滇西北衙金多金属矿床钾质岩浆活动与成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北衙金多金属矿床处于我国滇西地区扬子地块西缘,位于金沙江—哀牢山钾质斑岩带中段。截止2010年勘查成果显示已累计探明333类别以上黄金资源储量127.28吨。主要矿体类型为铁金矿体,为磁铁矿-赤铁矿-褐铁矿矿石。铁金矿体绝大部分沿新生代钾质斑岩边界分布,或分布于三叠纪灰岩接触带及断裂裂隙中。在北衙金矿万硐山矿段露天采场,大面积分布的石英正长斑岩基本无矿化蚀变,部分侵入其中的二长花岗斑岩具黄铁矿化,此外还有少量煌斑岩脉侵入其中。
     矿区石英正长斑岩与二长花岗斑岩表现出高钾富碱埃达克质岩石的地球化学特征,分析显示均具有较高K2O/Na2O比值(2.195~26.963)、Sr/Y比值(53.2~143.2)及(La/Yb)N比值(4.934~39.426)。通过锆石LA-ICPMS U-Pb年龄测定,这两类斑岩具有几乎一致的年龄,范围都在34~37Ma之间;并且二者岩浆锆石εHf(t)值也相似,范围在-6.82~+2.65之间。煌斑岩具很低Nb/U比值(1.6~4.8),显示形成矿区镁铁质侵入体的岩浆源区为交代的大陆岩石圈地幔。钾质斑岩与煌斑岩地球化学特征表现出一致的变化趋势,表明北衙矿区岩体是由富钾的幔源镁铁质岩浆与下地壳熔体混合上升演化形成。钾质斑岩中存在大量自形未遭受磨蚀的继承锆石,说明其来自原地及临近区域,其U-Pb年龄测试结果呈现三个峰值分别是840、500、280Ma。年龄集中于840Ma左右的继承锆石具有很大范围的εHf(t)值,从很低的负值到极高的正值均存在,如此大范围εHf(t)值暗示可能是经历了一次大洋板块俯冲作用而形成;500、280Ma继承锆石可能代表了另两次加厚下地壳与地幔的相互作用。以上说明可能是扬子地块西北缘在约840Ma遭受了交代大陆岩石圈地幔以及随后的两次壳幔相互作用。金属元素可能主要是在下地壳累积富集,然后随长英质岩浆运移到上地壳。
     通过研究认为矿区可能存在三幕成矿作用过程。第一幕在侵入岩与灰岩接触带形成矽卡岩及原生磁铁矿和硫化物。第二幕可能是形成二长花岗斑岩,且释放大量富含成矿金属元素的氧化性岩浆流体并形成大量黄铁矿。第三幕是铁金矿体遭受强烈表生风化作用影响而形成红土型矿体。这一连续多幕次的岩浆活动与成矿作用复合叠加使得北衙矿区金等成矿金属巨量富集。
The Beiya gold deposit located in the western margin of the Yangtze block,Yunnan, SW China, and was situated in the middle segment of a belt of theJinshajiang-Ailaoshan potassic porphyry intrusion. It occupied an explored goldreserve about127.28t (the type of333and above) by the end of2010. Orebodiesmainly are massive magnetite-hematite-limonite ores, commonly called Fe-Auorebodies. The Fe-Au orebodies were mostly located along the boundary of theCenozoic potassic porphyry and within the faults in the Triassic limestone. In theopen-pit of the Wandongshan in Beiya gold deposit, quartz-K-feldspar porphyrylacking alteration and mineralization inside was intruded by the monzograniticporphyry with pyritization. In addition, some lamprophyre intruded into it.
     The two kinds of porphyries show potassic adakitic features in geochemistry, asexpressed by high K2O/Na2O (2.195~26.963), Sr/Y (53.2to143.2) and (La/Yb)N(4.934~39.426) ratios. They have identical zircon LA-ICPMS U-Pb ages from34Mato37Ma and similar εHf(t) ranging from-6.82to+2.65of the crystalline zircons. Thelamprophyres have extremely low Nb/U ratios of1.6~4.8, as is supportive that themafic intrusions were derived from a metasomatized subcontinental lithosphericmantle (SCLM). The geochemical features of the porphyries and the lamprophyre arecompatible with the explanation that the Beiya porphyries were formed via lowercrust melting and mixing with a K-rich mafic magma, which was derived frommetasomatized SCLM.
     Lots of inherited zircons entrained in the porphyries have euhedral shape,representing the parent rocks for the zircons were formed in the vicinity of the Beiyagold deposit. The inherited zircons have U-Pb ages clustered at peaks of800Ma,500Ma, and280Ma. The inherited zircons with ages around800Ma have εHf(t) rangingfrom largely negative to elevated positive values, which support the theory that thisgroup of zircons was formed via a slab subduction around800Ma. The detritalzircons with ages around500Ma and280Ma represent two other episodes of themantle interaction with thickened lower crust. These features can be explained by that the northwestern Yangtze experienced metasomatization of SCLM at~800Mafollowed by other episodic mantle-crust interactions. The barrenness of lamprophyresuggests that the metals might have accumulated in the lower crust, and then theywere carried into the upper crust via the felsic magma.
     The analysis via the Fe-Au orebody and porphyries suggested a three-episodeore-forming process. In the first episode, a small amount of skarn was developedlocally in the contact, and a few magnetite and sulfide. In the second episode, theoxidized elemental fluid migrated upwards, which perhaps relate to the alteredmonzogranite porphyry, and mostly pyrite were formed, as the upper crusts wasextensioning. In the third episode, the Fe-Au orebody suffered from intenseweathering and forming the laterite-type orebody.
引文
Agterberg F P. Power-law versus lognormal models in mineral exploration[C]. ComputerApplications in the Mineral Industry, Proceedings of the Third Canadian Conference onComputer Applications in the Mineral Industry. Montreal, Quebec: CIM,1995:17-26
    Agterberg F P, Cheng Q, Brown A, et al. Multifractal modeling of fractures in the Lac du Bonnetbatholith, Manitoba[J]. Computers&Geosciences,1996,22(5):497-507
    Andersen T. Correction of common lead in U–Pb analyses that do not report204Pb[J]. Chemical geology,2002,192(1):59-79
    Ayers J. Trace element modeling of aqueous fluid–peridotite interaction in the mantle wedge ofsubduction zones[J]. Contributions to Mineralogy and Petrology,1998,132(4):390-404
    Ballard J R, Palin M J, Campbell I H. Relative oxidation states of magmas inferred from Ce(IV)/Ce (III) in zircon: application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology,2002,144(3):347-364
    Boynton WV. Cosmochemistry of the rare earth elements: Meteorites studies. Development inGeochemistry,1984,63-114
    Bralia A, Sabatini G, Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in oregenesis problems[J]. Mineralium Deposita,1979,14(3):353-374
    Cao S Y, Liu J L, Leiss B, et al. Oligo-Miocene shearing along the Ailao Shan–Red River shearzone: constraints from structural analysis and zircon U/Pb geochronology of magmatic rocksin the Diancang Shan massif, SE Tibet, China[J]. Gondwana Research,2011,19(4):975-993
    Carroll M R, Rutherford M J. Sulfide and sulfate saturation in hydrous silicate melts[J]. Journal ofGeophysical Research: Solid Earth (1978–2012),1985,90(S02): C601-C612
    Carroll M R, Rutherford M J. Sulfur speciation in hydrous experimental glasses of varyingoxidation state; results from measured wavelength shifts of sulfur X-rays[J]. AmericanMineralogist,1988,73(7-8):845-849
    Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian marginof Gondwana: tectonic response to Gondwana assembly[J]. Earth and Planetary ScienceLetters,2007,255(1):70-84
    Chen L, Liu Y S, Hu Z C, et al. Accurate determinations of fifty-four major and trace elements incarbonate by LA–ICP-MS using normalization strategy of bulk components as100%[J].Chemical Geology,2011,284(3):283-295
    Cherniak D J, Hanchar J M, Watson E B. Rare-earth diffusion in zircon[J]. Chemical Geology,1997,134(4):289-301
    Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology,2001,172(1):5-24
    Chung S L, Jahn B. Plume-lithosphere interaction in generation of the Emeishan flood basalts atthe Permian-Triassic boundary[J]. Geology,1995,23(10):889-892
    Chung S L, Chu M F, Zhang Y, et al. Tibetan tectonic evolution inferred from spatial and temporalvariations in post-collisional magmatism[J]. Earth-Science Reviews,2005,68(3):173-196
    Cline J S, Bodnar R J. Can economic porphyry copper mineralization be generated by a typicalcalc‐alkaline melt?[J]. Journal of Geophysical Research: Solid Earth (1978–2012),1991,96(B5):8113-8126
    Ciobanu C L, Cook N J, Utsunomiya S, et al. Gold-telluride nanoparticles revealed in arsenic-freepyrite[J]. American Mineralogist,2012,97(8-9):1515-1518
    Cocks L R M, Torsvik T H. The dynamic evolution of the Palaeozoic geography of eastern Asia[J].Earth-Science Reviews,2013,117:40-79
    Cook N J, Chryssoulis S L. Concentrations of invisible gold in the common sulfides[J]. TheCanadian Mineralogist,1990,28(1):1-16
    Cook N J, Ciobanu C L, Mao J. Textural control on gold distribution in As-free pyrite from theDongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province,China)[J]. Chemical Geology,2009,264(1):101-121
    Cox D P, Singer D A. Mineral deposit models[M]. US Government Printing Office,1986
    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of youngsubducted lithosphere[J]. Nature,1990,347(6294):662-665
    Deng J, Wang QF, Huang DH, et al. Transport network and flow mechanism of shallowore-bearing magma in Tongling ore cluster area. Science in China Series D.2006,49(4),397–407
    Deng J, Wang QF, Wan L, et al. Singularity of Au Distribution in Altered Rock Type Deposit-AnExample from Dayingezhuang Gold Ore Deposit. In: Zhao PD (Ed). The12th Conference ofthe International Association for Mathematical Geology, Beijing: China University ofGeosciences Printing House,2007,44-47
    Deng J, Wang QF, Wan L, et al. The random difference of the trace element distribution in skarnand marbles from Shizishan orefield, Anhui Province[J]. China. Journal of China Universityof Geosciences,2008,19(4):123-137
    Deng J, Wang QF, Wan L, et al. Self-similar fractal analysis of gold mineralization ofDayingezhuang disseminated-veinlet deposit in Jiaodong gold province, China. Journal ofGeochemical Exploration,2009,102(2):95-102
    Deng J, Wang QF, Yang LQ, et al. Delineation and explanation of geochemical anomalies usingfractal models in the Heqing area, Yunnan Province, China. Journal of GeochemicalExploration,2010,105(3):95-105
    Deng J, Wang QF, Wan L, et al. A multifractal analysis of mineralization characteristics of theDayingezhuang disseminated-veinlet gold deposit in the Jiaodong gold province of China.Ore Geology Reviews,2011,40(1):54-64
    Deng J, Wang QF, Li GJ, et al. Tethys tectonic evolution and its bearing on the distribution ofimportant mineral deposits in the Sanjiang region, SW China. Gondwana Research,2013,http://dx.doi.org/10.1016/j.gr.2013.08.002.
    Dhuime B, Hawkesworth C, Cawood P. When continents formed. Science.2011,331,154-155
    Drummond MS, Defant MJ. A model for trondhjemite-tonalite-dacite genesis and crustal growthvia slab melting: Archean to modern comparisons. Journal of Geophysical Research [SolidEarth],1990,95,21503-21521.
    Dupont-Nivet G, Lippert PC, van Hinsbergen DJ, et al. Palaeolatitude and age of the Indo-Asiacollision: palaeomagnetic constraints. Geophysical Journal International,2010,1182:1189-1198
    Ferry JM and Watson EB. New thermodynamic models and revised calibrations for theT-in-zircon and Zr-in-rutile therm ometers. Contrib. Mineral Petrol,2007,154:429-437
    Flower M.F.J., Hoàng N., Lo C.H., et al.. Potassic Magma Genesis and the Ailao Shan-Red RiverFault. Journal of Geodynamics,2013,69:84-105.
    Gill, J. Orogenic andesites and plate tectonics. New York, Springer,1981, pp,1-390.
    Groves D.I., Bierlein F.P., Meinert L.D., et al. Iron Oxide Copper-Gold (IOCG) Deposits throughEarth History: Implications for Origin, Lithospheric Setting, and Distinction from OtherEpigenetic Iron Oxide Deposits. Economic Geology,2010,105:641-654
    Guo Z.F., Hertogen J., Liu J.Q., et al. Potassic Magmatism in Western Sichuan and YunnanProvinces, SE Tibet, China: Petrological and Geochemical Constraints on Petrogenesis.Journal of Petrology,2005,46:33-78
    Halter W E, Pettke T, Heinrich C A. The origin of Cu/Au ratios in porphyry type ore deposits.Science,2002,296:1844~1846
    Hart, S.R. A large-scale isotope anomaly in the southern hemisphere mantle: Nature,1984,309:753-757
    Harrison TM and Schmidt AK. High sensitivity mapping of Ti distributions in Hadean zircons.Earth Planet. Sci. Lett.,2007,261:9-18
    Huang X.L., Niu Y., Xu Y.G., et al. Mineralogical and geochemical constraints on thepetrogenesis of post-collisional potassic and ultrapotassic rocks from western Yunnan, SWChina: Journal of Petrology,2010,51:1617-1654
    Huang ZL, Liu CQ, Yang HL, et al. The geochemistry of lamprophyres in the Laowangzhai golddeposits, Yunnan Province, China: Implications for its characteristics of source region.Geochemical Journal,2002,36:91-112
    Hurst HE, Black RP, Simaike YM. Long-Term Storage: An Experimental Study, London:Constable,1965,1-155
    Hofmann, A.W., Jochum, K.P., Seufert, M., et al. Nb and Pb in oceanic basalts: new constraintson mantle evolution. Earth and Planetary Science Letters,1986,79:33-45
    Hou ZQ, Ma HW, Zaw K, et al. The Himalayan Yulong porphyry Cu belt: product of large-scalestrike-slip faulting in eastern Tibet. Economic Geology,2003,18:125–145
    Hou ZQ, Gao YF, Qu XM, et al. Origin of adakitic intrusives generated during mid-Mioceneeast–west extension in southern Tibet[J]. Earth and Planetary Science Letters,2004,220(1):139-155
    Hou ZQ, Zeng PS, Gao YF, et al. Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asiancollision zone: constraints from Re-Os dating of molybdenite. Mineralium Deposita,2006,41:33-45
    Hou ZQ, Zaw K, Pan GT, et al. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting,metallogenic epochs and deposit types. Ore Geology Reviews,2007,31(1-4):48-87
    Hou ZQ, Cook NJ. Metallogenesis of the Tibetan collisional orogen: A review and introduction tothe special issue. Ore Geology Reviews,2009,36:2-24
    Hou ZQ, Zhang HR, Pan XF, et al. Porphyry Cu (–Mo–Au) deposits related to melting ofthickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. OreGeology Reviews,2011,39(1):21-45
    Hou ZQ, Zheng YC, Zeng LS, et al. Eocene–Oligocene granitoids in southern Tibet: Constraintson crustal anatexis and tectonic evolution of the Himalayan orogen[J]. Earth and PlanetaryScience Letters,2012,349:38-52
    Hou ZQ, Pan X, Li Q, et al. The giant Dexing porphyry Cu–Mo–Au deposit in east China: productof melting of juvenile lower crust in an intracontinental setting[J]. Mineralium Deposita,2013,48(8):1019-1045
    Hou ZQ, Zheng Y, Yang Z, et al. Contribution of mantle components within juvenile lower-crustto collisional zone porphyry Cu systems in Tibet[J]. Mineralium Deposita,2013,48(2):173-192
    Hu ZC, Gao S, Liu YS, et al. Signal enhancement in laser ablation ICP-MS by addition ofnitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry,2008,23:1093-1101
    Irvine T.N., Baragar W.R.A. A guide to the chemical classification of the common volcanic rocks.Canadian Journal of Earth Sciences,1971,8:523-548
    Jiang YH, Jiang SY, Ling HF, et al. Low-degree melting of a metasomatized lithospheric mantlefor the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical andSr–Nd–Pb–Hf isotopic constraints[J]. Earth and Planetary Science Letters,2006,241(3):617-633
    Large RR., Danyushevsky L., Hollit C., et al. Gold and Trace Element Zonation in Pyrite Using aLaser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-StyleSediment-Hosted Deposits. Economic Geology.2009,104(5):635-668
    Liang HY, Campbell IH, Allen C, et al. Zircon Ce4+/Ce3+ratios and ages for Yulong ore-bearingporphyries in eastern Tibet. Mineralium Deposita,2006a,41(2):152-159
    Liang HY, Yu HX, Mo CH, et al. Zircon LA-ICP-MS U-Pb age, Ce4+/Ce3+ratios and thegeochemical features of the Machangqing complex associated with copper deposit. ChineseJournal of Geochemistry,2006b,25(3):223-229
    Liang HY, Campbell IH, Allen CM, et al. The age of the potassic alkaline igneous rocks along theAilao Shan–Red River shear zone: implications for the onset age of left‐lateral shearing[J].The Journal of geology,2007,115(2):231-242
    Lee J, William s I and E llisD. Pb, U and Th diffusion in nature zircon. Nature,1997,390:159-162
    Leloup P.H., Lacassin R., Tapponnier P., et al. The Ailao Shan-Red River shear zone (Yunnan,China), Tertiary transform boundary of Indochina. Tectonophysics,1995,251,3-84
    Leloup PH, Ricard Y, Battaglia J, et al. Shear heating in continental strike-slip shear zone:numerical modelling and case studies. Geophysical Journal International,1999,136:19-40
    Li Z.X., Li X.H., Kinny P.D., et al. Geochronology of Neoproterozoic syn-rift magmatism in theYangtze Craton, South China and correlations with other continents: evidence for a mantlesuperplume that broke up Rodinia.Precambiran Research,2003,122:85-109
    Liang HY, Campbell IH, Allen C, et al. Zircon Ce4+/Ce3+ratios and ages for Yulong ore-bearingporphyries in eastern Tibet. Mineralium Deposita,2006a,41(2):152-159
    Liang HY, Yu HX, Mo CH, et al. Zircon LA-ICP-MS U-Pb age, Ce4+/Ce3+ratios and thegeochemical features of the Machangqing complex associated with copper deposit. ChineseJournal of Geochemistry,2006b,25(3):223-229
    Liang HY, Campbell IH, Allen CM, et al. The Age of the Potassic Alkaline Igneous Rocks alongthe Ailao Shan-Red River Shear Zone: Implications for the Onset Age of Left-LateralShearing. The Journal of Geology,2007,115:231-242
    Liu X.M., Gao S., Diwu C.R., et al. Simultaneous in situ determination of U-Pb age and traceelements in zircon by LA-ICP-MS in20μm spot size. Chinese Science Bulletin,2007,52:1257-1264
    Liu Y.S., Hu Z.C., Gao S., et al. In situ analysis of major and trace elements of anhydrousminerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008,257(1-2):34-43.
    Liu Y.S., Gao S., Hu Z.C., et al. Continental and oceanic crust recycling-induced melt-peridotiteinteractions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements inzircons from mantle xenoliths. Journal of Petrology,2010a,51(1-2):537-571
    Liu, Y.S., Hu, Z.C., Zong, K.Q., et al. Reappraisement and refinement of zircon U-Pb isotope andtrace element analyses by LA-ICP-MS. Chinese Science Bulletin,2010b,55(15):1535-1546
    Lu YJ, Kerrich R, Cawood P.A., et al. Zircon SHRIMP U–Pb geochronology of potassic felsicintrusions in western Yunnan, SW China: Constraints on the relationship of magmatism tothe Jinsha suture. Gondwana Research,2012,22(2):737-747
    Lu Y J, Kerrich R, Kemp A I S, et al. Intracontinental Eocene-Oligocene Porphyry Cu MineralSystems of Yunnan, Western Yangtze Craton, China: Compositional Characteristics, Sources,and Implications for Continental Collision Metallogeny[J]. Economic Geology,2013a,108(7):1541-1576
    Lu Y J, Kerrich R, Mccuaig T C, et al. Geochemical, Sr–Nd–Pb, and zircon Hf–O isotopiccompositions of Eocene–Oligocene shoshonitic and potassic adakite-like felsic intrusions inwestern Yunnan, SW China: petrogenesis and tectonic implications[J]. Journal of Petrology,2013b,54(7):1309-1348
    Ludwig, K.R.,2003. ISOPLOT3.00: A Geochronological Toolkit for Microsoft Excel. BerkeleyGeochronology Center, California, Berkeley,39pp.
    Ma L, Jiang S Y, Hou M L, et al. Geochemistry of Early Cretaceous calc-alkaline lamprophyres inthe Jiaodong Peninsula: Implication for lithospheric evolution of the eastern North ChinaCraton[J]. Gondwana Research,2014,25(2):859-872
    Mandelbrot BB.1967. How long is the coast of Britain? statistical self-similarity and fractionaldimension. Science,156:636-638
    Mandelbrot BB.1983. The fractal geometry of nature. San Francisco: Freeman.468
    Mandelbrot BB.1985. Self-Affine Fractals and Fractal Dimension. Physica Scripta,32(4):257-260
    Metcalfe, I.,2002. Permian tectonic framework and palaeogeography of SE Asia. Journal of AsianEarth Sciences.20,551-566.
    Metcalfe, I.,2013. Gondwana dispersion and Asian accretion: tectonic and palaeogeographicevolution of eastern Tethys. Journal of Asian Earth Sciences66,1–33.
    Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Science Reviews1994,37,215-224.
    Mo, X.X., Deng J.F., Lu F.X..1994. Volcanism and the evolution of Tethys in Sanjiang area,southwestern China. Journal of southeast Asian earth sciences9,325-333.
    Najman, Y., Appel, E., Boudagher-Fadel, M., et al. Timing of India-Asia collision: Geological,bio-stratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research115,B12416.2010, doi:10.1029/2010JB007673.
    Pasteris JD.1996. Mount Pinatubo volcano and “negative” porphyry copper deposits. Geology,24(12):1075-1078
    Peccerillo, A., Taylor, S.R.,1976. Geochemistry of Eocene calc-alkaline volcanic rocks from theKastamonu area, northern Turkey. Contributions to Mineralogy and Petrology58,63-81.
    Peng S, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowanophiolite, Yangtze craton: Implications for South China's amalgamation history with theRodinian supercontinent[J]. Gondwana Research,2012,21(2):577-594
    Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remeltingof subduction-modified lithosphere[J]. Geology,2009,37(3):247-250
    Royal Society of Edinburgh. Transactions of the Royal Society of Edinburgh: Earth sciences[M].The Society,1872
    Rollison, H.R. Using geochemical data: Evaluation, presentation, interpretation. United Kingdom,Longman,1993, pp,1-352.
    Rudnick R L, Gao S. Composition of the continental crust[J]. Treatise on geochemistry,2003,3:1-64
    Salters, V. and Stracke, A.2004. Composition of the depleted mantle. Geochemistry, eophysics,Geosystems5(5): doi:10.1029/2003GC000597. issn:1525-2027.
    Searle, M.P., Windley, B.F., Coward, M.P., Cooper, D.J.W., Rex, A.J., Rex, D., Li, T.D., Xiao,X.C., Jan, M.Q., Thakur, V.C., Kumar, S.,1987. The closing of Tethys and the tectonics ofthe Himalaya. GSA Bulletin98,678-701.
    Singer DA.1993. Development of grade and tonnage models for different deposit types. In:Kirkham RV, Sinclair WD, Thorpe RI, Duke JM (Eds.). Mineral Deposit Modeling:Geological Association Canada Special Paper40:21-30
    Singer DA, Berger VI and Moring BC,2005. Porphyry copper deposits of the world: database,map, and grade and tonnage models. US Geological Survey Open File Report2005-1060
    Sun SS, McDonough, WF. Chemical and isotopic systematic of oceanic basalts: Implication formantle composition and processes. Geological Society Special Publication,1989,42,313-345
    Sun, X.M., Zhang, Y., Xiong, D.X., et al. Crust and mantle contributions to gold-forming processat the Daping deposit, Ailaoshan gold belt, Yunnan, China. Ore Geology Reviews,2009,36,235-249
    Turcotte DL. Fractals and chaos in geology and geophysics. Cambridge University Press,1997
    Turcotte DL. Fractals in petrology. Lithos,2002,65:261-271
    Thomas, H.V., Large, R.R., Bull, S.W., et al. Pyrite and pyrrhotite textures and composition insediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: insights for oregenesis. Economic Geology,2011,106:1-31
    Ulrich T, Günther D, Heinrich CA.1999. Gold concentrations of magmatic brines and the metalbudget of porphyry copper deposits. Nature,399(6737):676-679
    Ulrich T, Long D G F, Kamber B S, et al. In situ trace element and sulfur isotope analysis ofpyrite in a paleoproterozoic gold placer deposit, Pardo and Clement Townships, Ontario,Canada[J]. Economic Geology,2011,106(4):667-686
    Uchida, E., Endo, S., Makino, M.,2007. Relationship between solidification depth of graniticrocks and formation of hydrothermal ore deposits. Resource Geology57,47-56.
    Wan L, Wang QF, Deng J, et al. Identification of mineral intensity along drifts in theDayingezhuang deposit, Jiaodong gold province, China. Resource Geology,2010,60(1):98-108
    Wang CM, Deng J, Zhang ST, et al. Sediment-hosted Pb–Zn deposits in Southwest SanjiangTethys and Kangdian area on the western margin of Yangtze Craton. Acta GeologicaSinica-English Edition,2010c,84(6):1428-438
    Wang CM, Deng J, Zhang ST, et al.. Metallogenic province and large scale mineralization ofVMS deposits in China. Resource Geology,2010d,60(4):404-413
    Wang JH, Yin A, Harrison T M, et al. A tectonic model for Cenozoic igneous activities in theeastern Indo–Asian collision zone[J]. Earth and Planetary Science Letters,2001,188(1):123-133
    Wang JH, Yin A, Harrison TM, et al. Thermochronological constraints on two pulses of Cenozoichigh-K magmatism in eastern Tibet. Science in China (Series D): Earth Sciences,2003,46:719-729
    Mandelbrot BB. The fractal geometry of nature. San Francisco: Freeman.1983,468
    Wan L, Wang QF, Deng J, Gong QJ, Yang LQ and Liu H, et al. Identification of mineral intensityalong drifts in the Dayingezhuang deposit, Jiaodong gold province, China. Resource Geology,2010,60(1):98-108
    Wang QF, Deng J, Wan L, et al. Multifractal analysis of element distribution in skarn-typedeposits in the Shizishan orefield, Tongling Area, Anhui Province, China. Acta GeologicaSinica,2008,82(4):896-905
    Wang QF, Deng J, Liu H, et al. Fractal models for ore reserve estimation. Ore Geology Reviews,2010a,37(1):2-14
    Wang QF, Deng J, Zhao J, et al. Tonnage-cutoff model and average grade-cutoff model for asingle ore deposit. Ore Geology Reviews,2010b,38(1-2):113-120
    Wang QF, Wan L, Zhang Y, et al. Number-average size model for geological systems and itsapplication in economic geology. Nonlinear Processes in Geophysics,2011a,18(4):447-454
    Wang QF, Deng J, Liu H, et al. Fractal models for estimating local reserves with differentmineralization qualities and spatial variations. Journal of Geochemical Exploration,2011b,108:196-208
    Wang QF, Deng J, Liu H, et al. Fractal analysis of the ore-forming process in a skarn deposit: acase study in the Shizishan area, China. In: Sial AN, Bettencourt JS, De Campos CP andFerreira VP (eds.). Granite-Related Ore Deposits. Geological Society, London, SpecialPublications,2011c,350:89-104
    Wang QF, Deng J, Li C, et al. The boundary between the Simao and Yangtze blocks and theirlocations in Gondwana and Rodinia: Constraints from detrital and inherited zircons[J].Gondwana Research,2013, http://dx.doi.org/10.1016/j.gr.2013.10.002
    Wang Q, Xu JF, Jian P,et al. Petrogenesis of adakitic porphyries in an extentional tectonic setting,Dexing, South China: implications for the genesis of porphyry copper mineralization. J Petrol2006,47:119-144
    Wiedenbeck, M., Alle, P., Corfu, F., et al. Three natural zircon standards for U-Th-Pb, Lu-Hf,trace element and REE analyses. Geostandards and Geoanalytical Research,1995,19(1):1-23
    Xia, P., Xu, Y.G., Enrichment of the lithospheric mantle in western Yunnan: Comparative studiesof two Cenozoic ultrapotassic volcanic series: Science in China, Series D, Earth Sciences,2004,34:1118-1128
    Xiao, L., Clemens, J.D.,2007. Origin of potassic (C-type) adakite magmas: Experimental andfield constraints. Lithos95,399-414.
    Xu XW, Cai XP, Xiao QB, et al. Porphyry Cu–Au and associated polymetallic Fe–Cu–Audeposits in the Beiya Area, western Yunnan Province, south China. Ore Geology Reviews,2007a,31(1-4):224-246
    Xu XW, Cai XP, Zhong JY, et al. Formation of tectonic peperites from alkaline magmas intrudedinto wet sediments in the Beiya area, western Yunnan, China. Journal of Structural Geology,2007b,29(8):1400-1413
    Xu XW, Zhang BL, Qin KZ, et al. Origin of lamprophyres by the mixing of basic and alkalinemelts in magma chamber in Beiya area, western Yunnan, China. Lithos,2007c,99(3-4):339-362
    Xu YG, Menzies MA, Thirlwall MF, et al. Exotic lithosphere mantle beneath the western Yangtzecraton: petrogenetic links to Tibet using highly magnesian ultrapotassic rocks[J]. Geology,2001,29(9):863-866
    Yang ZM, Hou ZQ, Xu JF, et al. Geology and origin of the post-collisional Narigongma porphyryCu-Mo deposit, southern Qinghai, Tibet. Gondwana Research,2013,http://dx.doi.org/10.1016/j.gr.2013.07.012
    Yin, A., Harrison, T.M., Geologic evolution of the Himalayan-Tibetan orogen. Annual Review ofEarth and Planetary Sciences,2000,28,211-280
    Yuan HL, Gao S, Liu XM, et al. Accurate U-Pb age and trace element determinations of zircon bylaser ablation-inductively coupled plasma-mass spectrometry. Geostandards andGeoanalytical Research,2004,28(3):353-370
    Zeng PS, Hou ZQ, Mo XX, et al. Relationship of the Cenozoic Beiya Cu-Au mineralization toalkali-rich porphyries in western Yunnan, China[C]//Mineral Deposit Research: Meeting theGlobal Challenge. Springer Berlin Heidelberg,2005:1279-1281
    Zhang, B., Zhang, J.J., Zhong, D.L., Structure, kinematics and ages of transpression duringstrain-partitioning in the Chongshan shear zone, western Yunnan, China. Journal of StructuralGeology,2010,32:445-463
    Zhang ZJ, Teng JW, Li YK, et al. Crustal struclure of seismic velocity in southern Tibet andeast-westward escape of the crustal material: An example by wide-angle seismic profile fromPeigu Tso to Pumoyong Tso. Science in China (Series D),2004,47(6):500-506
    Zhang, L.S., Sch rer, U. Age and origin of magmatism along the Cenozoic Red River shear belt,China: Contributions to Mineralogy and Petrology,1999,134:67-85
    Zhang H., Ling,M.X et al., High Oxygen Fugacity and Slab Melting Linked to Cu Mineralization:Evidence from Dexing Porphyry Copper Deposits, Southeastern China. The Journal ofGeology,2013,121(3):289-305
    Zhao, Y.M., Zhang, Y.N., Bi, C.S.,1999. Geology of gold-bearing skarn deposits in the middleand lower Yangtze River Valley and adjacent regions. Ore Geology Reviews14(3),227–249
    Zhou MF, Yan DP, Kennedy A K, et al. SHRIMP U–Pb zircon geochronological and geochemicalevidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block,South China[J]. Earth and Planetary Science Letters,2002,196(1):51-67
    Zhou MF, Ma Y, Yan DP, et al. The Yanbian terrane (Southern Sichuan Province, SW China): aNeoproterozoic arc assemblage in the western margin of the Yangtze block[J]. PrecambrianResearch,2006,144(1):19-38
    Zhou Q, Jiang YH, Zhao P, et al. Origin of the Dexing Cu-bearing porphyries, SE China:elemental and Sr–Nd–Pb–Hf isotopic constraints. Int Geol Rev,2011,54:572–592
    Zindler A, Hart SR. Chemical geodynamics: Annual Review of Earth and Planetary Sciences,1986,14:493-571
    毕献武,胡瑞忠,等.与铜、金矿化有关的富碱侵入岩矿物化学研究[J].矿物学报,2006,(04):377~386
    毕献武,胡瑞忠,彭建堂,等.姚安和马厂警富碱侵入岩体的地球化学特征[J].岩石学报,2005,21(1):113-124
    陈爱兵,孙彩霞,姜华,等.北衙金矿综合信息成矿预测[J].地质与勘探,2011,47(4):633-641
    崔银亮,陈贤胜,晏建国.北衙红色粘土型金矿地质特征和成矿条件.矿物学报,2001,21(04):654~658
    崔银亮,陈贤胜,张映旭,等.滇西新生代与富碱斑岩有关的金矿床成矿特征和成矿条件.大地构造与成矿学,2002,26(04):404~408
    崔银亮.云南省与富碱斑岩有关的金矿床围岩蚀变特征和找矿前景.矿产与地质,2003a,17(S1):369~372
    崔银亮,晏建国,陈贤胜.滇西北衙金多金属矿床找矿标志和找矿模式研究.黄金,2003b,24(07):7~10
    邓军,侯增谦,莫宣学,等.三江特提斯复合造山与成矿作用.矿床地质,2010a,29(1):37-42
    邓军,杨立强,葛良胜,等.滇西富碱斑岩型金成矿系统特征与变化保存.岩石学报,2010b,26(6):1633-1645
    邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展.岩石学报,2011,27(9):2501-2509
    邓军,王长明,李龚健.三江特提斯叠加成矿作用样式及过程[J].岩石学报,2012,28(5):1349-1361
    邓军,葛良胜,杨立强.构造动力体制与复合造山作用——兼论三江复合造山带时空演化[J].岩石学报,2013,29(4):109-1114
    邓万明,黄萱,钟大赉,等.滇西金沙江带北段的富碱斑岩及其与板内变形的关系[J].中国科学(D辑),1998,28(2):111-117
    冯钞熔,王应宝,李云留,等.西双版纳勐海勐满热泉型金矿.云南地质,2008,27(2):170-174
    葛良胜,郭晓东,等.滇西北地区富碱岩体(脉)地球化学特征及成因.地质找矿论丛(S1),2003,36-42
    郭晓东,葛良胜,等.云南马厂箐岩体中深源包体特征及其锆石LA-ICP-MSU-Pb年龄[J].岩石学报,2012,28(05):1413-1424
    郭远生,曾普胜,杨伟光,等.北衙金多金属矿床地质特征与成因[J].中国工程科学,2005,7(s1):218-223
    何云,杨丽兰,周红升.2008.楚雄南华大龙塘金矿控矿因素新知.云南地质,27(4):448-454
    和文言,喻学惠,莫宣学,等.滇西北衙多金属矿田矿床成因类型及其与富碱斑岩关系初探[J].岩石学报,2012,28(5):1401-1412
    和中华,周云满,和文言,等.滇西北衙超大型金多金属矿床成因类型及成矿规律[J].矿床地质,2013,32(2):244-258
    黄智龙,朱成明,王联魁.1996.云南老王寨金矿区煌斑岩的化学成分及与金矿化关系初探.有色金属矿产与勘查,5(1):22-27
    侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征,岩浆热液系统和成矿概念模型[J].地质学报,2009,83(12):1779-1817
    侯增谦,钟大赉,邓万明.2004.青藏高原东缘斑岩铜钼金成矿带的构造模式.中国地质,31(1):1-14
    侯增谦,钟大赉,邓万明.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质,2004,31(1):1-14
    侯增谦.大陆碰撞成矿论[J].地质学报,2010,84(1):30-58
    黄波,梁华英,莫济海,等.金平铜厂铜钼矿床赋矿岩体锆石LA-ICP-MS U-Pb年龄及意义.大地构造与成矿学,2009,33(4):598-602
    李文昌,潘桂堂,侯增谦,等.西南“三江”多岛弧盆-碰撞造山成矿理论与勘查技术.北京:地质出版社,2010
    李元,秦德先,黎诚.北衙金矿的氧化特征及找矿意义.昆明理工大学学报,1999,24(01):120~124
    李定谋,李保华.2000.云南哀牢山金矿床的成矿条件.沉积与特提斯地质,20(1):60-77
    李志钧.云南鹤庆北衙金多金属矿床成矿地质条件[J].矿产与地质,2010,(03):198~203
    梁华英,谢应雯,张玉泉,等.2004.富钾碱性岩体形成演化对铜矿成矿制约——以马厂箐铜矿为例.自然科学进展,14(1):116-120
    梁华英,孙卫东,张玉泉.红河-哀牢山断裂带钾质碱性岩锆石LA-ICP-MS U-Pb年龄及地质意义[J].矿物岩石地球化学通报,2008,27(z1)
    刘显凡,刘家铎,等.滇西富碱斑岩型矿床岩体和矿脉同位素地球化学研究.矿物岩石地球化学通报2004(01):32-39.
    刘建云.北衙万硐山金矿床地质特征及找矿方向.黄金,2003,24(9):10~12
    卢焕章.流体不混溶性和流体包裹体[J].岩石学报,2011,27(5):1253-1261
    童潜明.黄铁矿的钻、镍比值对矿床成因意义的讨论[J].矿产地质研究院学报,1986,3:6-9
    涂光炽.关于富碱侵入岩.矿产与地质,1989,3(13):1-4
    王建,李建平.滇西大理-剑川地区钾玄质岩浆作用:后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究.岩石学报,2003,01:61-70
    王庆飞,邓军,万丽,等.山东大尹格庄金矿蚀变岩中矿体分布稳定性的动力学控制参量探讨.岩石学报,2007,23(4):861-864
    王锁青,王远航.南华大龙潭新近系微细浸染型金矿.云南地质,2004,23(3):328-336
    王治华,郭晓东,葛良胜,等.云南祥云马厂箐富碱斑岩体的地球化学特征[J].地质与勘探,2009,(4):343-351
    吴开兴,胡瑞忠,毕献武,等.滇西北衙金矿蚀变斑岩中的流体包裹体研究[J].矿物岩石,2005,25(2):20-26
    吴开兴,胡瑞忠,毕献武,等.滇西北衙金矿方解石的碳氧同位素特征及其成因.矿物学报,2010,30(04):463-469
    肖晓牛,喻学惠,莫宣学,等.滇西北衙金多金属矿床成矿地球化学特征[J].地质与勘探,2011,47(2):170-179
    肖晓牛,喻学惠,莫宣学,等.滇西洱海北部北衙地区富碱斑岩的地球化学,锆石SHRIMPU-Pb定年及成因[J].地质通报,2009a,28(12):1786-1803
    肖晓牛,喻学惠,莫宣学,等.滇西北衙金多金属矿床流体包裹体研究[J].地学前缘,2009b,16(2):250-261
    辛洪波,曲晓明.西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态:来自锆石Ce(Ⅳ)/Ce(Ⅲ)比值的约束.矿物学报,2008,28(2):152-160
    胥磊落,毕献武,等.云南金平铜厂斑岩Cu(Mo-Au)矿床含矿石英正长斑岩地球化学特征及成因机制探讨[J].岩石学报,2011,27(10):3109-3122
    胥磊落,毕献武,陈佑纬,等.云南金平铜厂斑岩铜钼矿区岩体锆石Ce4+/Ce3+比值及其对成矿的指示意义.矿物学报,2012,32(1):74-82
    徐受民,莫宣学,曾普胜,等.滇西北衙富碱斑岩的特征及成因[J].现代地质,2006,20(4):527-535
    徐受民.滇西北衙金多金属矿床的成矿模式及与新生代富碱斑岩的关系:[博士学位论文].北京:中国地质大学(北京),2007
    徐兴旺,蔡新平,张宝林,等.滇西北衙金矿矿床类型与结构模型[J].矿床地质,2007,26(3):249-264
    徐兴旺,蔡新平,宋保昌,等.滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征及其成因机制.岩石学报,2006a,22(03):631~642
    谢应雯,张玉泉,胡国相.哀牢山-金沙江富碱侵入带地球化学与成矿专属性初步研究.昆明工学院学报,1984(04):1~17
    辛洪波,曲晓明.2008.西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态:来自锆石Ce(Ⅳ)/Ce(Ⅲ)比值的约束.矿物学报,28(2):152-160
    胥磊落,毕献武,苏文超,等.云南金平铜厂斑岩Cu(Mo-Au)矿床含矿石英正长斑岩地球化学特征及成因机制探讨.岩石学报,2011,27(10):3109-3122
    胥磊落,毕献武,陈佑纬,等.云南金平铜厂斑岩铜钼矿区岩体锆石Ce4+/Ce3+比值及其对成矿的指示意义.矿物学报,2012,32(1):74-82
    薛传东,侯增谦,刘星,等.滇西北北衙金多金属矿田的成岩成矿作用:对印-亚碰撞造山过程的响应[J].岩石学报,2008,24(3):457-472
    杨金永.滇西北衙金矿构造-富碱斑岩-成矿研究:[博士学位论文].北京:中国地质大学(北京),2010
    杨贵来,杨伟光,罗梅,等.云南勐海勐满金矿床的地球化学特征及成因.现代地质,2007,21(4):667-674
    杨立强,邓军,赵凯,等.哀牢山造山带金矿成矿时序及其动力学背景探讨.岩石学报,2011,27(9):2519-2532
    杨伟光,郭远生,王训练,等.云南南华地区大龙潭金矿之发现及其矿床地质特征.地质通报,2006,25(9-10):1233-1237
    云南省地质矿产局.云南省区域地质志.地质出版社.1990.04
    张玉泉,谢应雯,等.(1987)."哀牢山—金沙江富碱侵入岩及其与裂谷构造关系初步研究."岩石学报(01):17-26.
    曾普胜,莫宣学.滇西富碱斑岩带的Nd,Sr,Pb同位素特征及其挤压走滑背景[J].岩石矿物学杂志,2002,21(3):231-241
    赵婕.分形方法在北衙金矿的应用:[硕士学位论文].北京:中国地质大学(北京),2010
    赵太平. La/Sm-La图解运用中的问题.河南地质,1992,10(1):70-73
    赵欣,莫宣学,喻学惠,等.滇西六合地区新生代正长斑岩中深源包体的矿物学特征与成因意义[J].地学前缘,2004,10(3):93-104
    赵永清.北衙金矿矿体(群)对比连接依据及可靠程度分析[J].中国新技术新产品,2010(19):88-89
    祝向平.云南哈播斑岩型铜(-钼-金)矿床地质特征与成矿作用研究:[博士学位论文].北京:中国地质大学(北京),2010