基于Meta-Analysis的气象、土壤和田间管理因素对玉米氮素利用影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气象、土壤和田间管理因素对作物生长和农田氮素吸收与淋洗损失有着重要地影响。一直以来,农学、土壤学、农业气象学和农业水土工程学等各学科的研究者们都积极关注此研究领域。气象因素(主要是气温和降雨)是影响和制约作物生长和发育,氮素吸收和淋洗损失的主要外部因素。此外,土壤和田间管理因素对作物的氮素利用有着直接影响。因此,研究气象、土壤和管理因素对玉米氮素利用的影响,深入了解玉米氮素利用关键时期的各因素的效用,以及各因素之间的交互作用对玉米氮素利用的影响,对于提高玉米氮素管理水平和减少氮素淋洗损失造成的水土污染有着极其重要的实际意义。
     Meta-Analysis是一种可以对同一主题下不同研究成果进行整理和综合,得出一个定量且严谨结果的综述性统计方法。在本研究中利用Meta-Analysis这一当前最具权威地综述性统计方法,选择两个不同的玉米氮素数据库为研究对象,结合相应地气象参数(玉米热量单元指数,累积降雨量和降雨均匀度)与不同的土壤和管理因素,系统地探讨了气象、土壤和田间管理因素对玉米氮素利用影响的一般规律,为更好地进行玉米农田氮素管理、评价与调控提供有力的科学理论依据。本文完成的主要工作和取得的主要结论如下:
     ⑴基于Meta-Analysis的玉米氮素利用的研究结果与其它试验方法的研究结果基本相似,表明Meta-Analysis在玉米氮素管理的研究中具有较高地可信度,能够较好地反映出不同的气象、土壤和管理等因素对玉米氮素利用的影响。
     ⑵热量单元指数、累积降雨量和降雨均匀度对玉米氮素利用率的研究结果表明,高氮素利用率年份的气象特征为具有较高地追肥前期和追肥后期的累积降雨量,适中的降雨均匀度,和在生长季后期和整个生长季中具有较低的温度,且玉米高氮素利用率年份并不意味着玉米高产年份。
     ⑶土壤和田间管理因素对玉米氮素利用率的研究表明,粘粒百分含量为(28~40%)区间内,可以显著地增加氮素利用率;适中的土壤pH值(6~7)和种植密度(6~7万株/每公顷)也可以增加氮素利用率,但前季作物类型基本对氮素利用率没有影响。“基肥+追肥”的施氮方式可以显著地提高玉米氮素利用率,建议“基肥+追肥”的施氮方式应被广泛地推广和应用。
     ⑷比较各气象、土壤和管理因素对玉米氮素利用率的影响后发现,就整个生长季来讲,降雨因素(包括降雨量和降雨均匀度)对氮素利用率的影响要大于玉米热量单元指数的影响;施氮量和施氮方式因素的影响要大于其它土壤和田间管理因素的影响。气象、土壤和管理等多因素的协同和交互效应明显。
     ⑸比较追肥前期与追肥后期的气象因素对玉米氮素利用率的影响后发现,玉米生长季追肥前的各气象因素对氮素利用率的影响要大于追肥后的各气象因素对氮素利用率的影响。
     ⑹在基肥和追肥共同施用的情况下,结果表明:中、高施氮水平的玉米氮素利用率响应比在不同气象因素水平下分别显著高于低施氮水平的氮素利用率响应比18.8%和28.2%。但在中、高氮水平两者之间并无显著性差异。而在只施用基肥的情况下,中、高施氮水平的玉米氮素利用率响应比在不同气象因素水平下分别显著高于低施氮水平的氮素利用率响应比11.2%和24.8%。显著性测试表明,中氮和高氮之间也无显著差异。为了有效地提高玉米氮素利用率,减少氮素损失和维持玉米高产,建议中等施氮水平(总氮量“100~150 kg N ha-1”和基肥氮“0~50 kg N ha-1”)的施氮量应该作为最佳施氮量而被生产实践所采用。
Weather has a strong impact on crop growth and nitrogen uptake and loss in soil-crop systems, also soil and field managements are especially important for crop and nitrogen. Increasing nitrogen fertilizer response and improving nitrogen management have long been recognized as a most challenge of agricultural development, because worldwide nitrogen use efficiency (NUE) for cereal production is only estimated at 33%. As a consequence, current agricultural and environmental concerns demand improved NUE and reduced N losses to protect environment, while maintaining an optimal yield.
     Meta-analysis is a methodology used to intergrate a set of statistical techniques developed to provide an objective comparison of research results from independent studies. A meta-analysis combines the results of several studies that address a set of related research hypotheses. In this study, a meta-analysis was performed on the relationship between the application rates of nitrogen fertilizer and the corn yield response in order to understand the effects of weather (air temperature, rain) and other factors (including soil pH, soil surface textures, plant density, previous crop, nitrogen rates and application methods). The database is constituted by two parts: a database of nitrogen response trials covering the years 1997 to 2008 in 60 locations in the grain corn growing area of Quebec, and a database is built up by collecting publications from Africa, Europe and America published between 2000 and 2009, inclusively. Those data are submitted to meta-analyses procedures in conjunction with a corresponding weather database. The response ratio (RR) used to measure effect size indicates significantly positive response of corn yield.
     A better understanding of the effects of weather, soil and managements would allow for adjustments of the nitrogen rate targeted for optimal N supply. In this dissertation, meta-analysis is used to determine: (1) Which weather variables are the most determinant for corn response to nitrogen rates; (2) Which soil and managerial factors are the most predominant in term of corn response to nitrogen rates; (3) The relationship between corn response to N rates and specific ranges of weather variables and other factors. Also, the main results obtained are as follow: (1) Traditional statistics are not appropriate when the data come from numerous studies, while meta-analysis, which uses effect size and weighted statistical models, should therefore be applied in the analysis of a large collection of results originating from different studies. It can be used to reflect the magnitude of the treatment effect or the strength of a relationship between two variables. (2) High-yield years do not necessarily mean high-RR years, and high-RR years are characterized by cooler and wetter growth season, together with the appropriate rainfall evenness. (3) The results indicate that RRs are not influened by previous crop, and the highest RRs were found by the percent of clay (28~40%), soil pH (6~7) and plant density (60, 000~70, 000 plants/ha-1). The starter N and top-dressing N should be recommended for high RR. (4) A major result of this analysis is that rainfall was more important than corn heat units for RR, and the amount and application method of nitrogen are more important than other soil and factors relating to field management. (5) The results indicate that weather condition before side-dressing is more important than after side-dressing for RR. (6) The meta-analysis shows that response ratios to weather factors tend to be higher in High-N and Med-N than in Low-N, but there is no significant difference between High-N and Med-N. Therefore total nitrogen range (100~150 kg ha-1) and starter N range (0~50 kg ha-1) rate application under the different weather conditions can be considered the optimal selection to maintain cron productivity and limit environmental losses. RRs have no significant differences from one another within three starter N rates.
引文
1 Huber, D., M. and I. Thompson, A., Nitrogen and plant disease. In: Mineral nutrition and plant disease [M]. 2007.
    2 Clark, R.B., Plant response to mineral element toxicity and deficiency [M]. In: Breeding plants for less favorable environments, E. M. N. Christiansen and C. F. Lewis, Editor. 1982, John Wiley & Sons: New York. p. 71-142.
    3程存旺,石嫣,温铁军,氮肥的真实成本[R]. 2010,中国人民大学农业与农村发展学院:北京. p. 38.
    4朱兆良,中国土壤氮素研究[J].土壤学报, 2008. 45(5): p. 778~783.
    5杨晋娟,瓦哈甫?哈力克,史帝文,新疆化肥投入量与粮食增产潜力的研究[J].新疆农业科学, 2008. 45(2): p. 302-306.
    6 Newbould, F., The use of nitrogen fertilizer in agriculture. Where do we go practically and ecologically? [J] Plant Soil, 1989. 115: p. 297-311.
    7 Raun, W.R. and G.V. Johnson, Improving nitrogen use efficiency for cereal production [J]. Agronomy Journal 1999. 91(3): p. 357-363.
    8 Mosier, A.R., J.K. Syers, and J.R. Freney, Agriculture and the Nitrogen Cycle. Assessing the Impacts of Fertilizer Use on Food Production and the Environment [M]. 2004, London: Island Press.
    9 Bock, B.R., Efficient use of nitrogen in cropping systems [R]. In: Nitrogen in crop production, R.D. Hauck, Editor. 1984: Madison, WI. p. 273-294.
    10 Fixen, P.E. and F.B. West, Nitrogen fertilizers: meeting contemporary challenges [J]. Ambio, 2002. 31(2): p. 169-176.
    11朱兆良,农田中氮肥的损失与对策[J].土壤与环境, 2000. 9(1): p. 1-6.
    12 Galloway, J.N., et al., Nitrogen cycles: past, present, and future [J]. Biogeochemistry, 2004. 70(153-226).
    13 Bergstrom, L. and F. William, Ritter., Nitrogen and Water Quality, in Agricultural Nonpoint Source Pollution [M]. 2000, CRC Press. p. 20.
    14王秀斌,优化施氮下冬小麦/夏玉米轮作农田氮素循环与平衡研究[M],农业资源与农业区划研究所. 2009,中国农业科学院:北京. p. 101.
    15 Beever., D., et al., Sustainable Management of the Nitrogen Cycle in Agriculture and Mitigation of Reactive Nitrogen Side Effects [R]. First edition ed. 2007, Paris, France: IFA.
    16 Legg, J.O. and J.J. Meisinger, Soil nitrogen budgets, in Nitrogen in Agricultural Soils [R], Stevenson, F. J. Ed.,. Agronomy Monographic, 1982(22): p. 503.
    17 Packer, P. and S. Leach, Origin and significance of nitrite in water [M]. In: HillMed., in Nitrates and Nitrites in Food and Water. . 1991, Ellis Horwood Press: Chichester.
    18方华,莫江明,活性氮:一个威胁环境的问题[J].生态环境, 2006. 15(1): p. 164-168.
    19 IPCC, Climate change 2001: the scientific basis. Intergovernmental Panel of Climate Change [R]. 2001: Geneva,Switzerland.
    20 US-EPA, Global anthropogenic non-CO2 greenhouse gas emissions: 1990-2020 [R], U.S.E.P. Agency, Editor. 2006: Washington, DC, USA.
    21 Mosier, A. and C. Kroeze, A new approach to estimate emissions of nitrous oxide from agriculture and its implications to the global nitrous oxide budget [R]., in IGACtivities Newsletter. 1998.
    22 EEA, ETC-ACC air emissions spreadsheet for indicators 2005 [R]. 2005, European Environment Agency: Copenhagen, Denmark.
    23 Knobeloch, L., et al., Blue babies and nitrate-contaminated well water [J]. Environ Health Perspect, 2000. 108(7): p. 675-678.
    24 Fageria, N., K., N.A. Slaton, and V.C. Baligar, Nutrient management for improving lowland rice productivity and sustainability [R]. Adv. Agron, 2003. 80: p. 63-152.
    25 Schmied, B., K. Abbaspour, and R. Schulin, Inverse estimation of parameters in a nitrogen model using field data [J]. Soil Sci. Soc. Am. J, 2000. 64: p. 533-542.
    26朱兆良,氮素管理与粮食生产和环境[J].土壤学报, 2002. 39(Supplement): p. 3-11.
    27 Fageria, N., K, Nitrogen, in The Use of Nutrients in Crop Plants [M]. 2008, CRC Press: Santo Ant?nio de Goiás p. 23.
    28 Shrestha, R.K., L.R. Cooperband, and A.E. MacGuidwin, Strategies to Reduce Nitrate Leaching into Groundwater in Potato Grown in Sandy Soils [J]: Case Study from North Central USA American Journal of Potato Research 2010. 87(3): p. 229-244.
    29卜玉涛,毛昆明,张发明,土壤氮素淋失研究进展[J].现代农业科技, 2010. 16: p. 285-286.
    30 Hirel, B., et al., The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches [J]. Journal of Experimental Botany, 2007. 58(9): p. 2369-2387.
    31罗志祥等.,氮肥高效利用水稻育种的现状与展望[J]. Chinese Agricultural Science Bulletion, 2003. 19(1): p. 66-67.
    32 Sangakkara, R., et al., Water management affects nitrogen use efficiency and yield of maize grown in minor seasons [R], Institute of Plant Sciences: Zurich, Switzerland.
    33 Ronald J, G., et al., Corn Yield Response to Nitrogen Rate and Timing in Sandy Irrigated Soils [J]. Agronomy Journal, 2005. 97: p. 1230-1238.
    34 Ma, B.L., et al., Effect of in-season application methods of fertilizer nitrogen on grain yield and nitrogen use efficiency in maize [J]. Canadian Journal of Soil Science 2004. 84: p. 169-176.
    35 Prasad, R., The use of nitrification inhibitors and slow-release nitrogen fertilizers for manipulation of growth and yield of rice [M], in Chemical Manipulation of Crop Growth and Development, J.S. McLaren, Editor. 1982: London. p. 451-464.
    36 Jeffery, E.P., Controlled-Release nitrogen fertilizer release characterization and its effects on potato production and soil nitrogen movement in northeast Florida [M]. 2004, University of Florida. p. 152.
    37高超等., 1980年以来我国农业氮素管理的现状与问题[J].南京大学学报(自然科学), 2002. 38(5): p. 716-721.
    38王兴仁,曹一平,张福锁,土壤氮磷钾养分资源特征和综合管理策略[J].北京农业大学学报, 1995. 21(增刊): p. 89-93.
    39朱兆良.我国氮肥的使用现状、存在问题和对策[M]. 1998,南昌:江西科技出版社. 38~51.
    40陈世勇等.,应用土壤无机氮测试优化青贮玉米氮素管理[J].草业科学, 2008. 17(3): p. 156-161.
    41 Scharf, P., Crop Sensors for Management Nitrogen [M]. 2009, Division of Plant Sciences Columbia, Missouri. p. 2.
    42 Pioneer, Using Crop Sensors to Improve Corn Nitrogen Management [M]. p. 1-3.
    43贾良良,应用数字图像技术与土壤植株测试进行冬小麦氮营养诊断[M],资源与环境学院. 2003,中国农业大学:北京. p. 78.
    44易秋香等.玉米全氮含量高光谱遥感估算模型研究[J].农业工程学报, 2006. 22(9): p. 138-143.
    45朱华,基于遥感和GIS的水环境非点源污染研究[M],环境科学与工程系. 2005,湖南大学:长沙. p. 86.
    46朱大威等.基于模型和GIS的农田有机肥供氮量时空变化分析[J].江苏农业学报, 2007. 23(5): p. 432-436.
    47 Thompson, L.M., An Evaluation of Weather Factors in the Production of Corn [R]. 1962, Center for Agricultural and Rural Development, Lowa State University. p. Report No. 12T.
    48 Thompson, L.M., Weather and Technology in the Production of Corn in the U.S. CornBelt [J]. Agronomy Journal 1969. 61: p. 453-456.
    49 Thompson, L.M., Weather and Technology in the Production of Soybeans in the Central U.S [J]. Agronomy Journal 1970. 62: p. 232-236.
    50 Thompson, L.M., Weather Variability, Climatic Change, and Soybean Production [J]. Journal of Soil and Water Conservation, 1985. 40: p. 386-389.
    51 Thompson, L.M., Climatic Change, Weather Variability, and Corn Production [J]. Agronomy Journal 1986. 78: p. 649-653.
    52 Thompson, L.M., Effects of Changes in Climate and Weather Variability on the Yields of Corn and Soybeans [J]. Journal of Production Agriculture, 1988. 1: p. 20-27.
    53 Shaw, L.H., The Effect of Weather on Agricultural Output: A Look at Methodology [J]. Journal of Farm Economics, 1964. 46: p. 218-230.
    54 Tannura, M.A., S.H. Irwin, and D.L. Good, A Review of the Literature on Regression Models of Weather, Technology, and Corn and Soybean Yields in the U.S [R]., in Marketing and Outlook Research Report 2008-02. 2008, Department of Agricultural and Consumer Economics, University of Illinois at Champaign-Urbana.
    55 Hutson, J.L. and R.J. Wagenet, Simulating nitrogen dynamics in soils using a deterministic model [J]. Soil Use and Management, 1991. 7: p. 74-78.
    56 Hutson, J.L. and R.J. Wagenet, LEACHM: Leaching estimation and chemistry model: Aprocess-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone [R]. 1992, Department of soil, crop and atmospheric sciences, Cornell University: Ithaca, New York.
    57 Kinsel, W.G., CREAMS: a field-scale model for chemical, runoff and erosion from agricultural management systems [R]. in Conservation Research Report No. 26, South East Area. 1980, US Department of Agriculture: Washington, DC.
    58 Skaggs, R.W., DRAINMOD User’s Manual [R]. 1990, North Carolina State University: Raleigh.
    59 DeCoursey, D., et al., Root Zone Water Quality Model: version 1.0: technical documentation.USDA-ARS [R], GPSR Technical Report No. 2., Great Plains Systems ResearchUnit. 1992: Ft. Collins, Colorado.
    60 Shaffer, M.J., A.D. Halverson, and F.J. Pierce, Nitrate leaching and economic analysis package (NLEAP):model description and application [J]. In Managing Nitrogen for GroundwaterQuality and Farm Profitability. 1991, Soil Science Society of America: Madison, Wisconsin. . p. 285-322.
    61 Li, C., S. Frolking, and T.A. Frolking, A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity [J]. Journalof Geophysical Research, 1992. 97: p. 9759-9776.
    62 Walker, G.K., Model for operational forecasting of Western Canada wheat yield [J]. Agricultural and Forest Meteorology, 1989. 44(3-4): p. 339-351.
    63 Neitsch, S.L., et al., Soil and Water Assessment Tool User's Manual, Version 2000 [R], in TWRI Report TR-192. 2002, Texas Water Resources Institute: College Station, Texas.
    64 Young, R., et al., AGNPS: Agricultural Non-Point Source Pollution Model: awatershed analysis tool [R]. USDA-Agricultural Research Service. , in ConservationResearch Report 35. 1987, U.S. Department of Agriculture: Washington, D.C.
    65 Clanton, C.J., D.C. Slack, and M.J. Shaffer, Evaluation of the NTRM Model for Land Application of Wastewater [J]. American Society of Agricultural and Biological Engineers, 1986. 29(5): p. 1307-1313.
    66张平等.基于SWAT模型的密云水库沿湖区氮磷流失养分控制策略研究[J].陕西师范大学学报(自然科学版), 2010. 38(6): p. 82-88.
    67张玉斌,郑粉莉, AGNPS模型及其应用[J].水土保持研究, 2004. 11(4): p. 124-127.
    68王飞儿等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测[J].农业工程学报, 2003. 19(6): p. 281-284.
    69 Palm, C.A., et al., Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database [J]. Agriculture, Ecosystems & Environment, 2001. 83(1-2): p. 27-42.
    70 Li, F.Y., et al., AmaizeN: A decision support system for optimizing nitrogen management of maize [J]. NJAS Wageningen journal of life sciences, 2009. 57(1): p. 93-100.
    71朱艳等.小麦栽培氮肥运筹的动态知识模型[J].中国农业科学, 2003. 36(9): p. 1006-1013.
    72张怀志,基于知识模型的棉花管理决策支持系统的研究[M],农学院. 2003,南京农业大学:南京. p. 112.
    73庄恒扬,曹卫星, and任正龙,基于模拟的作物氮素管理决策研究[J].农业系统科学与综合研究, 2002. 18(4): p. 269-272.
    74 Cochran, W.G., Problems arising in the analysis of a series of similar experiments [J]. Roy.Stat.Soc, 1937. 4(suppl.): p. 102-118.
    75 Fisher, R.A., Statistical Methods for Research Workers [M]. Oliver and Boyd, London, 1932. 4th edn.
    76 Pearson, K., On a method of determining whether a sample of size n supposed to have been drawn from a parent population having a known probability integral has probablybeen drawn at random [M]. Obst. Gynecol, 1933. 89: p. 628-633.
    77 Tippett, L.H.C., The Methods of Statistics [M]. 1931, London: Williams & Norgate.
    78 Eysenck, H.J., The effects of psychotherapy: An evaluation [J]. Journal of Consulting Psychology, 1952. 16: p. 319-324.
    79 Brozek, J. and K. Tiede, Reliable and questionable significance of combined results [M]. 1952.
    80 Sakoda, J.M., B.H. Cohen, and F. Beall, Tests of significance for a series of statistical tests [M]. 1954.
    81 Sterling, T.C., Publication decisions and their possible effects of inference drawn from tests of significance or vice versa [M]. 1959.
    82 Smith, M.L. and G.V. Glass, Meta-analysis of psychotherapy outcome studies [J]. American Psychologist, 1977. 32(9): p. 752-760.
    83 Hedges, L.V. and I. Olkin, Statistical methods for Meta-analysis [M]. 1985, Orlando, FL: Academic Press.
    84 Antero, J., A meta-analytic study of the effects of female age on laying-date and clutch-size in the Great Tit Parus major and the Pied Flycatcher Ficedula hypoleuca [J]. IBIS, 1991. 133(1): p. 62-67.
    85赵宁,俞顺章, Meta-analysis:一种新的定量综合方法.中国慢性病预防与控制[J], 1993. 1(6): p. 277-281.
    86徐勇, Meta分析常见资料类型及统计分析方法[J].中华预防医学杂志, 1994.
    87彭少麟,唐小焱., Meta分析及其在生态学上的应用[J].生态学杂志, 1998.
    88彭少麟. and郑凤英., Meta分析:综述中的一次大革命[J].生态学杂志, 1999. 18(6): p. 65-70.
    89 Hedges, L.V. and I. Olkin, Vote-counting methods in research synthesis, Psychological Bulletin [J], 1980. 88(2): p. 359-369.
    90 Borenstein, M., et al., Introduction to Meta-Analysis. How a Meta-Analysis Works [M]. 2009, Chichester, West Sussex: John Wiley and Sons.
    91 Lipsey, M.W. and D.B. Wilson, Practical Meta-Analysis [M]. Vol. 49. 2000, London: SAGE.
    92 Begg, C.B., Publication bias. In: The Handbook of Research Synthesis (Ed. by H. Cooper and L. V. Hedges) [M]. 1994: New York. p. 399-410.
    93 Wroblowsky, T., Explaining the Variability of Debt Neutrality Tests Results: A Meta-Analysis of Ricardian Equivalence [J]. South-Eastern Europe Journal of Economics, 2007. 1: p. 7-24.
    94 Sharp, D., Of apples and oranges, file drawers and garbage: why validity issuesin meta-analysis will not go away [J]. Clin. Psych. Rev., 1997. 17: p. 881-901.
    95 FAO, Maize in human nutrition, in FAO Food and Nutrition Series [R]. 1992, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS: Rome (Italy). p. 81.
    96 Cassman, K.G., A. Dobermann, and D. Walters, T., Agroecosystems, nitrogen-use efficiency, and nitrogen management [J]. Ambio, 2002. 31: p. 132-140.
    97 DeCoster, J., Meta-Analysis Notes [M]. 2004, Department of Psychology: Tuscaloosa, AL. p. 50.
    98李河等. Meta分析中漏斗图的绘制[J].循证医学, 2007. 7(2): p. 101-106.
    99郑凤英,彭少麟., Meta分析中几种常用效应值的介绍[J].生态科学, 2001. 20(1): p. 81-84.
    100 Gurevitch, J., P.S. Curtis, and M.H. Jones, Meta-analysis in ecology [M], in Advances in Ecological Research. 2001. p. 199-247.
    101 Borenstein, M., et al., Introduction to Meta-Analysis. Factors that affect precision [M]. 2009, Chichester, West Sussex: John Wiley and Sons.
    102马树玉,韩清, Meta分析的选择模型[J].南华大学学报, 2002. 16(2): p. 6-13.
    103 Borenstein, M., et al., Introduction to Meta-Analysis. Fixed-Effect Versus Random-Effect Models [M]. 2009, Chichester, West Sussex: John Wiley and Sons.
    104 Hunter, J.E. and F.L. Schmidt, Fixed Effects vs. Random Effects Meta-Analysis Models: Implications for Cumulative Research Knowledge [J]. International Journal of Selection and Assessment, 2000. 8(4): p. 275-292.
    105 Higgins, J. and S. Green, Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011] [R]. 2011: The Cochrane Collaboration, 2011. Available at www.cochrane-handbook.org.
    106王丹等, Meta分析中的异质性及其处理方法[J].中国循证医学杂志, 2009. 9(10): p. 1115-1118.
    107何寒青,陈坤, Meta分析中的异质性检验方法[J].中国卫生统计, 2006. 23(6): p. 486-488.
    108 Huedo-Medina, T.B., et al., Assessing Heterogeneity in Meta-Analysis: Q Statistic or I2 Index? [J] Psychological Methods, 2006. 11(2): p. 193-206.
    109 Higgins, J.P.T., S. Thompson, G., and D. Altman, G., Measuring inconsistency in meta-analyses [J]. British Medical Journal, 2003. 327(7414): p. 557-560.
    110 Fleiss, J.L., The statistical basis of meta-analysis [J]. Stat Methods Med Res, 1993. 2(2): p. 121-145.
    111王家良,循证医学[M].第二版. 2006,北京:人民卫生出版社.
    112石修权,王增珍, Meta回归与亚组分析在异质性处理中的应用[J].中华流行病学杂志,2008. 29(5): p. 497-501.
    113魏丽娟and董惠娟, Meta分析中异质性的识别与处理[J].第二军医大学学报, 2006. 27: p. 449-450.
    114 Stuck, A.E., et al., Comprehensive geriatric assessment: a meta-analysis of controlled trials [J]. Lancet 1993. 342(8878): p. 1032-1036.
    115 Berkey, C.S., et al., A random-effects regression model for meta-analysis [J]. Stat Med, 1995. 14(4): p. 395-411.
    116 Saltelli, A., et al., Global Sensitivity Analysis: The Primer [M]. 2008: Wiley-Interscience.
    117王建华,流行病学[M].第六版. 2004,北京:人民卫生出版社.
    118 Bax, L., et al., A systematic comparison of software dedicated to meta-analysis of causal studies [J]. BMC Medical Research Methodology, 2007. 7(40): p. 1-9.
    119 Leonard, T. and J.C. Duffy, A Bayesian fixed effects analysis of the Mantel–Haenszel model applied to meta-analysis [J]. Statistics in Medicine, 2002. 21(16): p. 2295-2312.
    120 Delgado-Rodríguez, M., Glossary on meta-analysis [J]. J Epidemiol Community Health, 2001. 55: p. 534-536.
    121 Borenstein, M., et al., Comprehensive Meta Analysis Version 2.0: Meta-Analysis Manual [M]
    122 Orwin, R.G., A Fail-SafeN for Effect Size in Meta-Analysis [J]. Journal of Educational and Behavioral Statistics, 1983. 8(2): p. 157-159.
    123 Canada, S., Canada Year Book (CYB) [M]. 2008.
    124 Peel, M.C., B.L. Finlayson, and T.A. McMahon, Updated world map of the K?ppen-Geiger climate classification [J]. Hydrology and Earth System Sciences, 2007. 11(5): p. 1633-1644.
    125 Bootsma, A., S. Gameda, and D.W. McKenney, Potential impacts of climate change on corn, soybeans and barley yields in Atlantic Canada [J]. Canadian Journal of Soil Science, 2005. 85(2): p. 345-357.
    126 Bronikowski, A. and C. Webb, Appendix: A critical examination of rainfall variability measures used in behavioral ecology studies [J]. Behavioral Ecology and Sociobiology, 1996. 39: p. 27-30.
    127 Bootsma, A., et al., A re-evaluation of crop heat units in the maritime provinces of Canada [J]. Canadian Journal of Plant Science. 87: p. 281-287.
    128 Brown, D.M., Heat units for corn in southern Ontario. 1975 [R], Ontario Ministry of Agric and Food, Factsheet No. 75-077, Agdex 111/31.
    129 Faramarzia, M., et al., Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production [R]. Agricultural Water Management, 2010. 97: p. 1861-1875.
    130肖静,李楠,姜会飞,作物发育期积温计算方法及其稳定性[J].气象研究与应用, 2010. 31(2): p. 64-67.
    131刘布春,应用于低温冷害预报的东北玉米区域动力模型的研究[M],资源与环境学院. 2003,中国农业大学:北京. p. 88.
    132刘刚等. ALMANAC作物模型参数的敏感性分析[J].中国农业气象, 2008. 29(3): p. 259-263.
    133 Girma, K., et al., Weather, Fertilizer, Previous Year Yield, and Fertilizer Levels Affect Ensuing Year Fertilizer Response of Wheat [J]. Agronomy Journal, 2007. 99(6): p. 1607-1614.
    134 Valkama, E., et al., Phosphorus fertilization: A meta-analysis of 80 years of research in Finland [J]. Agriculture, Ecosystems and Environment, 2009. 130(3-4): p. 75-85.
    135 Xia, J. and S. Wan, Global response patterns of terrestrial plant species to nitrogen addition [J]. New Phytologist, 2008. 179(2): p. 428-439.
    136 Gurevitch, J. and L. Hedges, Meta-analysis: combining the results of independent experiments [J]. In: Scheiner SM, Gurevitch J, eds. Design and analysis of ecological experiments. 1993, New York, NY, USA: Chapman and Hall.
    137 Tonitto, C., M.B. David, and L.E. Drinkwater, Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics [J]. Agriculture, Ecosystems and Environment, 2006. 112(1): p. 58-72.
    138 Bunting, E.S., Accumulated temperature and maize development in England [J]. The Journal of Agricultural Science, 1976. 83(3): p. 577-583.
    139 Honeycutt, C.W., L.M. Zibilske, and W.M. Clapham, Heat Units for Describing Carbon Mineralization and Predicting Net Nitrogen Mineralization [J]. Soil Sci. Soc. Am. J, 1988. 52: p. 1346-1350.
    140 Honeycutt, C.W. and L.J. Potaro, Field evaluation of heat units for predicting crop residue carbon and nitrogen mineralization [J]. Plant and Soil, 1990. 125: p. 213-220.
    141 Smith, P.J., A. Bootsma, and A.D. Gates, Heat Uints in Relation to Corn Maturity in the Atlantic Region of Canada [J]. Agricultural Meteorology, 1982. 26: p. 201-213.
    142 Bootsma, A., et al., A re-evaluation of crop heat units in the maritime provincesof Canada [J]. Can. J. Plant Sci, 2007. 87: p. 281-287.
    143 Keeney, E.J.K.a.D.R., Soil nitrogen mineralization as affected by water and temperature interactions. Biology and fertility of soils [J], 1987. 5(3): p. 248-252.
    144 Majors, J., D.R. Johnson, and V.S. Lueddeus, Evaluation of eleven thermal unit methods for predicting soybean development [J]. Crop Sci, 1975. 15: p. 172-174.
    145 Yamoah, C.F., G.E. Varvel, and e. al., Weather and management impact on crop yield variability in rotationsWeather and management impact on crop yield variability in rotations [J]. Journal of Production Agriculture 1998. 11(2): p. 219-225.
    146 Van Es, H., M., et al., Nitrogen Management for Maize in Humid Regions: Case for a Dynamic Modeling Approach. In managing crop nitrogen for weather [R]. International Plant Nutrition Institute, Norcross, GA 30092-2837 USA, 2007.
    147邹国元,张福锁,李新慧,夏玉米生长期土壤氮素的硝化-反硝化作用研究[J].干旱地区农业研究, 2002. 20(1): p. 30-34.
    148 Kimura, H., M. Shimura, and M. Yamauchi, Effect of Top-Dressing of Nitrogen Fertilizer after Anthesis on Nitrogen Accumulation in Wheat Grain [J]. Japanese Journal of Soil Science and Plant Nutrition, 2001. 72(3): p. 403-408.
    149 Tremblay, N., et al., Growing Season and Soil Factors Related to Predicting Corn Nitrogen Fertilization in Quebec [M]. In Management Crop Nitrogen for Weather. 2007, International Plant Nutrition Institute: Norcross, GA.
    150 Freney, J.R., J.R. Simpson, and O.T. Denmead, Volatilization of ammonia [M]. In: Gaseous Loss of Nitrogen from Plant-Soil Systems. 1983: The Hague. p. 1-32.
    151 Dueri, S., P.L. Calanca, and J. Fuhrer, Climate change affects farm nitrogen loss–A Swiss case study with a dynamic farm model [J]. Agricultural Systems, 2007. 93: p. 194-214.
    152 Teigen, L.D. and M.J. Thompson, Weather and yield, 1950-94 relationships, distributions, and data, E.R.S [R]. Commercial Agriculture Division, U.S. Department of Agriculture, Editor. 1995. p. Staff Paper. pp. No. 9527.
    153 Thompson, L.M., Weather variability, climatic change, and grain production [J]. Science, 1975. 188: p. 535-541.
    154张保仁,高温对玉米产量和品质的影响及调控研究[M],农学院. 2003,山东农业大学:泰安. p. 107.
    155 Hu, Q., Climate Effects on Corn Yield in Missouri [J]. Journal of applied meteorology, 2003. 42: p. 1626-1635.
    156郑循华等.温度对农田NO2产生于排放的影响[J].环境科学, 1997. 18(5): p. 1-6.
    157 Wild, A. and K.C. Cameron, Nitrate leaching through soils and environmental considerations with special reference to recent work in the United Kingdom [R]., in International Atomic Energy Agency: Soil nitrogen as fertilizer or pollutant. 1980, IAEA: Vienna. p. 289-306.
    158 Wild, A., Nitrate leaching under bare fallow at a site in northern Nigeria [J]. Journal of Soil Science, 1972. 23(3): p. 315-324.
    159邬伦and李佩武,降雨-产流过程与氮、磷流失特征研究[J].环境科学学报, 1996. 16(1): p. 111-116.
    160 Fraser, A.I., T.R. Harrod, and P.M. Haygarth, The effect of rainfall intensity on soil erosion and particulate phosphorus transfer from arable soils [J]. Water Science and Technology, 1999. 39(12): p. 41-45.
    161王辉,降雨条件下黄土坡地养分迁移机理及模拟模型[M],水土保持研究所. 2006,西北农林科技大学:杨凌. p. 151.
    162康绍忠,梁宗锁,控制性交替灌溉:一种新的农田节水调控思路[J].干旱地区农业研究, 1997. 2: p. 1-6.
    163冯广龙,刘昌明,王立,土壤水分对作物根系生长及分布调控的作用[J].生态农业研究, 1996. 4(3): p. 5-9.
    164 Rego, T.J., et al., Comparison of the effects of continuous and relieved water stress on nitrogen nutrition of grain sorghum [J]. Australian Journal of Agricultural Research 1988. 39(5): p. 773-782.
    165魏林宏,张斌,程训强,水文过程对农业小流域氮素迁移的影响[J].水利学报, 2007. 38(9): p. 1145-1150.
    166 Cox, M.S. and S.A. Barber, Soil phosphorus levels needed for equal P uptake from four soils with different water contents at the same water potential [J]. Plant and Soil, 1992. 143(1): p. 93-98.
    167陈新平,王敬国,杨志福,土壤水分胁迫条件下磷钾营养的相互关系及其对小麦抗旱性的影响[J].北京农业大学学报, 1995. 21(增刊): p. 71-76.
    168 Harper, L.A., et al., Ammonia Volatilization: Soil, Plant, and Microclimate Effects on Diurnal and Seasonal Fluctuations [J]. Agronomy Journal 1983. 75: p. 212-218.
    169 Goldblum, D., Sensitivity of corn and soybean yield in Illinois to air temperature and precipitation: The potential impact of future climate change [J]. Physical Geography, 2009. 30(1): p. 27-42.
    170 Sogbedji, J., M., et al., Spatial and temporal processes affecting nitrogen availability at the landscape scale [J]. Soil & Tillage Research 2001. 58: p. 233-244.
    171王西娜,旱地冬小麦/夏玉米轮作土壤矿质氮及其对作物生长与养分利用的影响[M],资源环境学院. 2005,西北农林科技大学:杨凌. p. 67.
    172范丙全,胡春芳,平建立,灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报, 1998. 4(1): p. 16-21.
    173 Bergstrom, L. and N. Brink, Effects of differentiated applications of fertilizer N on leaching losses and distribution of inorganic N in the soil [J]. Plant and Soil, 1986. 93(3): p. 333-345.
    174 Sokal, R.R. and F.J. Rohlf, Biometry: the principles and practice of statistics in biological research [M]. The second edition ed. 1981, San Francisco: W. H. Freeman. 859.
    175 Xie, M., N. Tremblay, and Z. Wei, A meta-analysis of weather effects on corn nitrogen fertilization requirements [J], in CIGR. 2010.
    176 Asseng, S., N.C. Turner, and B.A. Keating, Analysis of water- and nitrogen-use efficiency of wheat in a Mediterranean climate [J]. Plant and Soil, 2001. 233(1): p. 127-143.
    177高海鹰等.不同降雨强度对农田土壤氮素淋失的影响及LEACHM模型验证[J].农业环境科学学报, 2008. 27(4): p. 1346-1352.
    178黄满湘等.北京地区农田氮素养分随地表径流流失机理[J].地理学报, 2003. 58(1): p. 147-154.
    179 Shaw L., H., The Effect of Weather on Agricultural Output: A Look at Methodology [J]. Journal of farm economics, 1964. 46: p. 218-230.
    180 Reeves, D.W., C.W. Wood, and J.T. Touchton, Timing Nitrogen Applications for Corn in a Winter Legume Conservation-Tillage System [J]. Agronomy Journal 1993. 85: p. 98-106.
    181阮小红,王超,朱亮,氮在饱和土壤层中迁移转化特征研究[J].河海大学学报, 1996. 24(2): p. 51-55.
    182 Research, R., Nitrogen losses, and the recovery of fertiliser N by crops [R]. Available at http://www.rothamsted.bbsrc.ac.uk/aen/sundial/adas/losses.htm. 2007: Rothamsted, UK.
    183 Viek P, L.G. and J.M. Stumpe, Effect of solution chemistry and environmental conditions on ammonia volatilization losses from aqueous systems [J]. Soil Sci. Soc. Am. J., 1978. 42: p. 416-421.
    184 Peacock, W.L., L.P. Christensen, and F.E. Broadbent, Uptake, Storage, and Utilization of Soil-applied Nitrogen by Thompson Seedless as Affected by Time of Application [J]. Am. J. Enol. Vitic., 1989. 40(1): p. 16-20.
    185 Cossey, D.A., et al., Relationship between ammonium and nitrogen in wheat plant tissue and estimated nitrogen loss [J]. Journal of plant nutrition, 2002. 25(7): p. 1429-1442.
    186 Roberts, T.L., Improving Nutrient Use Efficiency [J]. Turk J Agric, 2008. 32: p. 177-182.
    187 Hobbs, P.R., K.D. Sayre, and J.I. Ortiz-Monasterio, Increasing Wheat Yields Sustainably through Agronomic Means [M]. 1998, NRG Paper 98-01.: Mexico, D.F. Mexico.
    188 NRCS-USDA, Water Quality and Air Quality Enhancement Activity– WQL08– Split applications of nitrogen based on a PSNT or other crop-based indicators [R]. Available at :http://www.nrcs.usda.gov/programs/new_csp/2010/ranking_period_two/jobsheet_pdfs/wql/10_R2_WQL08_Split_N_Applications_PSNT.pdf. 2010, United States Department of Agriculture Natural Resources Conservation Service: Washington, DC. p. 1-3.
    189 Rashid, M.T. and R.P. Voroney, Nitrogen fertilizer recommendations for corn grown on soils amended with oily food waste [J]. J Environ Qual, 2005. 34(6): p. 2045-2051.