CFRP-钢管混凝土压弯构件的力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土的诞生已有100多年的历史,其在力学性能和施工工艺等方面具有明显的优势,因此在超高层建筑、桥梁工程、工业厂房以及地下工程等领域得到了广泛地应用。随着现代结构技术的发展,大型的钢管混凝土建筑物也随之出现,这就要求必须使用厚壁钢管或高强钢管以提供给混凝土足够的紧箍力,也因此增加了工程造价。碳纤维增强复合材料是由碳纤维材料与基体材料按比例混合并经过一定工艺复合形成的一种高性能新型材料,它以其轻质高强、抗腐蚀、抗疲劳等优点开始在工程领域得到应用并受到广泛关注。21世纪初,CFRP4冈管混凝土这种新型结构形式被提出,CFRP不但可与钢管共同对核心混凝土提供约束力,而且可以延缓或避免钢管的局部屈曲,使结构的承载力更高、耐久性更好。对CFRP-钢管混凝土结构的研究已在国内外形成一个热点,随着初步理论基础的奠定,这种新型结构形式也于2012年开创性地应用到我国的道路工程中,为这一结构的理论研究与工程实际应用建立了联系,同时也证明了此结构良好的应用前景。
     国内外对CFRP-钢管混凝土的研究主要集中在轴压性能和受弯性能,而结构构件的受力形式是多样的,随着CFRP-钢管混凝土应用的推广,现有的结构理论已无法满足对实际工程指导的需求。因此本文在以往研究的基础之上,通过试验研究、有限元法模拟和理论分析的方法对CFRP-钢管混凝土压弯构件的力学性能展开了研究,完成了以下主要研究内容:
     (1)进行了CFRP-钢管混凝土压弯构件静力性能的试验研究。根据试验结果,总结了长细比、偏心率对试件承载力和力学性能的影响规律。将试件的荷载-跨中截面挠度关系曲线划分为弹性阶段、弹塑性阶段、下降段三个阶段。试件在达到极限荷载之后进入承载力下降段,试件在保持一定承载力的同时经历较大的变形,这是典型的延性破坏。根据试验结果可知:CFRP和钢管在加载之初至失效后退出工作,在纵向和横向都能较好地协同工作。根据试验结果分析了钢管的内力重分布情况。钢管纵向应变沿截面高度的分布基本符合平截面假定,试件的挠度曲线与正弦半波曲线基本吻合。
     (2)进行了CFRP-钢管混凝土压弯构件静力性能的理论分析并提出了承载力计算公式。通过大型有限元软件ABAQUS模拟了CFRP-冈管混凝土压弯构件的荷载-跨中截面挠度关系曲线和破坏模态,模拟结果与试验结果吻合良好。分析了CFRP-冈管混凝土压弯构件及其各组成材料在受力全过程中的应力、应变、相互作用力等的变化规律,分析结果和试验结果吻合良好。通过分析发现钢管与混凝土之间的粘接强度对试件承载力、弹性阶段的刚度、钢管与核心混凝土之间的相互作用力基本没有影响,加载路径对试件的静力性能影响不大。分析结果还表明:受压区横向CFRP对试件有明显的约束作用,并且延缓了受压区钢管的鼓曲;受拉区纵向CFRP提高了试件的抗弯承载力,延缓了试件的弯曲变形。在系统参数分析结果之上,针对不同的截面形式,提出了适用于CFRP-冈管混凝土压弯构件的承载力计算表达式,应用该式的计算结果与试验结果吻合良好。
     (3)进行了CFRP-钢管混凝土压弯构件滞回性能的试验研究。分析了轴压比和纵向CFRP增强系数对试件的跨中荷载-挠度滞回曲线、跨中荷载-挠度骨架曲线、弯矩-曲率滞回曲线、弯矩-曲率骨架曲线、刚度、刚度退化、强度退化、延性系数、累计耗能、等效粘滞阻尼系数等的影响规律。试验结果显示:CFRP对试件有很好的横向约束和纵向增强作用,钢管的局部屈曲得到了延缓或消除;在往复荷载下钢管和CFRP在纵向和横向同样能够协同工作;所有试件的跨中荷载-挠度滞回曲线和弯矩-曲率滞回曲线均较为饱满,没有捏缩现象,表现出良好的滞回性能:在加载后期,轴压力对试件承载力影响明显。滞回性能指标分析结果显示:圆截面试件的强度退化不显著,方截面试件均出现强度退化;轴压比和纵向CFRP增强系数的增大均可以提高试件的抗弯承载力和刚度,并且可以延缓试件的刚度退化趋势,但会降低试件的累积耗能和延性;总的来说,轴压比在一定范围内有利于试件的抗震。
Concrete filled steel tubular (CFST) structures have been presented more than100years. Because of significant advantages in aspect of mechanical properties and construction technology, concrete filled steel tubular structures have been widely used in bridges, factories, high-rises, underground structures, and so on. With the development of the modern structural technology, large-scale concrete filled steel tubular structures appeared. Only thick-walled steel tube and high-strength steel tube can provide sufficient constraining force to concrete. And therefore the cost of project will be increased. Carbon fiber reinforcement polymer (CFRP) which is composited of carbon fiber material and substrate material at a certain ratio through certain technique is a high-performance novel material. CFRP gets attention with its advantages such as lightness, high strength, corrosion stability and fatigue resistance in engineering. Concrete filled CFRP-steel tubular (CFRP-CFST) structures were proposed in the early21st century. CFRP can provide constraining force with steel tube together to core concrete and can substantially delay and even completely suppress the development of local buckling deformation in the steel tube. Make structures have higher bearing capacity and better durability. Hot spot of research on concrete filled CFRP-steel tubular structures were formed at home and abroad. With theoretical foundation established this new structural form was pioneered the application in road engineering in our country in2012. Connection between theoretical research and engineering application was established. Meanwhile, the potential application of concrete filled CFRP-steel tubular structures was proved.
     Domestic and international researches focused on axial compressive behaviour and flexural behaviour. But the load-bearing form of structural members is various. With application of concrete filled CFRP-steel tubular structures popularized, existing structural theory could not meet the demands of guidance for practical engineering. Based on researches in being, study on mechanical behaviour of concrete filled CFRP-steel tubular beam-columns was expanded through ways of experimental research, simulated method of finite element and theoretical analysis. The main aspects of research work in this thesis are listed as follows:
     (1) Experimental study on static property of concrete filled CFRP-steel tubular beam-columns was carried out. Laws of bearing capacity and mechanical property affected by slenderness ratio and load eccentricity ratio were investigated. The axial load versus displacement of mid-span curves of concrete filled CFRP-steel tubular beam-columns can be divided into three stages:elastic stages, elastic-plastic stage and decline stage. Failure mode of specimens belongs to ductility damage. Because undergoing of larger deformation specimens can sustain a certain bearing capacity. Experimental results reveal that steel tube and CFRP can cooperate in both longitudinal direction and transverse direction from initial of the test to the end. The redistribution of internal force of steel tube was analyzed based on the test results. Longitudinal strain of steel tube accords basically with plane section assumption along the height of cross section; distribution of deflection along member height of specimens approximates half sine wave.
     (2) Theoretical analysis on static behaviour of concrete filled CFRP-steel tubular beam-columns was conducted and the formula of ultimate bearing capacity was proposed. Axial load versus deflection of mid-span curves and failure mode of concrete filled CFRP-steel tubular structures were simulated quite well through large finite element software ABAQUS. The results of simulation agree well with test data. The change regularities of stress, strain and interaction of specimens and combined materials such as CFRP, steel tube and concrete, were analyzed. The analysis results agree well with experimental results. It is found that adhesive strength between steel tube and core concrete dose almost not influence the bearing capacity, stiffness in elastic stage and interaction between steel tube and core concrete of members slightly. And loading path affects static performance of specimens slightly. The analysis results also reveal that transverse CFRP in compressive areas constrains specimens obviously and delays outward buckling of steel tube, longitudinal CFRP in tensile areas improves bending capacity and delays bending deformation of specimens. Based on analysis of systematic parameters, the bearing capacity calculating expressions for circular section and square section respectively were proposed herein for concrete filled CFRP-steel tubular beam-columns. The predicted results are in good agreement with experimental results.
     (3) A series of concrete filled CFRP-steel tubular beam-columns under cyclic load tests were carried out. Laws of lateral load versus displacement of mid-span hysteretic curves, lateral load versus displacement of mid-span envelope curves, moment versus curvature hysteretic curves, moment versus curvature envelope curves, stiffness, stiffness degradation, strength degradation, ductility index, accumulated energy dissipation and equivalent viscous damping coefficient affected by axial compression ratio and longitudinal reinforced coefficient of CFRP were investigated. Experimental results reveal that CFRP shows the mechanical property of transverse confinement and longitudinal strengthening for specimens, steel tube and CFRP can identically cooperate in longitudinal direction and transverse direction under cyclic load, the lateral load versus displacement of mid-span hysteretic curves and the moment versus curvature hysteretic curves of all the specimens display perfect hysteretic behaviour without pinch, Axial compressive load affects load bearing capacity obviously during the later loading period. Analysis results of hysteretic performance index show that the strength degradation which is not obvious for circular specimens happens in all square specimens, as axial compression ratio and longitudinal reinforced coefficient increase, the bending capacity and stiffness are enhanced and the stiffness degradation is delayed, but it can decrease accumulated energy dissipation and ductility, generally speaking, axial compression ratio is beneficial to seismic behaviors in certain range.
引文
[1]Lally Handbook of Lally Column Construction (Steel Columns-Concrete Filled) Tenth Edition [M].New York:Lally Column Companies,1926:85.
    [2]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [3]Gardner N J and Jacobson E R. Structural behavior of concrete filled steel tubes [J].ACI Journal, 1967(7):402-412.
    [4]Knowles W B and Park R. Strength of concrete filled steel tubular columns [J]. Proceed ing of ASCE. Journal of the Structural Division,1969(12):2565-2587.
    [5]Kloppel V K and Goder W. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula [J].Der Stahlbau,1957,26(1):1-10.
    [6]Kloppel V K and Goder W. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula [J].Der Stahlbau,1957,26(2):.44-50.
    [7]钢壳混凝土的试验研究(油印本)[M].哈尔滨:中国科学院土木建筑研究所,1960.
    [8]中国工程建设标准化协会标准.钢管混凝土结构设计与施工规程(CECS 28:29)[S].北京:中国工程标准化协会,1992.
    [9]韩林海.钢管混凝土结构-理论与实践(第二版)[M].北京:科学出版社,2006.
    [10]钟善桐.钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1994.
    [11]Nakai H, Matsui S, Yoda T, et al. Trends in steel-concrete composite bridges in Japan [J].Structural Engineering International,1998,8(1):30-34.
    [12]冯乃谦.普通混凝土、高强混凝土与高性能混凝土[J].建筑技术,2004,35(1):20-23.
    [13]Wakabayashi M. Recent development and research in composite and mixed building structures in Japan. Proceedings of the 4th ASCCS International Conference [C]. Kosice, Slovakia,1994: 237-242.
    [14]Lin P, Zhu Z and Li Z. Fire resistance structure:the concrete filled steel tubular column. Conference Report of International Conference on Composite Construction-Conventional and Innovative [C]. Innsbruck, Austria,1997:397-401.
    [15]菲利浦H.帕金斯.混凝土结构:修补、防水与防护[M].北京:中国建筑工业出版社,1982.
    [16]翟辰谦,李少甫.钢结构[M].北京:地震出版社,1987.
    [17]林平洲,祝总成,李至钧.试评钢管混凝土结构的耐火性能[J].工业建筑,1996,26(9):7-11.
    [18]Webb J and Peyton J J. Composite concrete filled steel tube columns. Proceedings of the Structural Engineering Conference [C]. Australia,1990:181-185.
    [19]郭遇昌.玻璃钢工业在中国的发展[J].纤维复合材料,1984,1(7):75-79.
    [20]沈观林.复合材料力学[M].北京:清华大学出版社,1996.
    [21]邹祖讳.复合材料的结构与性能[M].材料科学与技术从书(第13卷).北京:科学出版社,1999.
    [22]许莉华.航标新材料应用探讨[J].中国水运,2003,7:40-41.
    [23]何世玲.FRP加固钢筋混凝土梁疲劳性能的分析[J].四川建筑科学研究,2007,33(5):46-63.
    [24]于清.FRP约束混凝土柱研究与应用中的若干关键问题[J].工业建筑,2001,3 1(4):1-4.
    [25]叶列平,冯鹏.FRP在工程结构中的应用与发展[J].土木工程学报,2006,39(3):24-36.
    [26]王勃.FRP加筋混凝土梁的力学与自感知性能研究[D].哈尔滨:哈尔滨工业大学博士学位论 文,2004.
    [27]Kalamkarov A L, Georgiades A V, MacDonald D O, et al. Pultruded fiber reinforced polymer reinforcement with embedded fiber optic sensors [J]. Canadian Journal of Civil Engineering, 2000,27:972-984.
    [28]王庆利,车媛,谭鹏宇,等CFRP-钢管混凝土结构研究的进展与展望[J].工程力学,2010,27(增2):48-60.
    [29]王庆利,赵颖华,顾威.圆截面CFRP-钢复合管混凝土结构的研究[J].沈阳建筑工程学院学报(自然科学版),2003,19(4):272-274.
    [30]翟存林,魏洋,李国芬,等.FRP-钢复合管混凝土桥墩设计与应用研究[J].公路,2012,1:83-87.
    [31]Teng J, Hu Y and Yu T. Stress-strain model for concrete in FRP-confined steel tubular columns [J]. Engineering Structures,2013,49:156-167.
    [32]Zhu C, Zhao Y and Wang D. Numerical study on concrete filled CFRP-steel tube under cyclic loading [J]. Advanced Materials Research,2012,368-373:1003-1009.
    [33]Chen C, Zhao Y, Zhu C, et al. Study on the impact response of concrete filled FRP-steel tube structures [J]. Advanced Materials Research,2012,368-373:549-552.
    [34]Yu F and Wu P. Study on stress-strain relationship of FRP-confined concrete filled steel tubes [J]. Advanced Materials Research,2011,163-167:3591-3595.
    [35]Wei Y, Wu G, Wu Z, et al. Flexural behavior of concrete-filled FRP-steel composite circular tubes [J]. Advanced Materials Research,2011,243-249:1316-1320.
    [36]Hu Y, Yu T and Teng J. FRP-confined circular concrete-filled thin steel tubes under axial compression [J]. Journal of Composites for Construction,2011,15(5):850-860.
    [37]Tao Z, Han L and Zhuang J. Cyclic performance of fire-damaged concrete-filled steel tubular beam-columns repaired with CFRP wraps [J]. Journal of Constructional Steel Research,2008, 64(1):37-50.
    [38]Tao Z and Han L. Behaviour of fire-exposed concrete-filled steel tubular beam columns repaired with CFRP wraps [J]. Thin-Walled Structures,2007,45(1):63-67.
    [39]朱春阳,赵颖华,李晓飞.FRP-钢管-混凝土构件抗震性能试验研究[J].复合材料学报,2013,30(1):180-186.
    [40]李彬,卢亦焱,李娜,等.FRP-圆钢管混凝土柱受剪性能试验研究[J].建筑结构学报,2012,33(1]):107-114.
    [41]曹兴.圆形FRP-钢复合管混凝土柱力学性能研究[D].南京:南京林业大学硕士学位论文,2012.
    [42]余涛,胡跃明,滕锦光,等.循环轴压作用下FRP约束钢管混凝土短柱的力学性能.第七届全国建设工程FRP应用学术交流会论文集[C].杭州,2011,10.
    [43]Liu L and Lu Y. Axial bearing capacity of short FRP confined concrete-filled steel tubular columns [J]. Journal Wuhan University of Technology (Materials Science Edition),2010,25(3): 454-458.
    [44]陈忱.FRP钢管混凝土侧向冲击性能的分析[D].大连:大连海事大学硕士学位论文,2010.
    [45]姜桂兰,王庆利,王月.圆CFRP-钢管混凝土受弯构件极限弯矩简化计算[J].沈阳建筑大学学报(自然科学版),2008,24(2):204-207.
    [46]高轶夫,王庆利,郭友利CFRP横向约束圆钢管混凝土受弯构件数值模拟.中国钢协钢-混凝土组合结构分会第十一次年会论文集[C].哈尔滨,2007,8.
    [47]王庆利,朱贺飞,高轶夫.圆CFRP-钢管约束混凝土轴压力作用下的本构关系[J].沈阳建筑大学学报(自然科学版),2007,23(2):199-203.
    [48]顾威,赵颖华,孙国帅CFRP-钢管混凝士轴压短柱的强度计算[J].工业建筑,2007,37(4):42-44,68.
    [49]庄金平FRP加固火灾后钢管混凝土柱滞回性能研究[D].福州:福州大学硕士学位论文,2006.
    [50]董志峰.圆CFRP-钢管混凝土构件扭转试验研究构想[J].房材与应用,2006,134(188):20-22.
    [51]王庆利,赵春雷,武斌CFRP钢管混凝土核心轴压短柱静力性能研究[J].辽宁工程技术大学学报,2006,25(1):51-53.
    [52]王庆利,宁迎福,武斌.圆CFRP-冈复合管内填砼构件的受弯性能研究[J].科学技术与工程,2006,6(6):718-722.
    [53]顾威,赵颖华,尚东伟CFRP-钢管混凝土轴压短柱承载力分析[J].工程力学,2006,23(1):149-153.
    [54]陶忠,庄金平,于清FRP约束钢管混凝土轴压构件力学性能研究[J].工业建筑,2005,35(9):20-23.
    [55]王庆利,顾威,赵颖华CFRP-钢复合管内填混凝士轴压短柱试验研究[J].土木工程学报,2005,38(10):44-48.
    [56]王庆利,赵春雷,张海波,等CFRP-钢管砼轴压短柱承载力的简化计算[J].沈阳建筑大学学报,2005,21(6):612-615.
    [57]Sundarraja M C and Ganesh Prabhu G. Behaviour of CFST members under compression externally reinforced by CFRP composites [J]. Journal of Civil Engineering and Management, 2013,19(2):184-195.
    [58]Sundarraja M C and Sivasankar S. Behaviour of CFRP jacketed HSS tubular members under compression-An experimental investigation [J]. Journal of Structural Engineering (India),2012-2013,39(5):574-582.
    [59]Sundarraja M C and Ganesh Prabhu G. Experimental study on CFST members strengthened by CFRP composite under compression [J]. Journal of Constructional Steel Research,2012,72: 75-83.
    [60]Sundarraja M C and Sivasankar S. Axial behaviour of HSS tubular sections strengthened by CFRP strips:an experimental investigation [J]. Science and Engineering of Composite Materials, 2012,19(2):159-168.
    [61]Sundarraja M C and Ganesh Prabhu G. Investigation on strengthening of CFST members under compression using CFRP composites [J]. Journal of Reinforced Plastics and Composites,2011, 30(15):1251-1264.
    [62]Richard C, Amir M and Joao B. Plasticity based stress-strain model for concrete confinement [J]. Engineering Structures,2013,48:645-657.
    [63]Li S Q, Chen J F, Bisby L A, Hu Y M and Teng J G. Strain efficiency of FRP jackets in FRP-confined concrete-filled circular steel tubes [J]. International Journal of Structural Stability and Dynamics,2012,12(1):75-94.
    [64]Tao Z, Wang Z, Han L, et al. Fire performance of concrete-filled steel tubular columns strengthened by CFRP [J]. Steel and Composite Structures,2011,11(4):307-324.
    [65]Park J, Hong Y, Hong G, et al. Design formulas of concrete tilled circular steel tubes reinforced by carbon fiber reinforced plastic sheets [J]. Procedia Engineering,2011,14:2916-2922.
    [66]Sundarraja M C and Ganesh Prabhu G. Finite element modeling of CFRP jacketed CFST members under flexural loading [J]. Thin-walled Structures,2011,49(12):1483-1491.
    [67]Wei Y, Wu G, Wu Z S and Gu D S. Flexural behaviour of concrete-filled FRP-steel composite circular tubes [J]. Advanced Material Research,2011,243-249:1316-1320.
    [68]Park J, Hong Y and Choi S. Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads [J]. Steel and Composite Structures,2010, 10(2):187-205.
    [69]Sheikh S A and Liu J. Seismic behaviour of circular confined concrete columns.9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium [C]. United States,2010,2:1220-1229.
    [70]Ozbakkaloglu T and Saatcioglu M. Comparison of seismic performance of HSC columns confined by FRP tubes and steel reinforcement. Progress in Mechanics of Structures and Materials-Proceeding of the 19th Australasian Conference on the Mechanics of Structures and Materials, ACMSM19 [C].2007:109-114.
    [71]Xiao Y. From steel tubed columns to FRP tubed columns. Structures-A Structural Engineering Odyssey, Structures 2011-Proceeding of the 2001 Structures Congress and Exposition [C]. United States,2004:109.
    [72]龚昌基.讨论钢管混凝土柱应用于高层建筑的综合效益.中国钢协-混凝土组合结构协会第六次年会论文集(上册)[C].哈尔滨:1997,5:27-31.
    [73]吴智深.FRP复合材料在基础工程设施的增强和加固方面的现状与发展.中国纤维增强塑料(FRP)混凝土结构学术交流会(首届学术会议论文集)[C].北京:2000,6.
    [74]中华人民共和国国家质量监督检验检疫总局.GB/T228-2002金属材料室温拉伸试验方法[S].北京:中国标准出版社,2002:17-19.
    [75]中华人民共和国国家质量监督检验检疫总局.GB/T50081-2002普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003:13-14.
    [76]程文瀼,颜德.混凝土结构设计原理[M].北京:中国建筑工业出版社,2008:17.
    [77]王庆利,方言,任庆新.圆CFRP-钢管混凝土轴压构件静力性能研究[J].土木工程学报,2008,41(10):21-29.
    [78]王庆利,叶茂,周琳.圆CFRP-钢管混凝土构件受弯性能研究[J].土木工程学报,2008,41(10):30-38.
    [79]李庆福.半刚性连接钢框架的变形研究[D].兰州:兰州大学硕士学位论文,2004.
    [80]庄茁,由小川,廖剑辉,等.基于ABAQUS的有限元分析[M].北京:清华大学出版社,2004.
    [81]Karren K W. Corner properties of cold formed steel shapes [J].Journal of the Structural Division, ASCE,1967,93(2):402-432.
    [82]Karren K and Winter G. Effects of cold-forming on light-gauge steel members [J].Journal of the Structural Division, ASCE,1967,93(1):433-469.
    [83]Abdel-Rahman N and Sivakumaran K. Material properties models for analysis of cold-formed steel members [J]. Journal of Structural Engineering, ASCE,1997,123(9):1135-1143.
    [84]American Iron and Steel Institute. North American specification for the design of cold-formed steel structural members [S]. Nroth American Standard, Washington D. C., USA.
    [85]顾威CFRP冈管混凝土的力学性能研究[D].大连:大连海事大学,2007.
    [86]刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学,2005.
    [87]Xu Shuojuan, Wang Qingli and Shao Yongbo. Compressive performance of the concrete filled circular CFRP-steel tubes(1):Finite element simulation and load bearing capacity [C].Proceeding of the 4th International Conference on Steel and Composite Structures, Sydeny,833-838.
    [88]陶忠.方钢管混凝土构件力学性能若干问题研究[D].哈尔滨:哈尔滨建筑大学,2001.
    [89]王庆利,车媛,叶茂.CFRP约束方钢管混凝土轴压性能分析[J].哈尔滨工业大学学报,2012,44(增1):43-50.
    [90]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993.
    [91]王庆利,薛阳,邵永波,等CFRP约束方钢管混凝土轴压短柱的静力性能研究[J].土木工程学报,2011,44(3):24-31.
    [92]尧国皇.管混凝土构件在复杂受力状态下的工作机理研究[D].福州:福州大学,2006.
    [93]江见鲸.钢筋混凝土结构非线性有限元分析[M].陕西:陕西科学技术出版社,1994.
    [94]王勖成,邵敏编著.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2001.
    [95]朱伯芳.有限单元法原理与应用(第二版)[M].北京:中国水利水电出版社,1998.
    [96]赵均海.强度理论及其工程应用[M].北京:科学出版社,2003.
    [97]Lee J and Fenves G L. Plastic-Damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics,1998,124(8):892-900.
    [98]Johansson M. Structural behavior of circular steel-concrete composite colimns:Non-linear finite element analyses and experiments. [D]. Chalmers University of Technology, Div. of concrete Struct., Gotrborg, Sweden,2000.
    [99]Wang Qingli, Che Yuan and Shao Yongbo. Compressive and flexural performances of the concrete filled circular steel tubes strengthened by CFRP [C]. Proceeding of the 6th International Specialty Conference on Fiber Rienforced Materials, Singapore,2010,39-54.
    [100]Yan Xu, Wang Qingli and Shao Yongbo. Study on flexural performances of the concrete filled circular CFRP-steel tubes (C-CFRP-CFST) [C]. Proceeding of the 1 lth International Symposium on Structural Engineering, Guangzhou,201012,426-431.
    [101]孙涛,王庆利,邵永波.圆CFRP-钢管混凝土受弯性能研究[J].建筑结构学报,2009,30(增2):255-260.
    [102]Applied Technology Council. ATC-24 Guidelines for cyclic seismic testing of components of steel structures [S]. Redwood City (CA),1992.
    [103]中国建筑科学研究院.JGJ 101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997:14-15.
    [104]Elremaily A and Azizinamini A. Behavior and strength of circular concrete-filled tube colimns [J].Journal of Constructional Steel Research,2002,58(12):1567-1591.