新型多孔炭材料——木陶瓷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木陶瓷的研究是在“高效利用木材资源,利用可再生资源创生新材料,减少不可再
    生资源消耗,保护地球环境”的立意下开展的。木陶瓷是一种原料价格低廉,制造成本
    合理,性能优异,用途广泛,具有广阔的开发应用前景的新型炭材料。此项研究在国内
    还几乎为空白。
     本研究采用酚醛树脂浸渍木质材料,经过高温烧结制得木陶瓷产品,并对产品得率、
    性能、影响因素、微观结构以及烧结过程中的化学变化等进行了分析,并探讨了阻燃处
    理提高产品性能的可能性。产品得率、性能和炭材料组成等受树脂浓度和烧结温度影响
    较大。
     采用低温氮吸附法分析了木陶瓷的孔隙结构,实验证明未处理样品吸附能力很差,
    酚醛树脂处理为炭化物引入较多的微孔,吸附能力得到改善。
     通过SEM观察,酚醛树脂对木材细胞壁有润胀、填充作用,从而增强细胞壁,很多
    树脂填充于交错纤维间的空隙中,增强了纤维与纤维间的结合。
     本实验首次采用原子力显微镜(AFM)观察了大青杨木材和固化酚醛树脂样品的表
    面形态。炭化使样品的表面粗糙度增加10倍以上。
     首次利用热重-差示扫描量热-傅立叶红外(TG-DSC-FTIR)分析技术对木陶瓷烧结
    过程中的化学变化进行了分析,酚醛树脂处理中密度板样品的热分解基本上为中密度板
    和酚醛树脂的热分解之和。样品在800℃之前的热处理过程中持续发生分解,因而得率
    和产品性能变化较大。800℃之后变化较少,产品性能基本稳定。
     尝试阻燃剂复合酚醛树脂处理样品制取木陶瓷,样品的体积变化和部分性能与其同
    树脂浓度无阻燃处理样品基本相似。阻燃剂的添加,改变了木陶瓷烧结过程中的热分解
    机理,虽然提高了得率,但是基本不能提高炭化材料强度。
Efficiently utilizing wood, making new materials with the reproducible material, and reducing the consuming of irreproducible to protect our environment, is the aim of the study on Woodceramics(WCS). The row material for WCS is cheap and the cost of manufacturing is acceptable. The new porous carbon material has so many good characteristics that WCS can be used widely in many fields. However, it had hardly been studied in China.
     In this study, WCS was obtained by carbonizing wood material impregnated with PF resin without oxygen. The yield, properties, effect factors, microstructure of the products and the chemical reaction were analyzed. And the possibility of modification of WCS by a fire retardant treatment was discussed. The PF resin concentration and sintering temperature effected very evidently on its yield, properties and components as a carbon material.
     The N2 absorption experiment at low temperature shows that, the absorption properties of the charcoal sample was very poor. PF resin bringed a lot of micropores into the products and improved its absorption properties.
     SEM photographs indicate PF resin was filled in the wall of the wood cell and strengthened it, and more resins were filled in the interspace of wood fibers and fastened them.
     The microcosmic surface shape of the Populus Ussziriensis wood, the solidified PF resin, and the carbonization products were first observed by AFM. Carbonization made them 10 times rougher.
     For the first time, the chemical reactions of the samples during sintering were analyzed by TG-DSC-FTIR. The pyrolyzation of MDF treated with PF resin included pyrolyzation of MDF and PF resin. The chemical reactions happened continuously under 800 C, so the yield and properties of the products were changed obviously. Up 800 C, they were stabilized.
     Originally, the WCS modified by a fire retardant was studied. Their changes in volume and some properties were similar to those of the sample treated with PF resin only. There was fire retardant effect on the pyrolyzation mechanism. It might enhance the yield of the products, but not the strength.
引文
1. 白春礼,1992,扫描隧道显微术及其应用,上海科学技术出版社,上海
    2. 蔡正千,1993,热分析,高等教育出版社,北京
    3. 陈柏林,1997,生物电子显微镜观察与分析,东北林业大学出版社,哈尔滨
    4. 东北林业大学林产工业学院,1995,木材学实验指导书
    5. 东北林业大学木材化学教研组,1994,木材化学实验指导
    6. 杜滨阳,刘结平,何天白,1999,聚合物表面的纳米力学研究,高分子通报,(1):17-23
    7. 范振德,陈载永,1998,木陶瓷複合材之研制,林产工业,17(4):647-658
    8. 方桂珍,李淑君,刘健威,1999,低分子酚醛树脂改性大青杨木材的研究,木材工业,13(5):17~19
    9. 高敬琮等译,1989,Gregg S J,Sing K S W著,吸附、比表面积与孔隙率,化学工业出版社,北京
    10. 国家林业部,1979,木炭,林业部部标准,LY-79
    11. 国家技术监督局,1990,木质活性炭检验方法,中华人民共和国国家标准,GB/T12496.1~12496.22-90
    12. 国家质量技术监督局,1992,木材物理力学试验方法,中华人民共和国国家标准,GB1927~1943—92
    13. 国家质量技术监督局,1999,人造板及饰面人造板理化性能试验方法,中华人民共和国国家标准,GB/T17657—1999
    14. 黄律先,1996,木材热解工艺学(第二版),中国林业出版社,北京
    15. 霍肖旭,刘红林,曾晓梅等,高速列车炭/炭闸片的首次台架试验,第四届全国新型炭材料学术研讨会议论文集,187-191
    16. 李坚,1993,新型木材,东北林业大学出版社,哈尔滨
    17. 李坚,1994a,木材科学,东北林业大学出版社,哈尔滨
    18. 李坚,1994b,现有林经营管理导论,东北林业大学出版社,哈尔滨
    19. 李坚,1999,木材保护学,东北林业大学出版社,哈尔滨
    20. 李晓平,白波主编,1997,人造板胶粘剂合成极其应用,东北林业大学出版社,哈尔滨
    21. 刘江龙,丁培道,左铁镛,1996,环境材料及其相关问题,兰州大学学报,32:22-27
    22. 刘树勇等编著,国民科普大课堂(上卷)北京,中国民航出版社,1997
    23. 刘占军,史景利,刘乃芝等,共炭化制备高残炭率浸渍剂沥青,第四届全国新型炭材科学术研讨会议论文集,611-614
    24. 刘振海,山立子,1998,分析化学手册(第八分册),化学工业出版社,北京
    25. 刘振字,郑经堂,刘平光等,粘胶活性炭纤维的吸附性能及其孔结构表征,合成纤维工业,1998,21(2),24-26
    
    
    26. 南京大学主编,1990,木材化学,中国林业出版社,北京
    27. 马荣,1998,木材陶瓷,兵器材料科学与工程,21(6):45-48
    28. 马荣,1998,木材陶瓷的制备与性能研究,西安交通大学学报,32(8):57-61
    29. 邱清华,贾德民,1998,聚合物表面/截面表征技术进展,高分子材料科学与工程,14(5):1-5
    30. 屈小中,金熹高,1999,原子力显微镜在高分子领域的应用,功能高分子学报,12(2):218-224
    31. 沈曾民,迟伟东,赵莉,1999,模压法制备C/C复合材料的研究,第四届全国新型炭材料学术研讨会议论文集,206-211
    32. 史景利,郎东升,刘乃芝等,1999,回配法制取高产炭收率沥青浸渍剂,第四届全国新型炭材料学术研讨会议论文集,609-610
    33. 宋永忠,史景利,宋进仁等,1999,影响浸渍效果因素的理论分析,第四届全国新型炭材料学术研讨会议论文集,615-618
    34. 王俊山,1999,低成本炭/炭复合材料研究途径与现状,第四届全国新型炭材料学术研讨会议论文集,32-37
    35. 王清文,2000,木材阻燃工艺学原理,东北林业大学出版社,哈尔滨
    36. 王庆兴,1995,林产化学工艺学,中国林业出版社,北京
    37. 王西城等,2000(Si,Al...)陶瓷化木材的化学方法,材料研究学报,(2):
    38. 翁(?)芯,李源弘,王松永,1998,碳化温度封木陶瓷之碳化物收率及部分物理性质之影响,林产工业,17(1):155-170
    39. 吴瑾光,1994,近代傅里叶变换红外光谱技术及应用,科学技术文献出版社,北京
    40. 吴琪琳,1999,原丝纤度对碳纤维强度的影响,第四届全国新型炭材料学术研讨会议论文集,139-139
    41. 邬义明,1991,植物纤维化学,中国轻工业出版社,北京
    42. 严继民等著,1979,吸附与凝聚——固体表面与孔,科学出版社.北京
    43. 杨国华,1999,碳素材料,中国物资出版社,北京
    44. 杨先碧,阮慎康,1999,“看见了”表面原子的人——兼述扫描隧道显微镜发展简史,大学化学,14(3):59-62
    45. 佚名,2000,植物系硬质多孔隙碳素材料(KB陶瓷),航天技术与民品,(2):37
    46. 尹思慈,李坚,安培钧等,1996,木材学,中国林业出版社
    47. 张红日,1999,构造煤的孔隙特征——河北下花园矿及煤层分析,三东矿业学院学报(自然科学版),18(1):12-16
    48. 张玉忠,刘洁,高培基等,1997,微晶纤维素超显微结构的扫描隧道显微镜研究,16(6):736-738
    49. 郑自立,鞠党辰,罗淑相等,1996,坡缕石中微孔特征及其吸附机理讨论,矿产综合利用,(6):9-12
    50. 邹林华,黄伯云,黄启忠,2001,国外C/C复合材料摩擦学的研究现状,摩擦学报,21(2):157-160
    
    
    51. 柴田清孝,1995,多孔质炭素材料开发——低温领域电气的特性,材料,44(498):284-287
    52. 飞田和义,1996,炭化物,公开特许公报,特开平8-200063
    53. 冈部敏弘,斋藤幸司,户川齐等,1995,多孔质炭素材料开发——电磁一特性,材料,44(498):288-291
    54. 冈部敏弘,斋藤幸司,掘切川一男等,1996,内田老鹤圃株式会社,东京
    55. 関谷卓朗,1996,炭素系及制法,公开特许公报,特开平10-194858
    56. 掘切川一男,冈部敏弘,斋藤幸司等,1995,多孔质炭素材料开发——磨擦基本特性,44(501):794-799
    57. 掘切川一男,冈部敏弘,斋藤幸司等,1995,多孔质炭素材料开发——大气中无润滑,基油含浸,水中磨耗基本特性,44(501):800-804
    58. 石原茂久,1993,间伐材高温烧成炭炭素素材电磁波遮蔽性耐火木质·炭素复合材料开发,平成3~4年度文部省科学研究补助金(试验研究B)研究成果报告书,221
    59. 石原茂久,1996,木质系炭素材料素材開(?)新展开,木材学会志,42(8):717-723
    60. Akagaki T. etc. 1997, Friction and Wear Properties of Woodceramics at High Sliding Velocity, In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus, 133-136
    61. Christopher Byrne, Polymer, Ceramic and Carbon Composites Derived From Wood, A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy, Baltimore, Maryland, 1996
    62. C.E. Byrne and D. C. Nagle, 1997, carbonization of wood for advanced materials applications, Carbon, 35(2): 259-266
    63. C.Z.Hu, L.Feng, and D.Andrade, 1988, Carbon, 26(4): 543-547
    64. F. Rousseaux, and D.Tchoubar, 1977, Carbon, 15(1): 55-62
    65. Fushitani M etc., 1997, Bending Strength Properties and Hardness of Woodceramics. In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus, 365-368
    66. G.S.Rellick and P.M.Adams, 1994,TEM studies of resin-based matrix microstructure in carbon/carbon composites,32(1): 127-144
    67. Hata K. etc., 1997, Machining of Woodceramics by High Energy Laser Beams. London: In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus, 45~48
    68. Hayashi K. etc., 1997, Fracture Strength of Woodceramics. In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus, 97~100
    69. Hiroshi I.,Masami F.,Toshihiro O.,et al, 1999,Mechanical Properties of Woodceramics: A Porous Carbon Material, Journal of Porous Materials 6:175-184
    70. H. Marsh, 1989, Introduction to Carbon Science, Butterworth and Co., U.K.
    
    
    71. H.N.Lei, A. Metrot, and M. Troyon, 1994, Scanning tunneling microscopu analysis of a glassy carbon heat treated at 2500℃, Carbon, 32(1) 79-84
    72. Hokkirigawa K., 1997, The effect of inside structure on tribological properties of woodceramics, In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus, 61-64
    73. H.O.Pierson, 1993,Handbook of Carbon, Graphite, Diamond and Fullerenes, Noyes Publications, N.J.,
    74. ICCTC: 1982. The terminology for carbon as determined by the ICCTC. Carbon, 20(5) : 445
    75. ICCTC: 1983, The terminology for carbon as determined by the ICCTC, Carbon, 21(5) : 517
    76. ICCTC: 1985, The terminology for carbon as determined by the ICCTC, Carbon, 23(5) : 601
    77. ICCTC: 1986. The terminology for carbon as determined by the ICCTC, Carbon, 24(2) : 246
    78. ICCTC: 1987, The terminology for carbon as determined by the ICCTC, Carbon, 25(2&3) : 317,449
    79. Imamura B., 1997, The latest progress of new plant materials. In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus, 337-340
    80. Internet, 1997,http://www.project@jst.go.jp
    81. Internet,2000,http://www.snweb.com
    82. Intemet,2000,http://www.Sino-decoration.com
    83. J. D. Chen and C. P. Ju, 1995, Low Energy Tribological Behavior of Carbon-Carbon Composites, Carbon, 33(1) : 57-62
    84. Kano M. et al. 1997, Thermophysical Properties of Woodceramics, In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus, 361-364
    85. Kasai K. et al. 1997, Humidity Sensor Characteristics of Woodceramics, In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus. 77-80
    86. Keisuke H.. 1998. Laser Beam Machining of Porous Woodceramics. Journal of Porous Materials, 5: 65-75
    87. Khorami. J.; Chauvette, G.: Lemieux. A.; Menard. H. and Jolicoeur. C.. Thermochim. Acta, 1986, No.103. 221
    88. Kiyokazu K.. Kiyotaka S. ,Hiroyuki E.. 1999, Preparation and Properties of Woodceramic Thin Films. Journal of Porous Materials, 6: 227-231
    89. L.L.Soethout. J.W.Gerritsen, P.P.M.C. Groeneveld, et al, 1988. Journal of Microscopy, 152(1) : 251-255
    90. L.Vazquez.J.A.Martin-Gago, F.Comin,et al, 1992. Ultramicroscopy, (42-44) : 616-620
    91. M. Muller.K.M.Beinborn and K.J.Huttinger,1995,The significance of the fibre coating in the production of carbon fibre-reinforced carbons from HT carbon fibres and phenolic resin as matrix precursor.Carbon.33(8) : 1043-1046
    92. Nguyen T. Zavarin E.. Barrall E. M.. 1981, J. Macromolecule Science Revision. Macromolecule
    
    Chemistry, C20: 1,C21: 1
    93. N.M.D.Brown and H.X. You, 1991, Journal of Material Chemstry, 1(3) : 469-473
    94. Otsuka M. , Okabe T. , Saito S. , 1997, Effect of Cell Structure on the Compressive Strength of Beech Based Woodceramics. In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus,, 369-372
    95. Tomoharu A., Kazuo H., Toshihiro O. et al, 1999, Friction and Wear of Woodceramics under Oil and Water Lubricated Sliding Contacts, Journal of Porous Materials, 6: 197-204
    96. Toshikazu S., Nobukazu K., Toshihiro O. et al, 1999, Electrical Properties of Woodceramics, Journal of Porous Materials, 6: 255-258
    97. Toshihiro O., Kouji S., 1993, Bulletin of Japanese Ceramie Society, 28: 32
    98. Toshihiro O., Kouji S., 1994, Development of Woodceramics, In: Yamamoto R. Proceedings of the 3rd IUMRS International Conference of Materials. Amsterdam:Elsevier Science B V, 681-684
    99. Toshihiro O., Kouji S., Kazuo H., 1996, New Porous Carbon Materials, Woodceramics: Development and Fundamental Properties, Jouranl of Porous Materials, (2) : 207-213
    100. Toshihiro O., Kouji S., 1997, Development of Woodceramics(Ⅱ), In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus,337-340
    101. Toshihiro O,, Kouji S., 1997, Development of Woodceramics(Ⅰ), in: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus,337-340
    102. W.P.Hoffinan, V.B. Elings, and J.A.Gurley, 1988, Carbon, 26 (6) : 754
    103. W. Zimmermann Edling, H.G. Busmann, H. Sprang, et al, 1992, Ultramicroscopy, (42-44) : 1366-1370
    104. Yoshioka K., Kanou H., Mori K., 1997, Resin for Woody Eco-Material. In: Doi Y. Proceeding of 96 MRS symposium. London: Peter Peregrinus, 121-124