稻壳灰资源化综合利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为人类生存和发展的重要物质基础,煤炭、石油、天然气等化石能源支撑了19世纪到20世纪近200年来人类文明的进步和经济社会的发展。然而,化石能源的不可再生性和人类对其的巨大消耗,使得化石能源正在逐渐走向枯竭。同时,化石能源的利用,也是造成环境变化与污染的关键因素。大量的化石能源消费,引起温室气体排放,使大气中温室气体浓度增加、温室效应增强,导致全球气候变暖。随着化石能源储量的逐步降低和全球环境污染问题的加剧,全球能源危机也日益迫近。以化石能源为主的能源结构,具有明显的不可持续性。因此各国都在寻找新能源或可以替代化石能源的可再生资源。
     在这种环境污染日益严重,化石能源日益短缺的情况下,生物质作为一种可再生资源逐渐引起了大家的关注。生物质具有种类多,产量大等特点。而稻壳作为生物质中的一种,因其产量多的特点在我国生物质能源开发利用方面占有十分重要的地位。其中大部分的稻壳用作发电产能,产生的副产物稻壳灰如不加以利用会造成极大的环境污染和资源浪费。如何利用稻壳灰则成了目前国内稻壳生物质能利用问题上亟待解决的问题。
     本论文采用了三种方法,对稻壳灰中的碳源和硅源进行了充分的利用,并对得到的产品进行应用研究,从而实现稻壳灰资源化的综合利用。
     第一部分,以稻壳灰为原料,固体碳酸钠为活化剂,同步溶硅活化制备活性炭和二氧化硅。得到实验结果:活化温度为900oC活化时间为45min浸渍比为1:1.75溶解用水量为350ml溶解时间为2h。二氧化硅产率为93.79wt.%、活性炭比表面积为570-900m2/g、碘吸附值可达到了1708-2000mg/g、电容能力在185F/g左右。
     本部分创新性在于:1.碳酸钠高温分解后与稻壳灰反应生成硅酸钠固体,经水溶后得到水玻璃溶液和固体活性炭,实现了溶硅、活化的一步完成。降低了成本,使稻壳灰得到了充分的利用。2.溶硅阶段碳酸钠分解产生的二氧化碳气体,经过净化处理,可以用于制备二氧化硅的沉淀剂,既避免了传统方法中用酸中和沉淀造成的污染,降低了成本,又充分利用回收了二氧化碳,减少了温室气体的排放,实现了二氧化碳的循环利用。3.碳酸钠作为原料与稻壳灰反应得到硅酸钠固体,经水溶得到水玻璃溶液,再经碳化析出二氧化硅固体,过滤得到碳酸钠溶液,滤液结晶得到碳酸钠固体。在此过程中碳酸钠不消耗,可循环利用,降低成本,减少废水排放。
     第二部分,通过对比几种从农业废弃物中制备的活性炭对苯酚的吸附能力,考察第一部分制备的活性炭对苯酚的吸附能力,为实际应用提供参考。结果如下:
     1.得到了几种不同方法制备的活性炭对苯酚吸附能力的大小比较。2.通过对吸附模型的讨论,发现几种活性炭均符合Langmuir单分子层吸附。3.所有吸附样品对苯酚的吸附为自发的吸热反应。4.通过对动力学过程的考察,发现吸附反应以准二级吸附反应为主,同时伴随着扩散反应的发生。5.通过吸附能力、制备过程、成本等方面综合考虑发现第一部分制备的活性炭更适合于实际应用。
     第三部分,以稻壳灰为原料,固体碳酸钾为活化剂,同步溶硅活化制备活性炭和二氧化硅。得到最佳实验条件:活化温度为1000oC、活化时间为30min、浸渍比为1:5、溶解用水量为120ml。二氧化硅产率为96.75wt.%、活性炭比表面积为1700m2/g、亚甲基蓝吸附值为210mg/g、电容能力在190F/g左右。
     本部分的创新性在于:1.应用同步法,将碳硅同时分离制得活性炭和二氧化硅,大大简化了实验。2.实验过程中的废液得到了回收利用,并且经实验证实回收的废液经过处理可以作为活化剂回用到活化反应中,避免了污染,降低了成本。3.对比第一部分,本部分中的活化剂经过精心挑选,得到的产品活性炭具有更好的应用性能。4.结合整个工艺流程图提出了一个设想,将稻壳热解得到的生物油作为溶硅阶段的能量来源。经测量实验室条件下收集的稻壳热解生物油燃烧热值可达到25.67KJ/g,实验室条件下收集的生物油含有大量的水分,但是在工业上,经过分离冷凝脱水等工序的处理得到的生物油要比在实验室条件下得到的生物油更纯,其燃烧热的值也会更高。因此将稻壳热解得到的生物油用于活化阶段去提供能量是现实可行的。
     第四部分,以第三部分得到的活性炭为吸附剂,对六价铬离子进行吸附研究,用以评价该方法制得的活性炭对金属离子的吸附能力,从而为实际应用提供参考。得到的结果:
     1.最佳吸附条件:体系pH值为1~2、吸附剂用量为0.02g、吸附温度为311K,吸附反应发生迅速,吸附时间对其影响很小。
     2.吸附反应符合Freundlich多分子层吸附。
     3.通过对动力学过程的考察发现吸附反应由准二级吸附过程决定,同时伴随着扩散反应的发生。
     4.通过与市售高档活性炭对六价铬离子吸附能力的对比发现,本部分所使用的吸附剂具有与之相同的吸附能力,但是具备很多市售高档活性炭不具备的优势,如,成本低、来源环保、制备过程不产生污染等。
     第五部分,以稻壳为原料,在改善提高稻壳水玻璃模数的基础上,同步活化提硅残渣制备功能性碳材料。同时研究了不同模数水玻璃对二氧化硅形貌的影响。得到的结果:
     1.综合水玻璃模数和活性炭孔容两方面考虑得到最佳实验条件:反应温度为150oC、氢氧化钠溶液浓度为0.5mol/l、固液比为1:9、反应时间2h。
     2.通过对应用性能的研究发现该种方法制备的活性炭更适合用于阳性污染物的移除。
     3.通过对比不同模数水玻璃对二氧化硅形貌的影响发现,模数高的水玻璃制得的二氧化硅具有更好的形貌和分散性。
     4.通过对比以高模数水玻璃为原料,不同酸浓度对二氧化硅形貌的影响发现,酸的浓度越高制得的二氧化硅形貌和分散性更好。
     本部分的创新性在于:采用本方法生产的水玻璃模数可控、活性炭应用性能好、工艺简单、耗能低、容易实现工业化生产、应用前景广阔。
     通过对以上两种不同方法的研究,能够将稻壳灰中碳源和硅源有效分离。第一种方法的建立改变了目前工业上以稻壳灰为原料,单独制备活性炭和二氧化硅的现状,使得稻壳灰资源得到了充分的利用。并且制备过程没有废气废液的排放,活化剂得到了回收利用,基本实现了无污染的绿色化学工艺。第二种方法的建立使得以稻壳为原料制备高模数的水玻璃成为可能。两种方法的建立将稻壳灰变废为宝,避免了资源的浪费,减轻了环境污染,且操作简单便于工业生产。三种方法的建立也为其它生物质热解(或燃烧)产物的资源化综合利用提供了广阔的研究前景
During the last two centuries, human activities such as the production andconsumption of fossil fuels, as well as agricultural and industrial activities havecaused an increase in the atmospheric concentration of harmful greenhouse gases.Fossil fuel shortage and severe environmental problems have caused great attentionon exploitation of clean renewable energies.
     Biomass is one of the most promising energy-carrying agents and can play animportant role in environment-friendly. Rice husk as a kind of biomass occupies avery important position in China due to large production. Most of rice husk as fuel isburned to generate energy results in the waste product, rice husk ash. If these ricehusk ash are not utilized, it will result in tremendous waste,energy loss andenvironmental pollution. Therefore, it is very valuable to make the researches on howto utilize rice husk ash comprehensively.
     The purpose of this paper is to establish a pollution-free green process route, makefull use of rice husk ash, and get products to conduct applied research, in order toachieve the comprehensive utilization of rice husk ash resource.
     The first part, Rice husk ash as raw materials, solid sodium carbonate as theactivator, preparation of activated carbon and silica simultaneously. The results are asfollow.
     1. The optimum experimental conditions: Activation temperature of900oC, theactivation time of45min, the impregnation ratio of1:1.75, dissolved waterconsumption is350ml, the dissolution time of2h.
     2. The yield of silica is93.79wt%, the surface area of activated carbon as570-900m2/g, the iodine adsorption value can reach1708-2000mg/g, and the capacitorcapacity is185F/g.
     The innovation of this part lies in the fact that:
     1. Chemical activation of rice husk ash is performed using sodium carbonatepowder to obtain sodium silicate solid, then the sodium silicate solid was dissolved torealize the preparation of silica and activated carbon simultaneously. This procedurereduced the cost and the rice husk ash was fully utilized.
     2. The released CO2due to the decomposition of sodium carbonate can be used forprecipitator in activation procedure. This procedure avoids the pollution of traditionalprocess, reduced costs, and full use of recycled carbon dioxide, reducing greenhousegas emissions.
     3. In the last carbonating procedure, silica is prepared through carbon dioxideneutralization and the precipitate separation processes. Then the filtrate isconcentrated and crystallized to prepare Na2CO3powder for recycle and reused in thefirst activation procedure.
     The second part, the aim of this study is to compare adsorption capacity ofactivated carbons on phenol solution, and to find an activated carbon which is moresuitable for application in practice. The results are as follow.
     1. Through the study, the adsorption capacities of these activated carbons werecompared.
     2. The Freundlich and the Langmuir adsorption isotherm were used for describeobserved sorption phenomena, and the experimental data showed good fit withLangmuir adsorption isotherm model.
     3. By Thermodynamic calculation, it showed that the adsorption of phenol onto allactivated carbons were feasible, spontaneous, under the studied conditions.
     4. Kinetics of adsorption was found that the adsorption was very complex,itfollowed pseudo-2nd-order equations.
     5. Compared with others, they had many advantages such as low-cost, large rate,high adsorption capacity, coming from a sustainable route, prepared by waste, no secondary pollution, etc.
     The third part, Rice husk ash as raw materials, solid potassium carbonateas theactivator, preparation of activated carbon and silica simultaneously. The results are asfollow.
     1. The optimum experimental conditions: Activation temperature of1000oC, theactivation time of30min, the impregnation ratio of1:5, dissolved water consumptionis120ml.
     2. The yield of silica is96.75wt%, the surface area of activated carbon as1700m2/g, the iodine adsorption value can reach1708-2000mg/g, the methylene bluevalue can reach1708-2000mg/g, and the capacitor capacity is190F/g.
     The innovation of this part lies in the fact that:
     1. The silica and activated carbon was prepared at the same time. The process wassimplified greatly.
     2. In the whole synthetic procedure, the wastewater potassium carbonate has beencollected and reutilized. It can avoid the pollution of the waste water and reduce costs.
     3. Contrast the first part, the activator was carefully chosen, and the activatedcarbon product has better application performance.
     4. The bio-oil prepared from the rice husk pyrolysis can provide energy foractivation procedure. The combustion heat value of rice husk pyrolysis was25.67KJ/g, which was collected under laboratory conditions. This bio-oil contains a lot ofwater. But after separation, condensation, dehydration processes in the industrial, thepure bio-oil will be obtained.
     The fourth part, the aim of this study is to demonstrate the activated carbon, whichcomes from the third part, can be used as a low-cost adsorbent for environmentalprotection applications of Chromium (VI) ion. The results are as follow.
     1. The optimum experimental conditions: pH is1-2, adsorbent dose is0.02g, andtemperature is311K. The equilibrium of the absorption was achieved in a short time.
     2. The Freundlich adsorption isotherm was used to describe observed sorptionphenomena, and the experimental data showed good fit with Freundlich adsorptionisotherm models.
     3. The Kinetics of adsorption was found that the adsorption followedpseudo-2nd-order equations.
     4. By comparison with two advanced commercial activated carbons, the lower costactivated carbon showed the predominance in environment friendly and uniformityadsorption capacity.
     The fifth part, the waste rice husk was effectively used. The high module sodiumsilicate solution and activated carbon was prepared simultaneously from rice huskwith certain temperature and pressure. Comparison different modulus of sodiumsilicate solution, the microstructure of silica was compared. The results are as follow.
     1. The optimum experimental conditions: Hydrolysis temperature of150oC, theconcentration of sodium hydroxide solution of0.5mol/l, the impregnation ratio of1:9,the hydrolysis time of2h.
     2. Activated carbon is more suitable for a positive pollutants removed.
     3. Comparison different modulus of sodium silicate solution, it was showed that thehigher modulus of sodium silicate solution, the better microstructure of silica.
     4. Comparison different concentration of sulfuric acid, it was showed that thehigher modulus of concentration of sulfuric acid, the better microstructure of silica.
     The innovation of this part lies in the fact that:Using this method, the modulus ofsodium silicate solution was adjustable, and the activated carbon has a goodapplication performance. The results demonstrated that the whole procedure wasinexpensive, simple operation, experimental condition easy to implement in industryand it could resolve environmental pollution from the rice husk.
     There different routes were carried out separate the carbon and silicon from ricehusk ash. The first rout changed the status of the preparation of activated carbon andsilica alone from rice husk ash. The rice husk ash was fully utilized using the route.The route does not exhaust effluent discharge, and the activator is recycled. Thesecond route which prepared high modulus water glass becomes possible from ricehusk. The rice husk ash got effectively utilized through these routes. It avoids thewaste of resources and reduces environmental pollution, and the operation is simpleand easy to industrial production. The two routings establishment provides broad prospects for other biomass pyrolysis (or burning) product resource utilization.
引文
[1]欧阳东.超高强混凝土及其第六组分的研究[D].广州:华南理工大学,1997
    [2] MEHTA P K. Rice Husk Ash-a Unique Supplementary Cementing Material [J].Advances in Concrete Technology,1992,407-431.
    [3]欧阳东,陈楷.稻壳灰显微结构及其中纳米SiO2的电镜观察[J].电子显微报,2003,22(5):390-394.
    [4]欧阳东,陈楷.低温焚烧稻壳灰的显微结构及其化学活性[J].硅酸盐学报,2003,31(11):1121-1124.
    [5] MEHTA P K. Rice Husk Ash as Mineral Admixture in Concrete [J]. Proc. Intl.Conf. on Durability of Concrete, Chalmers University of Technology,1989.
    [6]陈玉维,孙鹏章.稻壳灰的结构和组成的扫瞄透视分析-稻壳灰研究之三[J].黑龙江粮食科技,1996,17-19.
    [7]王君,王凤旵,陈明强等.从稻壳裂解残渣中提取二氧化硅的研究[J].非金属矿,2008,31(3):37-39.
    [8] CHANDRASEKHAR S, SATYANARAYANA K G, PRAMADA P N, et al.Processing, properties and applications of reactive silica from rice husk-anoverview [J]. Journal of Materials Science,2003,38(15):3159-3168.
    [9]刘成梅,张彦军,李俶等.响应面分析法优化稻壳灰制备纳米级白炭黑工艺[J].南昌大学学报(理科版),2009,33(5):438-444.
    [10]郑典模,朱升干.稻壳制备超细二氧化硅新工艺[J].南昌大学学报,2009,31(2):117-120.
    [11]蒋晶洁,纪明艳,王玉民等.稻壳灰开发利用的研究[J].哈尔滨师范大学自然学报,1995,11(1):50-51.
    [12]刘恒权,孙时知,于欣伟.由稻壳发电剩余物—稻壳灰生产白炭黑研究[J].无机盐工业,2009,32(5):41-43.
    [13] IKRAM N, AKHTER M. X-Ray-Diffraction Analysis of Silicon Prepared fromRice Husk Ash [J]. Journal of Materials Science,1988,23(7):2379-2381.
    [14] FENG Q G, YAMAMICHI H, SHOYA M, et al. Study on the pozzolanicproperties of rice husk ash by hydrochloric acid pretreatment [J]. Cement andConcrete Research,2004,34(3):521-526.
    [15] SARASWATHY V, SONG H W. Corrosion performance of rice husk ashblended concrete [J]. Construction and Building Materials,2007,21(8):1779-1784.
    [16] GANESAN K, RAJAGOPAL K, THANGAVEL K. Rice husk ash blendedcement: Assessment of optimal level of replacement for strength andpermeability properties of concrete [J]. Construction and Building Materials,2008,22(8):1675-1683.
    [17] GIVI A N, RASHID S A, AZIZ F N A, et al. Assessment of the effects of ricehusk ash particle size on strength, water permeability and workability of binaryblended concrete [J]. Construction and Building Materials,2010,24(11):2145-2150.
    [18] CHATVEERA B, LERTWATTANARUK P. Durability of conventionalconcretes containing black rice husk ash [J]. Journal of EnvironmentalManagement,2011,92(1):59-66.
    [19] DE SENSALE G R. Strength development of concrete with rice-husk ash [J].Cement&Concrete Composites,2006,28(2):158-160.
    [20] NEHDI M, DUQUETTE J, EL DAMATTY A. Performance of rice husk ashproduced using a new technology as a mineral admixture in concrete [J]. Cementand Concrete Research,2003,33(8):1203-1210.
    [21]王昌义,赵翠华,王家顺.稻壳灰水泥和混凝土的研究[J].混凝土,1991,(2):27-34.
    [22] BUI D D, HU J, STROEVEN P. Particle size effect on the strength of rice huskash blended gap-graded Portland cement concrete [J]. Cement&ConcreteComposites,2005,27(3):357-366.
    [23]高汉忠,叶慧海,杨满宏.稻壳水泥混凝土[J].混凝土,1996,(3):41-43.
    [24] CHINDAPRASIRT P, KANCHANDA P, SATHONSAOWAPHAK A, et al.Sulfate resistance of blended cements containing fly ash and rice husk ash [J].Construction and Building Materials,2007,21(6):1356-1361.
    [25] RAHMAN M A. Properties of clay-sand-rice husk ash mixed bricks[J].International Journal of Cement Composites and Lightweight Concrete,1987,9:105-108.
    [26]蔡希高.稻壳稻壳灰在建筑上的应用[J].广西科学院学报,1999,15(4):190-195.
    [27] ISMAIL H, NIZAM J M, KHALIL H P S A. The effect of a compatibilizer onthe mechanical properties and mass swell of white rice husk ash filled naturalrubber/linear low density polyethylene blends [J]. Polymer Testing,2001,20(2):125-133.
    [28]张燕坤,宋玉普,衣伟.掺硅灰的陶粒混凝土强度和抗冻性试验[J].混凝土与水泥制品,1998,(5):23-25.
    [29]杨先和.稻壳内高纯度SiO2的提取及其应用前景[J],无机材料学报,1992,7(3):379-383.
    [30] CHAUDHARY D S, JOLLANDS M C, CSER F. Recycling rice hull ash: Afiller material for polymeric composites?[J]. Advances in Polymer Technology,2004,23(2):147-155.
    [31]范春辉,张颖,张颖超等.红外光谱法研究低温焚烧稻壳灰对Cr()的吸附机理[J].光谱学与光谱分析,2010,30(9):2345-2349.
    [32] Haxo H E, Mehta P K. Ground rice hull ash as a filler for rubber[J]. RubberChemistry and Technology,1975,48(4):271-288.
    [33]李玥,陈正行,董梅.稻壳灰制取大豆油精炼中脱色剂的研究[J].中国油脂,2004,29(3):30-32.
    [34] ISHAK Z A M, BAKAR A A. An Investigation on the Potential of Rice HuskAsh as Fillers for Epoxidized Natural-Rubber (Enr)[J]. European PolymerJournal,1995,31(3):259-269.
    [35] LAKSHMI U R, SRIVASTAVA V C, MALL I D, et al. Rice husk ash as aneffective adsorbent: Evaluation of adsorptive characteristics for Indigo Carminedye [J]. Journal of Environmental Management,2009,90(2):710-720.
    [36]张松梅,李立清.谷壳灰吸附水中汞的实验探讨[J].江苏环境科技,1999,12(4):4-5.
    [37] SIRIWARDENA S, ISMAIL H, ISHIAKU U S. A comparison of white ricehusk ash and silica as fillers in ethylene-propylene-diene terpolymer vulcanizates[J]. Polymer International,2001,50(6):707-713.
    [38]杜连起.稻壳灰在油脂精炼中的应用[J].粮食与油脂,1995,2:47-48.
    [39]欧阳东,陈楷.稻壳灰显微结构及其中纳米SiO2的电镜观察[J].电子显微镜学报,2003,22(5):390-394.
    [40]李立清.利用谷壳灰吸附水中Hg(П)[J].污染防治技术,1998,11(2):97-99.
    [41] ISMAIL H, MEGA L, KHALIL H P S A. Effect of a silane coupling agent onthe properties of white rice husk ash-polypropylene/natural rubber composites [J].Polymer International,2001,50(5):606-611.
    [42] CHANG Y Y, LIN C I, CHEN H K. Rice hull ash structure and bleachingperformance produced by ashing at various times and temperatures [J]. Journalof the American Oil Chemists Society,2001,78(6):657-660.
    [43] OMAR S, GIRGIS B, TAHA F. Carbonaceous materials from seed hulls forbleaching of vegetable oils [J]. Food Research International,2003,36(1):11-17.
    [44] CHRISTIDIS G E, SCOTT P W, DUNHAM A C. Acid activation and bleachingcapacity of bentonites from the islands of Milos and Chios, Aegean, Greece [J].Applied Clay Science,1997,12(4):329-347.
    [45] CHAUDHARY D S, JOLLANDS M C. Characterization of rice hull ash [J].Journal of Applied Polymer Science,2004,93(1):1-8.
    [46]纪俊敏.酸化稻壳灰吸附剂制备及脱色性能的研究[J].中国油脂,2007,32(8):70-72.
    [47] ADAM F, CHUA J H. The adsorption of palmytic acid on rice husk ashchemically modified with Al(III) ion using the sol-gel technique [J]. Journal ofColloid and Interface Science,2004,280(1):55-61.
    [48]汪德进.稻壳灰/TiO2复合吸附剂的制备与性能表征[J].中国卫生检验报告,2008,18(4):639-640.
    [49] ZHAO P F, GUO X, ZHENG C G. Removal of elemental mercury byiodine-modified rice husk ash sorbents [J]. Journal of EnvironmentalSciences-China,2010,22(10):1629-1636.
    [50] FOO K Y, HAMEED B H. Utilization of rice husk ash as novel adsorbent: Ajudicious recycling of the colloidal agricultural waste [J]. Advances in Colloidand Interface Science,2009,152(1-2):39-47.
    [51]林宝玉.高性能混凝土的研究和应用.全国混凝土行业科技论文集(1987~1997),中国建筑业协会混凝土分会,1997,10:66-71.
    [52] NAKBANPOTE W, THIRAVETYAN P, KALAMBAHETI C. Preconcentrationof gold by rice husk ash [J]. Minerals Engineering,2000,13(4):391-400.
    [53] LAU L C, LEE K T, MOHAMED A R. Rice husk ash sorbent doped with copperfor simultaneous removal of SO2and NO: Optimization study [J]. Journal ofHazardous Materials,2010,183(1-3):738-745.
    [54]黄显慈.国外食用油脂脱色的新概念和新方法[J].中国油脂,2003,28(9):64.
    [55] LATAYE D H, MISHRA I M, MALL I D. Pyridine sorption from aqueoussolution by rice husk ash (RHA) and granular activated carbon (GAC):Parametric, kinetic, equilibrium and thermodynamic aspects [J]. Journal ofHazardous Materials,2008,154(1-3):858-870.
    [56]山下义裕,川端季雄,长冈宣雄.关于稻壳炭用作橡胶补强材料的研究[J].那洪东译,世界橡胶工业,2002,29(1):41,43-46.
    [57] NAIYA T K, BHATTACHARYA A K, MANDAL S, et al. The sorption oflead(II) ions on rice husk ash [J]. Journal of Hazardous Materials,2009,163(2-3):1254-1264.
    [58] SRIVASTAVA V C, MALL I D, MISHRA I M. Competitive adsorption ofcadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash[J]. Chemical Engineering and Processing,2009,48(1):370-379.
    [59] DAHLAN I, LEE K T, KAMARUDDIN A H, et al. Sorption of SO2and NOfrom simulated flue gas over rice husk ash (RHA)/CaO/CeO2sorbent:Evaluation of deactivation kinetic parameters [J]. Journal of Hazardous Materials,2011,185(2-3):1609-1613.
    [60] SRIVASTAVA V C, MALL I D, MISHRA I M. Removal of cadmium(II) andzinc(II) metal ions from binary aqueous solution by rice husk ash [J]. Colloidsand Surfaces a-Physicochemical and Engineering Aspects,2008,312(2-3):172-184.
    [61] IMYIM A, PRAPALIMRUNGSI E. Humic acids removal from water byaminopropyl functionalized rice husk ash [J]. Journal of Hazardous Materials,2010,184(1-3):775-781.
    [62] SHARMA P, KAUR R, BASKAR C, et al. Removal of methylene blue fromaqueous waste using rice husk and rice husk ash [J]. Desalination,2010,259(1-3):249-257.
    [63]张锦铎.用炭化法制活性炭[J].化学世界,1989,(7):326-327.
    [64]甘露,刘厚凡,高长华等.稻壳联产纳米白炭黑与活性炭的研究[J].粮食与饲料工业,2007,11:7-9.
    [65]谢杰,陈天虎,庆承松等.稻壳发电残余物稻壳灰对有机物的吸附作用[J].农业工程学报,2010,26(5):283-287.
    [66] FENG Q G, LIN Q Y, GONG F Z, et al. Adsorption of lead and mercury by ricehusk ash [J]. Journal of Colloid and Interface Science,2004,278(1):1-8.
    [67]徐星汉.利用稻壳灰联产水玻璃白炭黑和活性炭[J].粮食与饲料工业,1988,3:52-53.
    [68]耿敏.利用低碳稻壳灰生产活性炭的工艺与应用研究[D].江南大学粮食油脂及植物蛋白工程,2009.
    [69]耿敏,丁开宇,陈正行.低碳稻壳灰碱法活化制备活性炭的研究[J].中国粮油学报,2009,24(2):139-144.
    [70] DIAS J M, ALVIM-FERRAZ M C M, ALMEIDA M F, et al. Waste materialsfor activated carbon preparation and its use in aqueous-phase treatment: Areview [J]. Journal of Environmental Management,2007,85(4):833-846.
    [71] IOANNIDOU O, ZABANIOTOU A. Agricultural residues as precursors foractivated carbon production-A review [J]. Renewable&Sustainable EnergyReviews,2007,11(9):1966-2005.
    [72]卫延安,朱永义.由稻壳灰制备活性炭的研究[J].粮食与食品工业,2000,3:34-36.
    [73]徐星汉,邹宗柏.利用稻壳灰联产水玻璃和活性炭[J].化工时刊,1988,3:32-33.
    [74]卫延安,朱春山,蔡春等.由稻壳灰制备活性炭的工艺及应用研究[J].中国粮油学报,2003,18(6):29-33.
    [75]王梅,李辽沙,金霞.有盐体系中硅酸的聚合与纳米白炭黑的制备[J].有色冶金设计与研究,2007,28(23):255-258.
    [76] CHATTOPADHYAY P, GUPTA R B. Supercritical CO2-based formation ofsilica nanoparticles using water-in-oil microemulsions [J]. Industrial&Engineering Chemistry Research,2003,42(3):465-472.
    [77] ZHANG J L, LIU Z M, HAN B X, et al. A simple and inexpensive route tosynthesize porous silica microflowers by supercritical CO2[J]. Microporous andMesoporous Materials,2005,87(1):10-14.
    [78]许莹,沈毅.盐酸沉淀法制备纳米白炭黑[J].应用化工,2004,33(4):30-32.
    [79] CAI X, HONG R Y, WANG L S, et al. Synthesis of silica powders by pressuredcarbonation [J]. Chemical Engineering Journal,2009,151(1-3):380-386.
    [80] SCHMIDT H K. Synthesis and processing of nano-scale materials throughchemistry [J]. Science and Technology of Polymers and Advanced Materials,1998,663-674.
    [81]胡庆福,李国庭,王金阁等. CO2沉淀法制取高补强白炭黑[J].非金属矿,2000,23(6):23-26.
    [82]赵丽,余家国,程蓓等.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61(4):562-566.
    [83]王慧,舒琼,龙文露等.白炭黑制备新工艺研究[J].武汉工程大学学报,2009,31(1):29-31.
    [84]姚渊,李冬梅,桑文斌等.微乳液法制备二氧化硅包覆ZnS:Mn/CdS纳米晶[J].人工晶体学报,2006,35(2):400-403.
    [85]徐旺生,徐莹,彭迎慧等.均相沉淀法制备白炭黑[J].无机硅化合物,2008,(2):20-22.
    [86]宋秀芹,马建峰.无机非金属材料的软化学合成[J].硅酸盐通报,1996,6:57-60.
    [87] ESPARZA J M, OJEDA M L, CAMPERO A, et al. Development and sorptioncharacterization of some model mesoporous and microporous silica adsorbents[J]. Journal of Molecular Catalysis a-Chemical,2005,228(1-2):97-110.
    [88]申晓毅,翟玉春.超微二氧化硅粉体的制备及脱除羟基[J].硅酸盐通报,2006,26(3):542-546.
    [89] ZHU J J, XIE J M, LU X M, et al. Synthesis and characterization ofsuperhydrophobic silica and silica/titania aerogels by sol-gel method at ambientpressure [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2009,342(1-3):97-101.
    [90] HENCH L L, WEST J K. Gel-silica hybrid optics[J]. Chemical Review,1990,90:33-72.
    [91] GURAV J L, RAO A V, RAO A P, et al. Physical properties of sodium silicatebased silica aerogels prepared by single step sol-gel process dried at ambientpressure [J]. Journal of Alloys and Compounds,2009,476(1-2):397-402.
    [92] CHU X, CHUNG W I, SCHMIDT L D. Sintering of Sol-Gel-PreparedSubmicrometer Particles Studied by Transmission Electron-Microscopy [J].Journal of the American Ceramic Society,1993,76(8):2115-2118.
    [93] LUCA V, DJAJANTI S, HOWE R F. Structural and electronic properties ofsol-gel titanium oxides studied by X-ray absorption spectroscopy [J]. Journal ofPhysical Chemistry B,1998,102(52):10650-10657.
    [94] TANG Q, WANG T. Preparation of silica aerogel from rice hull ash bysupercritical carbon dioxide drying [J]. Journal of Supercritical Fluids,2005,35(1):91-94.
    [95] STOBER W, FINK A, BOHN E. Controlled Growth of Monodisperse SilicaSpheres in Micron Size Range [J]. Journal of Colloid and Interface Science,1968,26(1):62-&.
    [96] WANG H C, WU C Y, CHUNG C C, et al. Analysis of parameters andinteraction between parameters in preparation of uniform silicon dioxidenanoparticles using response surface methodology [J]. Industrial&EngineeringChemistry Research,2006,45(24):8043-8048.
    [97]董丽新.纳米二氧化硅的制备与表征[D],保定:河北大学,2005.
    [98] FERRONI L P, PEZZOTTI G, ISSHIKI T, et al. Determination of amorphousinterfacial phases in Al2O3/SiC nanocomposites by computer-aided highresolution electron microscopy [J]. Acta Materialia,2001,49(11):2109-2113.
    [99]朱赛芬,吴周安.纳米材料的制备及在化工中的应用[J].上海化工,2001,8:22-25.
    [100] ZHANG G, LIU M. Preparation of nanostructured tin oxide using a sol-gelprocess based on tin tetrachloride and ethylene glycol [J]. Journal of MaterialsScience,1999,34(13):3213-3219.
    [101]气相法白炭黑的生产与应用,科技成果纵横,2003,4:48.
    [102]杨本意,段先健,李仕华等.气相法白炭黑的应用技术[J].有机硅材料,2003,17(4):28-32.
    [103] WALTER H WADDEL.著,薛广智译.高性能白炭黑炭黑胶料中的应用,轮胎工业,1995,15:534-541.
    [104]宁凯军,王小萍,贾德民.白炭黑的特性及其在胎面胶中的应用[J].合成橡胶工业,2001,24(3):182-184.
    [105]徐峰,吴金荣.白炭黑生产技术及应用技术[J].化学建材,1997,1:34-35.
    [106] XU B S, TANAKA S I. Formation and bonding of platinum nanoparticlescontrolled by high energy beam irradiation [J]. Scripta Materialia,2001,44(8-9):2051-2054.
    [107] AIROLDI C, GUSHIKEM Y, ESPINOLA J G P. Adsorption ofDivalent-Cations on the Silica-Gel Surface Modified withN-(2-Aminoethyl-3-Aminopropyl) Groups [J]. Colloids and Surfaces,1986,17(4):317-323.
    [108] TSUBOKAWA N, ISHIDA H, HASHIMOTO K. Effect of Initiating GroupsIntroduced onto Ultrafine Silica on the Molecular-Weight Polystyrene Graftedonto the Surface [J]. Polymer Bulletin,1993,31(4):457-464.
    [109] JOVANOVIC A V, FLINT J A, VARSHNEY M, et al. Surface modification ofsilica core-shell nanocapsules: Biomedical implications [J]. Biomacromolecules,2006,7(3):945-949.
    [110] TSUBOKAWA N, ISHIDA H. Graft-Polymerization of Methyl-Methacrylatefrom Silica Initiated by Peroxide Groups Introduced onto the Surface [J].Journal of Polymer Science Part a-Polymer Chemistry,1992,30(10):2241-2246.
    [111] RONG M Z, ZHANG M Q, PAN S L, et al. Interfacial effects inpolypropylene-silica nanocomposites [J]. Journal of Applied Polymer Science,2004,92(3):1771-1781.
    [112] TSUBOKAWA N, YOSHIHARA T. Grafting of Polyesters from CarbonWhisker Surface-Copolymerization of Epoxides with Cyclic AcidAnhydrides Initiated by Cook Groups Introduced onto the Surface [J]. Journalof Polymer Science Part a-Polymer Chemistry,1993,31(10):2459-2464.
    [113] EKINCI C, KOKLU U. Determination of vanadium, manganese, silver and leadby graphite furnace atomic absorption spectrometry after preconcentration onsilica-gel modified with3-aminopropyltriethoxysilane [J]. Spectrochimica ActaPart B-Atomic Spectroscopy,2000,55(9):1491-1495.
    [114] CHE J F, LUAN B Y, YANG X J, et al. Graft polymerization onto nano-sizedSiO2surface and its application to the modification of PBT [J]. MaterialsLetters,2005,59(13):1603-1609.
    [115] GOSWAMI A, SINGH A K, VENKATARAMANI B.8-Hydroxyquinolineanchored to silica gel via new moderate size linker: synthesis and applicationsas a metal ion collector for their flame atomic absorption spectrometricdetermination [J]. Talanta,2003,60(6):1141-1154.
    [116] JESIONOWSKI T, BULA K, JANISZEWSKI J, et al. The influence of fillermodification on its aggregation and dispersion behaviour in silica/PBTcomposite [J]. Composite Interfaces,2003,10(2-3):225-242.
    [117] ESPINOLA J G P, OLIVEIRA S F, LEMUS W E S, et al. Chemisorption ofCu-II and Co-II chlorides and beta-diketonates on silica gel functionalized with3-aminopropyltrimethoxysilane [J]. Colloids and Surfaces a-Physicochemicaland Engineering Aspects,2000,166(1-3):45-50.
    [118] SAHIN F, VOLKAN M, HOWARD A G, et al. Selective pre-concentration ofselenite from aqueous samples using mercapto-silica [J]. Talanta,2003,60(5):1003-1009.
    [119] MA W X, LIU F, LI K A, et al. Preconcentration, separation and determinationof trace Hg(II) in environmental samples withaminopropylbenzoylazo-2-mercaptobenzothiazole bonded to silica gel [J].Analytica Chimica Acta,2000,416(2):191-196.
    [120] TSENG H H, WEY M Y. Study of SO2adsorption and thermal regenerationover activated carbon-supported copper oxide catalysts [J]. Carbon,2004,42(11):2269-2278.
    [121] LOPEZ F, MEDINA F, PRODANOV M, et al. Oxidation of activated carbon:application to vinegar decolorization [J]. Journal of Colloid and InterfaceScience,2003,257(2):173-178.
    [122] WANG A M, QU J H, RU J, et al. Mineralization of an azo dye Acid Red14byelectro-Fenton's reagent using an activated carbon fiber cathode [J]. Dyes andPigments,2005,65(3):227-233.
    [123] SWIATKOWSKI A, DERYLO-MARCZEWSKA A, GOWOREK J, et al.Study of adsorption from binary liquid mixtures on thermally treated activatedcarbon [J]. Applied Surface Science,2004,236(1-4):313-320.
    [124] USTINOV E A, DO D D, HERBST A, et al. Modeling of gas adsorptionequilibrium over a wide range of pressure: A thermodynamic approach basedon equation of state [J]. Journal of Colloid and Interface Science,2002,250(1):49-62.
    [125] ISMADJI S, BHATIA S K. The use of liquid phase adsorption isotherms forcharacterization of activated carbons [J]. Journal of Colloid and InterfaceScience,2001,244(2):319-335.
    [126] LI Y H, LEE C W, GULLETT B K. Importance of activated carbon's oxygensurface functional groups on elemental mercury adsorption [J]. Fuel,2003,82(4):451-457.
    [127] QUINTANILLA A, CASAS J A, ZAZO J A, et al. Wet air oxidation of phenolat mild conditions with a Fe/activated carbon catalyst [J]. Applied CatalysisB-Environmental,2006,62(1-2):115-120.
    [128] KORAN K M, SUIDAN M T, KHODADOUST A P, et al. Effectiveness of ananaerobic granular activated carbon fluidized-bed bioreactor to treat soil washfluids: A proposed strategy for remediating PCP/PAH contaminated soils [J].Water Research,2001,35(10):2363-2370.
    [129] MARTIN C, PERRARD A, JOLY J P, et al. Dynamic adsorption on activatedcarbons of SO2traces in air I. Adsorption capacities [J]. Carbon,2002,40(12):2235-2246.
    [130] DUBRAY A, VANDERSCHUREN J. Mass transfer phenomena duringsorption of hydrophilic volatile organic compounds into aqueous suspensions ofactivated carbon [J]. Separation and Purification Technology,2004,38(3):215-223.
    [131] QIAO S Z, HU X J. Using local IAST with micropore size distribution topredict desorption and displacement kinetics of mixed gases in activated carbon[J]. Separation and Purification Technology,2003,31(1):19-30.
    [132] GUO J, LUA A C. Adsorption of sulphur dioxide onto activated carbonprepared from oil-palm shells with and without pre-impregnation [J].Separation and Purification Technology,2003,30(3):265-273.
    [133] HOU Z H, LI X H, LIU E H, et al. New mesoporous carbons prepared by asimultaneous synthetic template carbonization method for electric double layercapacitors [J]. New Carbon Materials,2004,19(1):11-15.
    [134] NISHIMURA F, SOMIYA I, TSUNO H, et al. Development of a combinedBAC and BZ reactor for removal of nitrogen in wastewater from sludge dryingprocess [J]. Water Science and Technology,1996,34(1-2):145-151.
    [135] SUBRAHMANYAM C, BULUSHEV D A, KIWI-MINSKER L. Dynamicbehaviour of activated carbon catalysts during ozone decomposition at roomtemperature [J]. Applied Catalysis B-Environmental,2005,61(1-2):98-106.
    [136] SATO T, MASUDA G, TAKAGI K. Electrochemical properties of novel ionicliquids for electric double layer capacitor applications [J]. Electrochimica Acta,2004,49(21):3603-3611.
    [137] KANG M, BAE Y S, LEE C H. Effect of heat treatment of activated carbonsupports on the loading and activity of Pt catalyst [J]. Carbon,2005,43(7):1512-1516.
    [138] LIU Z Q, ANDERSON J A. Influence of reductant on the thermal stability ofstored NOx in Pt/Ba/Al2O3NOx storage and reduction traps [J]. Journal ofCatalysis,2004,224(1):18-27.
    [139] LI C S, WANG D Z, LIANG T X, et al. A study of activated carbon nanotubesas double-layer capacitors electrode materials [J]. Materials Letters,2004,58(29):3774-3777.
    [140] LEWANDOWSKI A, SWIDERSKA A. Electrochemical capacitors withpolymer electrolytes based on ionic liquids [J]. Solid State Ionics,2003,161(3-4):243-249.
    [141] ISMADJI S, BHATIA S K. Characterization of activated carbons using liquidphase adsorption [J]. Carbon,2001,39(8):1237-1250.
    [1] EL-FADEL M, MASSOUD M. Methane emissions from wastewatermanagement [J]. Environmental Pollution,2001,114(2):177-185.
    [2] QIANG L, XU-LAI Y, XI-FENG Z. Analysis on chemical and physicalproperties of bio-oil pyrolyzed from rice husk [J]. Journal of Analytical andApplied Pyrolysis,2008,82(2):191-198.
    [3] LI T, WANG T. Preparation of silica aerogel from rice hull ash by drying atatmospheric pressure [J]. Materials Chemistry and Physics,2008,112(2):398-401.
    [4] ZHANG H X, ZHAO X, DING X F, et al. A study on the consecutivepreparation of D-xylose and pure superfine silica from rice husk [J]. BioresourceTechnology,2010,101(4):1263-1267.
    [5] JULLAPHAN O, WITOON T, CHAREONPANICH M. Synthesis ofmixed-phase uniformly infiltrated SBA-3-like in SBA-15bimodal mesoporoussilica from rice husk ash [J]. Materials Letters,2009,63(15):1303-1306.
    [6] DELLA V P, KUHN I, HOTZA D. Rice husk ash as an alternate source for activesilica production [J]. Materials Letters,2002,57(4):818-821.
    [7] WITOON T, CHAREONPANICH M, LIMTRAKUL J. Synthesis of bimodalporous silica from rice husk ash via sol-gel process using chitosan as template [J].Materials Letters,2008,62(10-11):1476-1479.
    [8] AHMED A E, ADAM F. The benzylation of benzene using aluminium, galliumand iron incorporated silica from rice husk ash [J]. Microporous and MesoporousMaterials,2009,118(1-3):35-43.
    [9] HUANG S, JING S, WANG J F, et al. Silica white obtained from rice husk in afluidized bed [J]. Powder Technology,2001,117(3):232-238.
    [10] SUN L Y, GONG K C. Silicon-based materials from rice husks and theirapplications [J]. Industrial&Engineering Chemistry Research,2001,40(25):5861-5877.
    [11] KALDERIS D, BETHANIS S, PARASKEVA P, et al. Production of activatedcarbon from bagasse and rice husk by a single-stage chemical activation methodat low retention times [J]. Bioresource Technology,2008,99(15):6809-6816.
    [12] FRACKOWIAK E, BEGUIN F. Carbon materials for the electrochemical storageof energy in capacitors [J]. Carbon,2001,39(6):937-950.
    [13] KARAGOZ S, TAY T, UCAR S, et al. Activated carbons from waste biomass bysulfuric acid activation and their use on methylene blue adsorption [J].Bioresource Technology,2008,99(14):6214-6222.
    [14] HAYASHI J, HORIKAWA T, TAKEDA I, et al. Preparing activated carbon fromvarious nutshells by chemical activation with K2CO3[J]. Carbon,2002,40(13):2381-2386.
    [15] ADINATA D, DAUD W M A W, AROUA M K. Preparation and characterizationof activated carbon from palm shell by chemical activation with K2CO3[J].Bioresource Technology,2007,98(1):145-149.
    [16] SUDARYANTO Y, HARTONO S B, IRAWATY W, et al. High surface areaactivated carbon prepared from cassava peel by chemical activation [J].Bioresource Technology,2006,97(5):734-739.
    [17] AN D M, GUO Y P, ZHU Y C, et al. A green route to preparation of silicapowders with rice husk ash and waste gas [J]. Chemical Engineering Journal,2010,162(2):509-514.
    [18] EL-HENDAWY A N A. Influence of HNO3oxidation on the structure andadsorptive properties of corncob-based activated carbon [J]. Carbon,2003,41(4):713-722.
    [19] GUO Y P, YU K F, WANG Z C, et al. Effects of activation conditions onpreparation of porous carbon from rice husk [J]. Carbon,2003,41(8):1645-1648.
    [20] HAYASHI J, KAZEHAYA A, MUROYAMA K, et al. Preparation of activatedcarbon from lignin by chemical activation [J]. Carbon,2000,38(13):1873-1878.
    [1] EL-NAAS M H, AL-ZUHAIR S, ABU ALHAIJA M. Removal of phenol frompetroleum refinery wastewater through adsorption on date-pit activated carbon[J]. Chemical Engineering Journal,2010,162(3):997-1005.
    [2] PAN G F, KURUMADA K I. Hybrid gel reinforced with coating layer forremoval of phenol from aqueous solution [J]. Chemical Engineering Journal,2008,138(1-3):194-199.
    [3] MAKOWSKI P, RIVES S R. Diffuser Design for Water Quality-Based ToxicsControl [J]. Hydraulic Engineering,1991,996-1001.
    [4] BUSCA G, BERARDINELLI S, RESINI C, et al. Technologies for the removalof phenol from fluid streams: A short review of recent developments [J]. Journalof Hazardous Materials,2008,160(2-3):265-288.
    [5] HAMEED B H, RAHMAN A A. Removal of phenol from aqueous solutions byadsorption onto activated carbon prepared from biomass material [J]. Journal ofHazardous Materials,2008,160(2-3):576-581.
    [6] MACDONALD J A F, EVANS M J B. Adsorption and enthalpy of phenol onBPL carbon [J]. Carbon,2002,40(5):703-707.
    [7] TRYBA B, TSUMURA T, JANUS M, et al. Carbon-coated anatase: adsorptionand decomposition of phenol in water [J]. Applied Catalysis B-Environmental,2004,50(3):177-183.
    [8] PAZARLIOGLU N K, TELEFONCU A. Biodegradation of phenol byPseudomonas putida immobilized on activated pumice particles [J]. ProcessBiochemistry,2005,40(5):1807-1814.
    [9] DOBRE T, GUZUN-STOICA A, FLOAREA O. Reactive extraction of phenolsusing sulfuric acid salts of trioctylamine [J]. Chemical Engineering Science,1999,54(10):1559-1563.
    [10] RENGARAJ S, MOON S H, SIVABALAN R, et al. Agricultural solid waste forthe removal of organics: adsorption of phenol from water and wastewater bypalm seed coat activated carbon [J]. Waste Management,2002,22(5):543-548.
    [11] EFREMENKO I, SHEINTUCH M. Predicting solute adsorption on activatedcarbon: Phenol [J]. Langmuir,2006,22(8):3614-3621.
    [12] LIU Q S, ZHENG T, WANG P, et al. Adsorption isotherm, kinetic andmechanism studies of some substituted phenols on activated carbon fibers [J].Chemical Engineering Journal,2010,157(2-3):348-356.
    [13] KHLEIFAT K A. Biodegradation of phenol by Ewingella americana: Effect ofcarbon starvation and some growth conditions [J]. Process Biochemistry,2006,41(9):2010-2016.
    [14] RENGARAJ S, MOON S H, SIVABALAN R, et al. Removal of phenol fromaqueous solution and resin manufacturing industry wastewater using anagricultural waste: rubber seed coat [J]. Journal of Hazardous Materials,2002,89(2-3):185-196.
    [15] VIRARAGHAVAN T, ALFARO F D. Adsorption of phenol from wastewater bypeat, fly ash and bentonite [J]. Journal of Hazardous Materials,1998,57(1-3):59-70.
    [16] BHATNAGAR A. Removal of bromophenols from water using industrial wastesas low cost adsorbents [J]. Journal of Hazardous Materials,2007,139(1):93-102.
    [17] GUO Y P, QI J R, YANG S F, et al. Adsorption of Cr(VI) on micro-andmesoporous rice husk-based active carbon [J]. Materials Chemistry and Physics,2003,78(1):132-137.
    [18] WANG L L, GUO Y P, ZOU B, et al. High surface area porous carbons preparedfrom hydrochars by phosphoric acid activation [J]. Bioresource Technology,2011,102(2):1947-1950.
    [19] LIU Y, GUO Y P, ZHU Y C, et al. A sustainable route for the preparation ofactivated carbon and silica from rice husk ash [J]. Journal of HazardousMaterials,2011,186(2-3):1314-1319.
    [20] AN D M, GUO Y P, ZHU Y C, et al. A green route to preparation of silicapowders with rice husk ash and waste gas [J]. Chemical Engineering Journal,2010,162(2):509-514.
    [21] GUPTA V K, RASTOGI A, NAYAK A. Adsorption studies on the removal ofhexavalent chromium from aqueous solution using a low cost fertilizer industrywaste material [J]. Journal of Colloid and Interface Science,2010,342(1):135-141.
    [22] CHEN Y, ZHU Y C, WANG Z C, et al. Application studies of activated carbonderived from rice husks produced by chemical-thermal process-A review [J].Advances in Colloid and Interface Science,2011,163(1):39-52.
    [23] AKHTAR M, BHANGER M I, IQBAL S, et al. Sorption potential of rice huskfor the removal of2,4-dichlorophenol from aqueous solutions: Kinetic andthermodynamic investigations [J]. Journal of Hazardous Materials,2006,128(1):44-52.
    [24] GUPTA V K, RASTOGI A. Sorption and desorption studies of chromium(VI)from nonviable cyanobacterium Nostoc muscorum biomass [J]. Journal ofHazardous Materials,2008,154(1-3):347-354.
    [25] FREUNDLICH H. Capillary chemistry and colloid chemistry.[J].Kolloid-Zeitschrift,1922,31(5):243-246.
    [26] GUPTA V K, RASTOGI A. Biosorption of lead(II) from aqueous solutions bynon-living algal biomass Oedogonium sp and Nostoc sp-A comparative study[J]. Colloids and Surfaces B-Biointerfaces,2008,64(2):170-178.
    [27] ZHAO G X, LI J X, WANG X K. Kinetic and thermodynamic study of1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets[J]. Chemical Engineering Journal,2011,173(1):185-190.
    [28] LAGERGREN, S. Zur theorie der sogenannten adsorption gel ster stoffe.Kungliga Svenska Vetenskapsakademiens. Handlingar,1898,24,(4):1-39
    [29] BHATTACHARYA A K, NAIYA T K, MANDAL S N, et al. Adsorption, kineticsand equilibrium studies on removal of Cr(VI) from aqueous solutions usingdifferent low-cost adsorbents [J]. Chemical Engineering Journal,2008,137(3):529-541.
    [30] Weber WJ, Morris JC. Kinetics of adsorption on carbon solution[J]. Journal ofthe Sanitary Engineering Division. ASCE,1963,89:31-59.
    [31] KHEZAMI L, CAPART R. Removal of chromium(VI) from aqueous solution byactivated carbons: Kinetic and equilibrium studies [J]. Journal of HazardousMaterials,2005,123(1-3):223-231.
    [1] QIANG L, XU-LAI Y, XI-FENG Z. Analysis on chemical and physicalproperties of bio-oil pyrolyzed from rice husk [J]. Journal of Analytical andApplied Pyrolysis,2008,82(2):191-198.
    [2] ZHENG J L. Bio-oil from fast pyrolysis of rice husk: Yields and relatedproperties and improvement of the pyrolysis system [J]. Journal of Analyticaland Applied Pyrolysis,2007,80(1):30-35.
    [3] ZHENG J L, YI W M, WANG N N. Bio-oil production from cotton stalk [J].Energy Conversion and Management,2008,49(6):1724-1730.
    [4] WANG S R, GO Y L, LIU Q, et al. Separation of bio-oil by molecular distillation[J]. Fuel Processing Technology,2009,90(5):738-745.
    [5] IKURA M, STANCIULESCU M, HOGAN E. Emulsification of pyrolysisderived bio-oil in diesel fuel [J]. Biomass&Bioenergy,2003,24(3):221-232.
    [6] SHARMA A, RAO T R. Kinetics of pyrolysis of rice husk [J]. BioresourceTechnology,1999,67(1):53-59.
    [7] LI T, WANG T. Preparation of silica aerogel from rice hull ash by drying atatmospheric pressure [J]. Materials Chemistry and Physics,2008,112(2):398-401.
    [8] ZHANG H X, ZHAO X, DING X F, et al. A study on the consecutivepreparation of D-xylose and pure superfine silica from rice husk [J]. BioresourceTechnology,2010,101(4):1263-1267.
    [9] AN D M, GUO Y P, ZHU Y C, et al. A green route to preparation of silicapowders with rice husk ash and waste gas [J]. Chemical Engineering Journal,2010,162(2):509-514.
    [10] NABAIS J V, CARROTT P, CARROTT M M L R, et al. Influence of preparationconditions in the textural and chemical properties of activated carbons from anovel biomass precursor: The coffee endocarp [J]. Bioresource Technology,2008,99(15):7224-7231.
    [11] LILLO-RODENAS M A, FLETCHER A J, THOMAS K M, et al. Competitiveadsorption of a benzene-toluene mixture on activated carbons at lowconcentration [J]. Carbon,2006,44(8):1455-1463.
    [12] TONGPOOTHORN W, SRIUTTHA M, HOMCHAN P, et al. Preparation ofactivated carbon derived from Jatropha curcas fruit shell by simplethermo-chemical activation and characterization of their physico-chemicalproperties [J]. Chemical Engineering Research&Design,2011,89(3A):335-340.
    [13] YANG K B, PENG J H, SRINIVASAKANNAN C, et al. Preparation of highsurface area activated carbon from coconut shells using microwave heating [J].Bioresource Technology,2010,101(15):6163-6169.
    [14] BAGHERI N, ABEDI J. Preparation of high surface area activated carbon fromcorn by chemical activation using potassium hydroxide [J]. ChemicalEngineering Research&Design,2009,87(8A):1059-1064.
    [15] SUMATHI S, BHATIA S, LEE K T, et al. Optimization of microporous palmshell activated carbon production for flue gas desulphurization: Experimentaland statistical studies [J]. Bioresource Technology,2009,100(4):1614-1621.
    [16] ARAMI-NIYA A, DAUD W M A W, MJALLI F S. Using granular activatedcarbon prepared from oil palm shell by ZnCl2and physical activation formethane adsorption [J]. Journal of Analytical and Applied Pyrolysis,2010,89(2):197-203.
    [17] KALDERIS D, BETHANIS S, PARASKEVA P, et al. Production of activatedcarbon from bagasse and rice husk by a single-stage chemical activation methodat low retention times [J]. Bioresource Technology,2008,99(15):6809-6816.
    [18] SOLHY A, ELMAKSSOUDI A, TAHIR R, et al. Clean chemical synthesis of2-amino-chromenes in water catalyzed by nanostructured diphosphateNa2CaP2O7[J]. Green Chemistry,2010,12(12):2261-2267.
    [19] SHI Q Q, ZHANG J, ZHANG C L, et al. Preparation of activated carbon fromcattail and its application for dyes removal [J]. Journal of EnvironmentalSciences-China,2010,22(1):91-97.
    [20] UCAR S, ERDEM M, TAY T, et al. Preparation and characterization of activatedcarbon produced from pomegranate seeds by ZnCl2activation [J]. AppliedSurface Science,2009,255(21):8890-8896.
    [21] GIRGIS B S, SMITH E, LOUIS M M, et al. Pilot production of activated carbonfrom cotton stalks using H3PO4[J]. Journal of Analytical and Applied Pyrolysis,2009,86(1):180-184.
    [22] GERCEL O, OZCAN A, OZCAN A S, et al. Preparation of activated carbonfrom a renewable bio-plant of Euphorbia rigida by H2SO4activation and itsadsorption behavior in aqueous solutions [J]. Applied Surface Science,2007,253(11):4843-4852.
    [23] BASTA A H, FIERRO V, EI-SAIED H, et al.2-Steps KOH activation of ricestraw: An efficient method for preparing high-performance activated carbons [J].Bioresource Technology,2009,100(17):3941-3947.
    [24] DENG H, LI G X, YANG H B, et al. Preparation of activated carbons fromcotton stalk by microwave assisted KOH and K2CO3activation [J]. ChemicalEngineering Journal,2010,163(3):373-381.
    [25] PUZIY A M, PODDUBNAYA O I, MARTINEZ-ALONSO A, et al.Characterization of synthetic carbons activated with phosphoric acid [J]. AppliedSurface Science,2002,200(1-4):196-202.
    [26] HUSSEIN M Z, TARMIZI R S H, ZAINAL Z, et al. Preparation andcharacterization of active carbons from oil palm shells [J]. Carbon,1996,34(11):1447-1449.
    [27] GUO Y P, YU K F, WANG Z C, et al. Effects of activation conditions onpreparation of porous carbon from rice husk [J]. Carbon,2003,41(8):1645-1648.
    [28] ADINATA D, DAUD W M A W, AROUA M K. Preparation and characterizationof activated carbon from palm shell by chemical activation with K2CO3[J].Bioresource Technology,2007,98(1):145-149.
    [29] HAYASHI J, HORIKAWA T, MUROYAMA K, et al. Activated carbon fromchickpea husk by chemical activation with K2CO3: preparation andcharacterization [J]. Microporous and Mesoporous Materials,2002,55(1):63-68.
    [30] AHMADPOUR A, DO D D. The preparation of activated carbon frommacadamia nutshell by chemical activation [J]. Carbon,1997,35(12):1723-1732.
    [31] SUDARYANTO Y, HARTONO S B, IRAWATY W, et al. High surface areaactivated carbon prepared from cassava peel by chemical activation [J].Bioresource Technology,2006,97(5):734-739.
    [32] AN D M, WANG Z C, ZHAO X, et al. A new route to synthesis of surfacehydrophobic silica with long-chain alcohols in water phase [J]. Colloids andSurfaces a-Physicochemical and Engineering Aspects,2010,369(1-3):218-222.
    [33] REN S X, GUO Y P, ZHAO L, et al. The preparation of tridymite crystal bychemical processing [J]. Phase Transitions,2008,81(5):395-402.
    [34] EL-HENDAWY A N A. Influence of HNO3oxidation on the structure andadsorptive properties of corncob-based activated carbon [J]. Carbon,2003,41(4):713-722.
    [1] EL-FADEL M, MASSOUD M. Methane emissions from wastewatermanagement [J]. Environmental Pollution,2001,114(2):177-185.
    [2] GUPTA V K, ALI I, SUHAS, et al. Adsorption of2,4-D and carbofuranpesticides using fertilizer and steel industry wastes [J]. Journal of Colloid andInterface Science,2006,299(2):556-563.
    [3] GUPTA V K, JAIN C K, ALI I, et al. Removal of lindane and malathion fromwastewater using bagasse fly ash-a sugar industry waste [J]. Water Research,2002,36(10):2483-2490.
    [4] GUPTA V K, SHARMA S. Removal of zinc from aqueous solutions usingbagasse fly ash a low cost adsorbent [J]. Industrial&Engineering ChemistryResearch,2003,42(25):6619-6624.
    [5] MEDVIDOVIC N V, PERIC J, TRGO M. Column performance in lead removalfrom aqueous solutions by fixed bed of natural zeolite-clinoptilolite [J].Separation and Purification Technology,2006,49(3):237-244.
    [6] RAJA N S, SANKARANARAYANAN K, DHATHATHREYAN A, et al.Interaction of chromium(III) complexes with model lipid bilayers: Implicationson cellular uptake [J]. Biochimica Et Biophysica Acta-Biomembranes,2011,1808(1):332-340.
    [7] KHEZAMI L, CAPART R. Removal of chromium(VI) from aqueous solution byactivated carbons: Kinetic and equilibrium studies [J]. Journal of HazardousMaterials,2005,123(1-3):223-231.
    [8] GUPTA V K, RASTOGI A, NAYAK A. Adsorption studies on the removal ofhexavalent chromium from aqueous solution using a low cost fertilizer industrywaste material [J]. Journal of Colloid and Interface Science,2010,342(1):135-141.
    [9] FEBRIANTO J, KOSASIH A N, SUNARSO J, et al. Equilibrium and kineticstudies in adsorption of heavy metals using biosorbent: A summary of recentstudies [J]. Journal of Hazardous Materials,2009,162(2-3):616-645.
    [10] MIRALLES N, VALDERRAMA C, CASAS I, et al. Cadmium and LeadRemoval from Aqueous Solution by Grape Stalk Wastes: Modeling of aFixed-Bed Column [J]. Journal of Chemical and Engineering Data,2010,55(9):3548-3554.
    [11] ZHANG Q L, LIN Y C, CHEN X, et al. A method for preparing ferric activatedcarbon composites adsorbents to remove arsenic from drinking water [J]. Journalof Hazardous Materials,2007,148(3):671-678.
    [12] ISSABAYEVA G, AROUA M K, SULAIMAN N M. Study on palm shellactivated carbon adsorption capacity to remove copper ions from aqueoussolutions [J]. Desalination,2010,262(1-3):94-98.
    [13] DABEK L. Sorption of zinc ions from aqueous solutions on regeneratedactivated carbons [J]. Journal of Hazardous Materials,2003,101(2):191-201.
    [14] JUSOH A, SHIUNG L S, ALI N, et al. A simulation study of the removalefficiency of granular activated carbon on cadmium and lead [J]. Desalination,2007,206(1-3):9-16.
    [15] GUPTA V K, JAIN C K, ALI I, et al. Removal of cadmium and nickel fromwastewater using bagasse fly ash-a sugar industry waste [J]. Water Research,2003,37(16):4038-4044.
    [16] LIU Y, GUO Y P, ZHU Y C, et al. A sustainable route for the preparation ofactivated carbon and silica from rice husk ash [J]. Journal of HazardousMaterials,2011,186(2-3):1314-1319.
    [17] EL-HENDAWY A N A. Influence of HNO3oxidation on the structure andadsorptive properties of corncob-based activated carbon [J]. Carbon,2003,41(4):713-722.
    [18] PARK D, LIM S R, YUN Y S, et al. Reliable evidences that the removalmechanism of hexavalent chromium by natural biomaterials isadsorption-coupled reduction [J]. Chemosphere,2007,70(2):298-305.
    [19] GUO Y P, QI J R, YANG S F, et al. Adsorption of Cr(VI) on micro-andmesoporous rice husk-based active carbon [J]. Materials Chemistry and Physics,2003,78(1):132-137.
    [20] MEENA A K, MISHRA G K, RAI P K, et al. Removal of heavy metal ions fromaqueous solutions using carbon aerogel as an adsorbent [J]. Journal of HazardousMaterials,2005,122(1-2):161-170.
    [21] GUPTA V K, RASTOGI A. Sorption and desorption studies of chromium(VI)from nonviable cyanobacterium Nostoc muscorum biomass [J]. Journal ofHazardous Materials,2008,154(1-3):347-354.
    [22] GUPTA V K, SHRIVASTAVA A K, JAIN N. Biosorption of chromium(VI) fromaqueous solutions by green algae Spirogyra species [J]. Water Research,2001,35(17):4079-4085.
    [23] BHATTACHARYA A K, NAIYA T K, MANDAL S N, et al. Adsorption, kineticsand equilibrium studies on removal of Cr(VI) from aqueous solutions usingdifferent low-cost adsorbents [J]. Chemical Engineering Journal,2008,137(3):529-541.
    [24] Weber WJ, Morris JC. Kinetics of adsorption on carbon solution[J]. Journal ofthe Sanitary Engineering Division. ASCE,1963,89:31-59.
    [1] KOUASSI S S, TOGNONVI M T, SORO J, et al. Consolidation mechanism ofmaterials obtained from sodium silicate solution and silica-based aggregates [J].Journal of Non-Crystalline Solids,2011,357(15):3013-3021.
    [2] HALASZ I, AGARWAL M, LI R B, et al. What can vibrational spectroscopy tellabout the structure of dissolved sodium silicates?[J]. Microporous andMesoporous Materials,2010,135(1-3):74-81.
    [3] NORDSTROM J, NILSSON E, JARVOL P, et al. Concentration-andpH-dependence of highly alkaline sodium silicate solutions [J]. Journal ofColloid and Interface Science,2011,356(1):37-45.
    [4] FUJIWARA M, SHIOKAWA K, ARAKI M, et al. Preparation of silica thin filmswith macropore holes from sodium silicate and polymethacrylate: An approachto formation mechanism of diatomaceous earth like silica hollow particles [J].Chemical Engineering Journal,2011,172(2-3):1103-1110.
    [5] TOGNONVI M T, MASSIOT D, LECOMTE A, et al. Identification of solvatedspecies present in concentrated and dilute sodium silicate solutions by combinedSi-29NMR and SAXS studies [J]. Journal of Colloid and Interface Science,2010,352(2):309-315.
    [6] DELLA V P, KUHN I, HOTZA D. Rice husk ash as an alternate source for activesilica production [J]. Materials Letters,2002,57(4):818-821.
    [7] WITOON T, CHAREONPANICH M, LIMTRAKUL J. Synthesis of bimodalporous silica from rice husk ash via sol-gel process using chitosan as template [J].Materials Letters,2008,62(10-11):1476-1479.
    [8] AHMED A E, ADAM F. The benzylation of benzene using aluminium, galliumand iron incorporated silica from rice husk ash [J]. Microporous and MesoporousMaterials,2009,118(1-3):35-43.
    [9] HUANG S, JING S, WANG J F, et al. Silica white obtained from rice husk in afluidized bed [J]. Powder Technology,2001,117(3):232-238.
    [10] KALAPATHY U, PROCTOR A, SHULTZ J. A simple method for production ofpure silica from rice hull ash [J]. Bioresource Technology,2000,73(3):257-262.
    [11] AN D M, GUO Y P, ZHU Y C, et al. A green route to preparation of silicapowders with rice husk ash and waste gas [J]. Chemical Engineering Journal,2010,162(2):509-514.
    [12] AN D M, GUO Y P, ZOU B, et al. A study on the consecutive preparation ofsilica powders and active carbon from rice husk ash [J]. Biomass&Bioenergy,2011,35(3):1227-1234.
    [13] KALDERIS D, BETHANIS S, PARASKEVA P, et al. Production of activatedcarbon from bagasse and rice husk by a single-stage chemical activation methodat low retention times [J]. Bioresource Technology,2008,99(15):6809-6816.
    [14] RAHMAN I A, SAAD B, SHAIDAN S, et al. Adsorption characteristics ofmalachite green on activated carbon derived from rice husks produced bychemical-thermal process [J]. Bioresource Technology,2005,96(14):1578-1583.
    [15]秦克刚,李淑珍.水玻璃模数的快速测定[J].理化检测(化学分册)2000,36(10):472-473.
    [16] LIU Y, GUO Y P, ZHU Y C, et al. A sustainable route for the preparation ofactivated carbon and silica from rice husk ash [J]. Journal of HazardousMaterials,2011,186(2-3):1314-1319.