矿体三维建模及储量计算关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体矿产资源的可利用储量以及矿化元素空间分布是矿山进行采选设计的基础,直接影响矿山企业的宏观决策。传统的储量计算方法是在简单几何图形的基础上近似地计算矿体体积,计算过程不直观、精度差。随着信息技术的发展,以矿体三维模型为基础进行的矿体储量计算与传统的储量计算方法相比,计算过程更为直观,结果更为精确,是储量计算的发展趋势。但是,目前国内尚没有成熟的具有三维储量计算功能的软件。矿体三维建模缺乏统一完备的理论,以矿体三维模型为基础计算矿体储量仍有许多问题需要解决。本文针对利用相邻剖面轮廓线进行矿体三维建模以及在此基础上进行储量计算过程中的关键问题进行了深入的研究。
     在矿体三维建模的研究中,本文针对相邻剖面轮廓线形体差异较大,轮廓线上点数相差较多的情况提出了一种二维轮廓线重构三维形体算法,即周长投影法。采用该法建立的矿体模型表面过渡平滑,更具有真实感。
     在矿体储量计算方法的研究中,本文分别采用三维积分法和克立格法进行储量计算:
     (1)本文在矿体三维模型基础上,采用三维积分法进行储量计算。该方法利用一组距离相等、相互平行的平面与矿体相切,将所有相邻切面间的体积累加,计算矿体的体积。探讨了切片间距与矿体体积计算精度的关系。该方法计算过程简便、直观,体积计算精确。
     (2)克立格法是目前应用较为广泛的储量计算方法,本文在采用该法进行储量计算的过程中,深入地研究了实验变异函数计算和插值邻域点选取算法。①在研究实验变异函数计算的问题上,主要研究了实验变异函数的计算效率和计算稳健性:将分治算法引入到计算过程中,在大样本条件下,具有较高的计算效率,计算结果可靠;对于不服从正态分布的样品数据,通过特异值处理、数据变换、采用中位数等方法计算实验变异函数,提高了计算结果的稳健性。②在研究插值邻域点选取算法的问题上,提出了空间分布权系数邻域点选取算法。通过建立估值点周围邻域点间空间分布权系数的函数,确定参与克立格估值计算的邻域点。该算法不但考虑到了同一象限内邻域点与估值点距离的远近,同时也考虑到了邻域点之间的空间相关程度,使邻域点选取更具合理性。
     在以上研究工作的基础上,本文以VB6.0为开发工具在AutoCAD2002平台下开发了三维储量计算系统。该系统具有存储和管理地质勘探资料的功能,支持Excel文件和手工两种输入方式;具有数据处理功能,能够进行数据错误检查、特高品位处理、钻孔轨迹计算、单工程自动圈定、样品统计分析;具有矿体三维建模功能,能够进行图像配准、地质解译、矿体线框建模、矿体块段建模;具有储量计算功能,能够采用三维积分法、距离反比法、普通克立格、对数正态克立格等方法进行储量计算。系统操作简便,符合地质人员工作习惯,可有效提高储量计算的工作效率。利用该系统对邓西沟铅锌矿进行了矿体三维建模,在此基础上采用三维积分法和克立格法计算了矿体储量,结果表明应用本系统建立矿体三维模型简单方便,储量计算结果可靠。
Available reserves of solid mineral resources and mineralization elements spatial distribution are the foundation of mill run and mining design, directly affect the macro decision of enterprises. Traditional reserves calculation methods approximately calculate orebody volume by simple geometry. Its process is not intuitionistic and its precision is poor. With the development of information technology, reserves calculation based on orebody 3D model is intuitionistic and its result is more precise contrast with traditional calculation. However, it has not mature software with 3D reserves calculation function in our country. Orebody 3D modeling is lack of a unified theory. There are still many problems with reserves calculation basing on orebody 3D model. In this paper the key problems are studied in the process of using adjacent orebody contours to construct 3D orebody model and calculating reserves basing on 3D orebody model.
     Through research on orebody 3D modeling, this paper introduces a algorithm by two dimensional contours reconstructing three dimensional model. This algorithm is called perimeter projection. If adjacent contours morphological difference is larger and the difference in number of points on contours is more, this algorithm can get well result. The orebody model is more realistic, and its surface is smoothness.
     Through research on orebody reserves calculation methods, this paper adopts 3D integral and Kriging methods:
     (1) Basing on orebody 3D modle, this papers uses 3D integral method to calculate reserves. This method uses a number of distance equal and parallel planes to cut orebody. When the distance between adjacent sections is close to zero, the volume sum of between two adjacent planes is approximate to the volume of the orebody. This paper studies the relationship slice spacing and 3D integral method of volume calculation accuracy. The calculation process is simple, intuitive and volume is accurate.
     (2) Kriging is widely used in reserves calculation, this paper studies experiments variogram calucaltion and neighborhood points of interpolation selection algorithm in the process by using Kriging to calculate reserves:①Through research on experiments variogram calucaltion, this paper studies its efficiency and robustness: Divide algorithm is adopted in the calculation process, under lager samples condition, its efficiency is high and its result is reliable; When samples deviate from normal distribution, this paper processes outliers and applies data transformation, then variogram is calculated by median method etc. and the robustness of calculation result is improved.②Through research on neighborhood points of interpolation selection, this paper introduces a algorithm of interpolation neighborhood points selection. Through establishing space distribution function of neighborhood points around estimating point, neighborhood points are selected in the process of Kriging calculation. This algorithm not noly considers the distance of estimating point and its neighborhood points in same quadrant but also considers correlation of neighborhood points, therefore neighborhood points selection is more reasonable.
     On the basis of above research works, this paper adopting VB6.0 for development tools in AutoCAD 2002 platform has developed the 3D reserves calculation system. It has the function of geological exploration data storage and management, and supports Excel documents and manual input. It has data processing function, includes check data errors, outliers processing, borehole track calculation, single project automatic interception, samples statistic analysis. It has 3D modeling of orebody function, includes image registration, geological interpretation, orebody wireframe modeling, orebody block modeling. It has reserve calculation function, includes 3D integral method, inverse distance, ordinary Kriging, logarithmic normal Kriging methods for calculating reserves. System is simple, suit for the geological work habits. Reserve calculation efficiency can be improved by using it. System has been used to construct orebody 3D model in Deng Xigou Pb-Zn mine. This paper has used 3D integral and Kriging methods to calculate reserves. The result shows that this system is simple and convenient to establish orebody 3D model, and reserves calculation result is reliable.
引文
1.国土资源部储量司.GB/T 17766-1999,固体矿产资源/储量分类[S],北京,中华人民共和国国家标准,1999,2-3.
    2.张新,赵红蕊,陈宜金.人类可持续发展与“数字矿山”研究[J],东北测绘,1999,224:5-6.
    3.吴立新,殷作如,邓智毅等.论21世纪的矿山--数字矿山[J],煤炭学报,2000,25(4):337-342.
    4.王青,吴惠城,牛京考.数字矿山的功能内涵及系统构成[J],中国矿业,2004,13(1):7-10.
    5.毕思文,殷作如,何晓群.数字矿山的概念、框架、内涵及应用示范[J],科技导报,2004,6:39-41.
    6.曹代勇,余志伟,赵扬等.数字矿山及其关键技术探讨[J],铜业工程,2005,1:10-12.
    7.汪云甲.数字矿山与矿区资源绿色开发[J],科技导报,2004,6:42-44.
    8.孙豁然,徐帅.论数字矿山[J],金属矿山,2007,2:1-5.
    9.黄德才.数据库原理及其应用教程[M],北京:科学出版社,2004,12-15
    10.吴立新,史文中.地理信息系统原理与算法[M],北京:科学出版社,2003,10-12,51-64..
    11.王家耀.空间地理信息原理[M],北京:科学出版社,2001,108-135.
    12.邬伦等.地理信息系统一原理、方法与应用[M],北京:科学出版社,2001,47-48.
    13. Siyka Zlatanova, Alias Abdul Rahman, Wenzhong Shi. Topological models and frameworks for 3D spatial objects[J], Computers & Geosciences,2004,30 (4):419-428.
    14. Calin Arens, Jantien Stoter, Peter van Oosterom. Modelling 3D spatial objects in a geo-DBMS using a 3D Primitive[J], Computers & Geosciences,2005,31(2):165-177.
    15.武强,徐华.三维地质建模与可视化方法研究[J],中国科学D辑(地球科学),2004,34(1):54-60.
    16.程鹏根.地矿三维空间数据模型及相关算法研究(D),武汉大学,2005.
    17.张玲玲.基于广义三棱柱的地质体三维可视化方法研究(D),阜新辽宁工程技术大学,2004.
    18.吴焕萍.规则格网DTM快速构建算法研究[J],计算机应用研究,2004,6:26-28.
    19. Andreas Koch, Christian Heipke. Semantically correct 2.5D GIS data—The integration of a DTM and topographic vector data[J], ISPRS Journal of Photogrammetry & Remote Sensing, 2006,61 (1):23-32.
    20. Weiler, K.. The radial edge structure:a topological representation for non-manifold geometric boundary modeling[J], Geometric Modeling for CAD Applications,1988:3-36.
    21. Marcus Apel. From 3d geomodelling systems towards 3d geoscience information systems: Data model, query functionality.and data management[J], Computers & Geosciences,2006,32 (2):222-229.
    22.吴德华.三维空间数据模型综述[J].测绘工程2005,3:70-73.
    23. Robert M. Haralick, Yu Hong Chu, Layne T. Watson and Linda G. Shapiro. Matching wire frame objects from their two dimensional perspective projections[J], Pattern Recognition,1984, 2(6):607-619.
    24.Jayanta Mukherjee, P. P. Das and B. N. Chatterji. An algorithm for the extraction of the wire frame structure of a three-dimensional object[J], Pattern Recognition,1990,23(9):999-1010.
    25. JieHui Gong, GuiFang Zhang, Hui Zhang and JiaGuang Sun. Reconstruction of 3D curvilinear wire-frame from three orthographic views[J], Computers & Graphics,2006,30(2):213-224.
    26.朱小弟.基于OpenGL的切片合成法及其在三维地质模型可视化中的应用[J],测绘科学,2001,26(1):30-32.
    27.李梅.平行轮廓线三维矿体重建算法[J],计算机辅助设计与图形学学,2006,18(7):1017-1021.
    28.程朋根,王承瑞,甘卫军等.基于多层DEM与QTPV的混合数据模型及其在地质建模中的应用[J],吉林大学学报(地球科学版),2005,35(6):806-811.
    29.张珊珊等.基于多层DEM表面模型的地层结构的三维可视化[J],测绘信息与工程,2003,28(3):14-15.
    30. Siyka Zlatanova, Alias Abdul Rahman, Wenzhong Shi. Topological models and frameworks for 3D spatial objects[J], Computers & Geosciences,2004,30 (4):419-428.
    31. Molanaar M. A topology for 3D vector maps[J], ITC Journal,1992, (1):25-33.
    32.董辉.地质体三维可视化原理与方法研究(D),长沙:中南大学,2003.
    33.G. J. Jense and D. P. Huijsmans. Interactive voxel-based graphics for 3D reconstruction of biological structures[J], Computers & Graphics,1989,13(2),145-150.
    34. A. Kaufman and R. Bakalash. Memory and processing architecture for 3D voxel-based imagery[J], Computer-Aided Design,1989,21(3):185.
    35.姚兰,王伟峰,王颖等.一种基于体素的三维重建方法[J],微电子学与计算机,2006,23(1):80-84.
    36. James E. Bobrow. NC machine tool path generation from CSG part representations[J], Computer-Aided Design,1985,17(2):69-76.
    37. Abel J. P. Gomes. Form feature modelling in a hybrid CSG/BRep scheme [J], Computers & Graphics,1991,15(2):217-229.
    38.李清泉,李德仁.三维空间数据模型集成的概念框架研究[J].测绘学报,1998,27(4):325-330.
    39. Donald Meagher. Geometric modeling using octree encoding. Computer Graphics and Image Processing,1982,19(2):129-147.
    40. John Sandor. Octree data structures and perspective imagery [J], Computers & Graphics,1985, 9(4):393-405.
    41.韩国建,郭达志,金学林.矿体信息的巴叉树存储与检索技术[J],测绘学报,21(1):7-15.
    42. S. H. Lo Volume discretization into tetrahedra-I. Verification and orientation of boundary surfaces[J], Computers & Structures,1991,39(5):493-500.
    43.张煜,白世伟.一种基于三棱柱体元的3D地层建模方法及应用.中国图形图像学报,2001,6(3):285-290.
    44.齐安文,吴立新,李冰等.一种新的3维地学空间构模方法:类三棱柱法[J],煤炭学报,2002,27(2):158-163.
    45. Wu Lixin. Topological relations embodied in a generalized tri-prism(GTP) model for a 3D geoscience modeling system[J]. Computers & Geosciences,2004,30 (4):405-418.
    46.车德福,陈学习,吴立新等.基于广义三棱柱体元的三维地层建模方法[J].辽宁工程技术大学学报,2006,25(1):36-38.
    47 Jianya Gong, Penggen Chengan, Yandong Wang. Three-dimensional modeling and application in geological exploration engineering[J], Computers & Geosciences,2004,30(4):391-404. Computers & Geosciences,2004,30(4):391-404.
    48. Shi W.Z. A hybrid model for 3D GIS [J]. Geoinformatics,1996,1:400-409.
    49.曾新平.地质体三维可视化建模系统GeoModel的总体设计与实现技术(D),北京,中国地质大学,2005.
    50.魏福玉.固体矿产勘查评价自动化系统KPX2.1程序在德钦拖顶铜矿尼任矿段普查储量计算中的应用[J],云南地质,2000,19(3):299-303.
    51.李艳.矿产资源经济评价系统关键技术研究及其应用(D),沈阳东北大学,2005.
    52.刘瑞第,刘慎波,原桂强.应用矿化模型CAD管理系统促进凡口矿地测技术进步[J],有色金属,2001,4:16-19.
    53.唐义,蓝运蓉.SD储量计算法[M],北京:地质出版社,1990,26-58
    54.李石桥,郭俊华,许利文.SD法储量计算系统在金矿勘查区中的应用[J],地质与勘探,2006,42(1):77-80.
    55.杜德文,马淑珍,陈永良.地质统计学方法综述[J].世界地质,1995,14(4):79-84.
    56.秦来勇.地质统计学在地质及矿业中的应用与发展[J.].有色冶炼,2002,12:104-106.
    57.候景儒,尹镇南.实用地质统计学[M],北京:地质出版社,1998,32-59.
    58.侯景儒.中国地质统计学(空间信息统计学)发展的回顾与前景[J].地质与勘探1997,33 (1):53-58.
    59.林幼斌,杨文凯.地质统计学研究现状及在我国的应用[J].云南财贸学院学报,2001,10:26-30.
    60.肖斌,赵鹏大,侯景儒.地质统计学新进展[J].地球科学进展,2000,15(3):293-296.
    61. B.G. Li, J. Cao, W.X. Liu etc.. Geostatistical analysis and kriging of Hexachlorocyclohexane residues in topsoil from Tianjin, China[J], Environmental Pollution,2006,142(3):567-575.
    62. KaiWei Juang, DarYuan Lee, YunLung Teng. Adaptive sampling based on the cumulative distribution function of order statistics to delineate heavy-metal contaminated soils using riging[J], Environmental Pollution,2005,138(2):268-277.
    63. ManZhi Tan, FangMing Xu, Jie Chen. Spatial Prediction of Heavy Metal Pollution for Soils in Peri-Urban Beijing, China Based on Fuzzy Set Theory[J], Pedosphere,2006,16,(55):545-554.
    64. Lijun Dai, Haiyan Wei and Lingqing Wang[J], Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant:A case study from the city of Baoji, China[J],Environmental Research,2007,104(2):201-208.
    65. M. Lopes, G. Avillez, C.N. Costa,JA. Almeida. Groundwater contamination plume monitoring in sealed waste dumps[J].Engineering Geology,2006,85 (1):62-66.
    66. Danni Guo, Renkuan Guo, Christien Thiart. Predicting air pollution using fuzzy membership grade Kriging[J],Computers, Environment and Urban Systems,2007,31(1):33-51.
    67. H. Bourennane, D. King, A. Couturier, B. Nicoullaud etc.. Uncertainty assessment of soil water content spatial patterns using geostatistical simulations:An empirical comparison of a simulation accounting for single attribute and a simulation accounting for secondary information[J],Ecological Modelling,2007,205(3):323-335.
    68. Jun Wu, Arthur M Winer and Ralph J Delfino. Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires[J],Atmospheric Environment,2006,40(18),3333-3348.
    69. Uwe Haberlandt. Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event,Journal of Hydrology[J],2007,332(1):144-157.
    70. Julie Wilk, Dominic Kniveton, Lotta Andersson etc... Estimating rainfall and water balance over the Okavango River Basin for hydrological applications. Journal of Hydrology,2006, 331(1):18-29.
    71. Wouter Buytaert, Rolando Celleri, Patrick Willems etc..Spatial and temporal rainfall variability in mountainous areas:A case study from the south Ecuadorian Andes[J],Journal of Hydrology,2006,329, (3):413-421.
    72. K. Stahl, R.D. Moore, J.A. Floyer etc.. Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density[J], Agricultural and Forest Meteorology,2006,139(3):224-236.
    73. Rodrigo A. Ortega, Oscar A. Santibanez. Determination of management zones in corn based on soil fertility[J], Computers and Electronics in Agriculture,2007,58(1),:49-59.
    74. Sabit Ersahin, A. Resit Brohi.. Spatial variation of soil water content in topsoil and subsoil of a Typic Ustifluvent[J], Agricultural Water Management,2006,83(1):79-86.
    75.邵安林,孙豁然,刘晓军等.我国采矿CAD开发存在的问题与对策[J],金属矿山,2004,2:1-4.
    76.姜华,秦德先,陈爱兵等.国内外矿业软件的研究现状及发展趋势[J],矿产与地质,2005,19(4):422-425.
    77. MICROMINE咨询服务培训材料[M],北京,MICROMINE中国,2004,28-29.
    78.丁威,陈广平.利用Surpac软件打造数字化金属矿山[J],矿业快报,2006,3:11-13.
    79.Y.托里西.DATAMINE公司即将推出新的矿山设计软件[J],国外金属矿山,1998,5:29.
    80.宋子岭,白润才,谢雨志.VULCAN系统在我国露天矿中应用前景[J],辽宁工程技术大学学报(自然科学版),2000,19(4):344-347.
    81.宋子岭.VULCAN软件系统及其在元宝山露天矿的应用[J],露天采煤技术,2002,1:11-14.
    82.毛先成,刘梅华,任佳,等.地质矿产数据库向Micromine地质数据模型的转换研究[J],西部探矿工程,2007,2:112-114.
    83.胡明清,申其鸿.应用Mintec软件优化露天矿山开采规划与设计[J],国外金属矿山,2000,3,57-60.
    84.高祥.应用Mintec软件优化露天矿山开采规划与设计[J],矿冶,2000,9(2):10-14.
    85.张宏达.论MICROMINE软件在黄金行业的应用[J],黄金,2005,26(1):30-33.
    86.周义明.东方矿体经济评价系统[J],矿产与地质,2000,14(3):191.
    87.秦德先,燕永锋,洪托等.矿产资源的充分合理利用与矿床数学—经济模型研究[J],矿产与地质,2000,14(3):143-145.
    88.熊俊楠.矿产资源储量估算信息系统研究及应用(D),沈阳东北大学,2006.
    89.中国矿产资源网,SD应用[EB/OL], http://www.chinamr.net/sd-kuaixun/sd-yingyong.htm, 2005.07.
    90.朱永宜,钻孔轨迹数学模型在地质勘探中的定位精度验证[J],探矿工程,2001,1:37-39.
    91.长春地质学院矿床勘探教研室编.矿床勘探[M],北京:地质出版社,1979,185-191.
    92. Jie Hui Gong, Gui Fang Zhang, Hui Zhang, etc.. Reconstruction of 3D curvilinear wire-frame from three orthographic views[J], Computers & Graphics,2006,30(2):213-224.
    93. Idesawa M. A system to generate a solid figure from three view[J], Bulletin of the JSME 1973, 16(92):216-25.
    94. Nagendra IV, Gujar UG. 3D objects from 2D orthographic views—a survey[J], Computers and Graphics,1988,12(1):111-4.
    95. Wang W, Grinstein G. A survey of 3D solid reconstruction from 2D projection line drawings[J], Computer Graphics Forum,1993,12(2):137-58.
    96.贾瑞玉,汪炳权.含病变肝脏CT图像三角形表面重构的实现[J],微机发展,1999,2:44-46.
    97. Heribert Gras. A'hidden line'algorithm for 3D-reconstruction from serial sections— An extension of the NEUREC program package for a microcomputer[J], Computer Programs in Biomedicine,1984,8(3):217-226.
    98. A. Engel and A. Massalski.3D reconstruction from electron micrographs:Its potential and practical limitations[J], Ultramicroscopy,1984,13(1):71-83.
    99. Heribert Gras and Franz Killmann. NEUREC—a program package for 3D-reconstruction from serial sections using a microcomputer[J], Computer Programs in Biomedicine,1983,17(1): 145-155.
    100. P Suetens, P Jansen, A Haegemans, etc..3D reconstruction of the blood vessels of the brain from a stereoscopic pair of subtraction angiograms[J], Image and Vision Computing,1983,1(1): 43-51.
    101. Kenneth R. Hoffmann, Alan M. Walczak, Peter B. Noel.3D reconstruction of the carotid artery from two views using a single centerline[C], International Congress Series,2004,177-182.
    102.马洪滨,郭甲腾.一种新的多轮廓线重构三维形体算法:切开—缝合法[J],东北大学学报(自然科学版),2007,28(1):111-114.
    103.郭甲腾.基于剖面的三维地质建模与可视化研究(D),沈阳:东北大学,2006,3.
    104.刘家康,辛静.人体医学图像三维表面重构的实现[J],计算机工程与应用,2002,14:245-247.
    105.岳昊.含断层地层的三维地质建模与剖切(D),泰安:山东科技大学,2005,5.
    106.刘进,李绍虎.断层的三维可视化建模研究[J],吉林大学学报(地球科学版),2004,34:36-39.
    107.王瑞.三维地质模型可视化交互系统(D),成都:成都理工大学,2005,5.
    108.李静静.含断层的复杂地质体三维建模与等高线生成(D),泰安:山东科技大学,2005,5.
    109.刘修国,陈国良,候卫生等.基于线框架模型的三维复杂地质体建模方法[J],地球科学,2006,36(5):668-672.
    110.王信国,曹代勇.矿山断层构造三维动态建模方法探讨[J],采矿技术,2005,5(3):20-23.
    111.石勇,杨鹏,吕文生.一种新的断层构造三维建模技术[J],矿业工程,2006,4(2):53-55.
    112. Qiang Wu, Hua Xu. A approach to computer modeling and visualization of geological faults in 3D, Computers & Geosciences,2003,29(4):503-509.
    113.王绍刚.三维地质体模型的建立与可视化系统的研究(D),阜新,辽宁工程技术大学,2005,11.
    114.马小虎,潘志庚,石教英.基于凹凸顶点判定的简单多边形Delaunay三角剖分[J],计算机辅助设计与图形学学报,1999,2(1):1-3.
    115.杨杰.基于凹凸顶点判定的简单多边形的三角剖分[J],小型微型计算机系统,2000,21(9):974-975.
    116.李岚.基于凹凸顶点判定的简单多边形区域的三角剖分[J],中国计量学院学报,2001,10:164-166.
    117.任建波,颉耀文,屈宏斌.基于平面多边形的不规则三角网分割[J],甘肃科学学报,2005,17(1):65-68.
    118.丁永祥,夏巨湛,王英等.任意多边形的Delaunay三角剖分[J],计算机学报,1994,17(4):270-275.
    119.徐春蕾,李思昆.一种适用任意平面多边形的三角剖分算法[J],国防科技大学学报,2000,22(2):82-85.
    120.孔小利.一种简单多边形剖分的算法及实现[J],承德石油高等专科学校学报,2003,5(3):30-34.
    121.刘少华,程朋根,龚健雅.基于最小内角动态判定的简单多边形三角剖分[J],2004,4:238-239.
    122.王文成,吴恩华.判断检测点是否在多边形或多面体内的新方法[J],2000,11(12):1614-1619.
    123.吴坚,郑康平,王小椿.一种检测点是否在多边形或多面体内的方法[J],2003,24(12):2200-2203.
    124.周长发.计算机图形学几何工具算法详解[M],北京:电子工业出版社,2005,524-525.
    125.王力砚,崔显德.关于储量计算中的体积分算问题[J],地质与资源,2002,11(1):60-63.
    126.孙洪泉.地质统计学及其应用[M],北京:中国矿业大学出版社,1990,31.
    127.李钟山,夏立显.地质统计学中的区域化变量理论[J],世界地质,1997,16(2):85-93.
    128.M.戴维,孙惠文等.矿产储量的地质统计学评价[M],北京:地质出版社,1989,32-37.
    129. F. Iwashita, R.C. Monteiro,P.M.B. Landim.-An alternative method for calculating variogram surfaces using polar coordinates[J],Computers & Geosciences,2005(31) 6:801-803.
    130.侯景儒,郭光裕.矿床统计预测及地质统计学的理论与应用[M],北京:冶金工业出版·社,1993,139-146.
    131.张新宇.地学空间三维可视化储量计算辅助分析系统关键技术的研究(D),长春:吉林大学,2006.
    132.韩燕.多种Krige方法的数学模型(D),长春:吉林大学,2004.
    133.侯景儒,尹镇南,李维明等.实用地质统计学[M],北京:地质出版社,1998,50-52.
    134.孙立双,王恩德,杨文博.基于幂变换的插值方法在矿体储量计算中的应用[J],金属矿山,2007,6:13-15.
    135.陈爱兵,秦德先.变异函数在个旧锡矿X号矿体中的应用[J].矿产与地质.2003,17(99):656-660.
    136.王红岩,刘洪林,李贵中,李隽.煤层气储量计算方法及应用[J].天然气工业,2004,24,(7):26-30.
    137.王仁铎,胡光道.线性地质统计学[M],北京:地质出版社,1988:23-27.
    138.孟宪伟,杜德文.二级套合结构实验变差函数的几何拟合[J],长春科技大学学报,1994,29(2):135-137.
    139.陈建宏、邓顺华、王李管.三维变异函数的计算和拟合[J],中南矿冶学阵学报,1994,25(6):686-690.
    140.黄沧钿.变异函数的自动拟合方法[J],新疆石油地质,2001,22(2):155-157.
    141.李少华,张昌民,马玉震.线性规划法自动拟合变差函数的改进[J],江汉石油学院学报,2001,9:36-37.
    142.矫希国,刘超.变差函数的参数模拟[J],物探化探计算技术,1996,18(2):157-161.
    143.矫希国.变差函数参数的计算[J],地质论评,1997,43(6):658-663.
    144.胡小荣.变异函数球状模型的拟合研究[J],本溪冶金高等专科学校学报,2000,2(4):41-43.
    145.胡小荣,俞茂宏.理论变异函数球状模型的加权线性规划法拟合[J],地质与勘探,2001,37(5):45-48.
    146.陈双世.一种新的半变异函数拟合方法—积分面积法[J],甘肃地质学报,2002 11(2):81-86.
    147.柏森,李小敏.球状模型的最优参数估计[J],物探化探计算技术,1998,20(1):25-29.
    148.戴晓明,朱萍.平面散乱点三角剖分分治算法的实现[J],计算机技术与发展,2006, 16(1):38-40.
    149.谢传节,万洪涛.基于四叉树结构的数字地表模型快速生成算法设计[J],中国图像图形学报,2002,7(4):394-399.
    150.李征航,黄劲松.GPS测量与数据处理[M], 武汉:武汉大学出版,2005,167-171.
    151.陈亚新,徐英,魏占民,史海滨.基于稳健统计学的水盐空间变差函数逼近方法[J],水利学报,2004,(9):44-49.
    152.陈慧新.变差函数的稳健性及特异值处理方法的初步研究[J],内蒙古农业大学学报,2000,(2):84-90.
    153.孙立双,王恩德,杨文博等.变差函数稳健性研究[J],东北大学学报,已录用.
    154.杜宇健,萧德云.Delaunay-固定滑动邻域Kriging算法[J],工程图学学报,2005,65(2):47-50.
    155.孙立双,王恩德,王井立.基于空间分布权系数的Kringing邻域选点算法[J],沈阳建筑大学学报,2007,23(3):423-426.