a MembraneReactor[J]. Journal of Membrane Science,1994,96:259-274.
    [108]Kilner J A, Steele B C H. Nonstoichiometric Oxides. Academic Press;1981,233-247.
    [109]Ma Q L, Peng R R, Lin Y J, et al. A High-performance Ammonia-fueled SolidOxide Fuel Cell[J]. Journal Power Sources,2006,161:95-98.
    [110]Amano A, Taylor H. The Decomposition of Ammonia on Ruthenium, Rhodiumand Palladium Catalysts Supported on Alumina. Journal of the AmericanChemical Society,1954,76:4201-4204.
    [111]Loffler D G, Schmidt L D. Infrared Examination of the Reversible Oxidationof Ferrous Ions in Y zeolite[J]. Journal of Catalysis,1976,41:40-45.
    [112]Loffler D G, Schmidt L D. Kinetics of NH3Decomposition on Iron at HighTemperatures. Journal of Catalysis,1976,44:244-258.
    [113]Vajo J J, Tsai W, Weinberg W H. Mechanistic Details of the HeterogeneousDecomposition of Ammonia on Platinum[J]. The Journal of Physical Chemistry,1985,89:3243-3251.
    [114]Tsai W, Weinberg W H. Steady-state Decomposition of Ammonia on theRuthenium(001) Surface[J]. The Journal of Physical Chemistry,1987,91:5302-5307.
    [115]Tamaru K. A "new" General Mechanism of Ammonia Synthesis andDecomposition on Transition Metals[J]. Accounts of Chemical Research,1988,21:88-94.
    [116]Papapolymerou G, Bontozoglou V. Decomposition of NH3on Pd and IrComparison with Pt and Rh[J]. Journal of Molecular Catalysis A: Chemical,1997,120:165-171.
    [117]Choi J G. Ammonia Decomposition over Vanadium Carbide Catalysts. Journalof Catalysis,1999,182:104-116.
    [118]Kowalczyk Z, Sentek J, Jodzis S, et al. Effect of Potassium on the Kinetics ofAmmonia Synthesis and Decomposition over Fused Iron Catalyst atAtmospheric Pressure. Journal of Catalysis,1997,169:407-414.
    [119]Rarog W, Kowalczyk Z, Sentek J, et al. Decomposition of Ammonia OverPotassium Promoted Ruthenium Catalyst Supported on Carbon[J]. AppliedCatalysis A: General,2001,208:213-216.
    [120]Arabczyk W, Narkiewicz U. A New Method for in Situ Determination ofNumber of Active Sites in Iron Catalysts for Ammonia Synthesis andDecomposition[J]. Applied Surface Science,2002,196:423-428.
    [121]Jedynak A, Kowalczyk Z, Smigiel D, et al. Ammonia Decomposition Over theCarbon-based Iron Catalyst Promoted with Potassium[J]. Applied Catalysis A:General2002,237:223-226.
    [122]Rarog W, Smigiel D, Kowalczyk Z, et al. Ammonia Decomposition Over theCarbon-based Ruthenium Catalyst Promoted with Barium or Cesium[J].Journal of Catalysis,2003,218:465-469.
    [123]Bradford M C J, Fanning P E, Vannice M A. Kinetics of NH3Decompositionover Well Dispersed Ru[J]. Journal of Catalysis,1997,172:479-484.
    [124]Choudhary T V, Svadinaragana C, Goodman D W. Catalytic AmmoniaDecomposition: COx-free Hydrogen Production for Fuel Cell Applications[J].Catalysis Letters,2001,72:197-201.
    [125] Goetsch D A, Schmit S J. WO Patent0187770;2001.
    [126]Abashar M E E, Al-Sughair Y S, Al-Mutaz I S. Investigation of LowTemperature Decomposition of Ammonia Using Spatially Patterned CatalyticMembrane Reactors[J]. Applied Catalysis A: Genernal,2002,236:35-53.
    [127]Yin S F, Zhang Q H, Xu B Q, et al. Investigation on the Catalysis of COx-freeHydrogen Generation from Ammonia[J]. Journal of Catalysis,2004,224:384-396.
    [128]Fournier G G M, Cumminga I W, Hellgardt K. High Performance DirectAmmonia Solid Oxide Fuel Cell[J]. Journal of Power Sources,2006,162:198-206.
    [129]Ruiz-Morales J C, Canales-Vozquez J, Marrero-Lopez D, et al. An All-in-oneFlourite-based Symmetrical Solid Oxide Fuel Cell[J]. Journal of Power Sources,2008,177(1):154-160.
    [130]Ruiz-Morales J C, Canales-Vozquez J, Pena-Martinez J, et al. On theSimultaneous Use of La0.75Sr0.25Cr0.5Mn0.5O3δas Both Anode and CathodeMaterial with Improved Microstructure in Solid Oxide Fuel Cells[J].Electrochimica Acta,2006,52:278-284.
    [131]Goodenough J B, Huang Y H. Alternative Anode Materials for Solid OxideFuel Cells[J]. Journal of Power Sources,2007,173:1-10.
    [132]Faro M L, Rosa D L, Nicotera I, et al. Electrochemical Behaviour ofPropane-fed Solid Oxide Fuel Cells Based on Low Ni Content Anode Catalysts[J]. Electrochimica Acta,2009,54:5280-5285.
    [133]Bastidas D M, Tao S, Irvine J T S. A Symmetrical Solid Oxide Fuel CellDemonstrating Redox Stable Perovskite Electrodes[J]. Journal of MaterialsChemistry,2006,16:1603-1605.
    [134]Tao S W. Irvine J T S. A Redox-stable Efficient Anode for Solid-oxide FuelCells[J]. Nature Materials,2003,2:320-323.
    [135]Tao S W, Irvine J T S. Synthesis and Characterization of(La0.75Sr0.25)Cr0.5MnO3-δ, a Redox-stable Efficient Perovskite Anode forSOFCs[J]. Journal of the Electrochemical Society,2004,151(2): A252-259.
    [136]Zha S W,Tsang P, Cheng Z, et al. Electrical Properties and Sulfur Tolerance ofLa0.75Sr0.25Cr1-xMnxO3Under Anodic Conditions[J]. Journal of Solid StateChemistry,2005,178:1844-1850.
    [137]RalPh J M,Schoeler A C,Krumpelt M. Materials for Lower Temperature SolidOxide Fuel Cells[J]. Journal of Materials Science,2001,36:1161-1172.
    [138]Jiang S P, Zhang L, Zhang Y. Lanthanum Strontium Manganese ChromiteCathode and Anode Synthesized by Gel-casting for Solid Oxide Fuel Cells[J].Journal Materials Chemistry,2007,17:2627-2635.
    [139]Zhang L, Jiang S P, Cheng C S, et al. Synthesis and Performance of(La0.75Sr0.25)1-x(Cr0.5Mn0.5)O3Cathode Powders of Solid Oxide Fuel Cells byGel-Casting Technique[J]. Journal of the Electrochemical Society,2007,154:B577-B582.
    [140]Ruiz-Morales J C, Lincke H, Marrero-Lopez D, et al. Lanthanum ChromiteMaterials as Potential Symmetrical Electrodes for Solid Oxide Fuel Cells[J].Boletin de la Sociedad Espanola de Ceramicay Vidrio,2007,46(4):218-223.
    [141]Ruiz-Morales J C, Canales-Vazquez J, Ballesteros B, et al. LSCM-(YSZ-CGO)Composites as Improved Symmetrical Electrodes for Solid Oxide Fuel Cells[J].Journal of the European Ceramic Society,2007,27:4223-4227.
    [142]Canales-Vazquez J, Ruiz-Morales J C, Marrero-Lopez D, et al. Fe-substituted(La,Sr)TiO3as Potential Electrodes for Symmetrical Fuel Cells (SFCs)[J].Journal Power Sources,2007,171:552-557.
    [143]Shin T H, Ida S, Ishihara T. Doped CeO2–LaFeO3Composite Oxide as anActive Anode for Direct Hydrocarbon-Type Solid Oxide Fuel Cells[J]. Journalof the American Chemical Society,2011,133:19399-19407.