长大隧道穿越断层区施工力学特征及施工优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国山区面积大,约占国土面积的2/3。随着我国陆地交通的快速发展,在进行铁路、公路的建设时,需要修建较多的山岭隧道,其中长大隧道占相当大的比例,而许多长大隧道也不可避免的要通过断层区。长大隧道穿越断层区施工时常出现大变形、坍塌等灾害,严重影响施工安全和施工进度,这主要是由于对隧道穿越断层区的施工力学特性认识不足造成的。断层区围岩作为一种特殊的软岩,隧道施工过程中受时间效应和空间效应影响,其初期支护、二次衬砌有其特有的工程力学特性。对断层区隧道施工的力学特性,施工参数优化方法进行研究是很有必要的。本文依托铁道部科技研究开发项目(编号2008G030-D号)和中国中铁总公司重点项目(编号2009重点17号)“高海拔低气压地区特长铁路隧道施工关键技术研究”,以关角特长铁路隧道穿越断层区的9#工区施工为研究对象,对隧道穿越断层区的施工力学特征和施工优化方法进行了研究,主要内容包括:
     (1)在断层区隧道施工力学特征研究中,首先对关角隧道9#工区的勘察、设计资料进行收集整理,对9#工区右线施工现场的围岩实际情况、地下水情况和施工过程进行调查,并以此为基础提出了断层区围岩划分的定性分级标准;
     (2)在已有研究成果的基础上,提出了断层区开挖过程中围岩位移随时间,空间变化的方程,选取关角隧道断层区开挖过程的量测数据进行计算,结果表明所提出的方法可以反映隧道开挖过程的时空效应:利用计算结果对断层区隧道开挖的时空效应特征进行了分析,认为断层区围岩等效模量调整时间较长,导致隧道拱顶下沉和水平收敛达不到规范规定的二次衬砌施作要求;水平和垂直位移释放系数发展并不一致;隧道开挖对掌子面前后2倍洞径范围内的围岩影响较大,这与其他工程数值分析法研究的结论较为一致;
     (3)以提出的围岩位移时空效应方程,提出了隧道开挖循环进尺的优化原理和优化方法,分析了其适用范围。利用提出的隧道开挖循环进尺的优化原理和优化方法对关角隧道断层区的开挖进尺进行了优化,实践证明该方法可以用于指导工程实践;对开挖进尺和围岩位移的关系进行了研究,研究表明①量测断面距掌子面距离相同的条件下,循环进尺越大,总水平收敛和拱顶下沉值越小,但水平收敛拱顶下沉速率随着开挖进尺的增大而增大,即大的循环进尺可以减少总的位移和收敛,但增加了单次循环的风险。这也解释了软弱围岩隧道开挖“短进尺,快通过”的合理性;②最大拱顶沉降和水平收敛速率不一定紧跟着出现在掌子面后方,一般出现在掌子面后方1倍洞径范围内。
     (4)通过断层区隧道围岩-初期支护应力、钢拱架应力、锚杆轴力的现场监测,断层区内隧道拱部围岩-初期支护接触应力、钢架受力远大于边墙、仰拱;断层影响带及破碎带内围岩应力释放较快,开挖施工对围岩的扰动较大,其中上断面开挖影响>下断面开挖影响>仰拱开挖影响;
     (5)将隧道初期支护喷射混凝土和钢拱架等效为复合体作为一种单元和将设置钢拱架和喷射混凝土部位分别作为不同参数的结构单元建立数值模型,采用这两种建模方法分别对断层影响带隧道结构的受力进行分析,将隧道初期支护设置钢拱架部位和喷射混凝上部位分别采用不同的参数计算,有助于了解初期支护的受力情况并对初期支护结构进行安全评估和参数优化;基于提出的优化步骤对关角隧道F3断层影响带的支护参数进行了优化,实践证明优化后的支护参数在经济和实际操作上均是可行的,同时也证明了该方法具有可行性;
     (6)对断层区二次衬砌结构受力进行了监测,得出二次衬砌结构是受力的,其初期支护-二次衬砌接触应力的发展大致可分为四个阶段,即快速增长阶段、稳定增长阶段、应力调整阶段和稳定阶段。采用Flac3D软件建立隧道轴线和不同倾角断层走向正交的数值分析模型,分析了隧道轴线和断层走向正交情况下穿越不同倾角断层的二次衬砌受力特征并总结了其受力规律:断层的存在对隧道横断面上的应力、内力分布形态影响不大;沿隧道纵向,在断层影响带,距断层上、下盘边界一定范围内,二次衬砌的弯矩、轴力随断层倾角增大而增大,弯矩、轴力都随着距断层边界的距离减小而增大。在破碎带内,距上盘距离一定范围内,弯矩随着断层倾角增大而减小,轴力随断层倾角增大而增大,且都随着距断层边界距离减小而减小
Mountain has a large proportion in China, which covers about2/3of the land area. With the fast development of land transportation in the country, mountain tunnels are more and more frequently used along railways and highways, some of which have to be designed to cross faults. And then large deformation, collapse and other problems were encountered frequently during the construction of the tunnels. These problems have important effect on the construction safety and progress, because the mechanical properties of medium around the faults are still unclear. As a special kind of soft rock, the wall rock around faults is influenced by temporal and spatial effect. Also, the tunnel's primary support and secondary lining have their own mechanical properties which are partly unknown. So, the study on mechanical characteristics and optimization tunneling method of long tunnel that through fault zone is very necessary. In this dissertation, the mechanical characteristics and the optimization tunneling method of long tunnel though fault zone are studied, as a part of the Technological Research and Development Programs of the Ministry of Railways (No.2008G030-D) and High Altitude Low Atmospheric Pressure Railway Extra-long Tunnel Construction Key Technology Research (No.2009-17) Sponsored by China Railway Corporation. And the construction of9#inclined shaft working area of Guanjiao through fault zone as is taken as an example. The main content is as follows:
     (1) In the study of mechanical characteristics of tunneling in fault zone, the information of reconnaissance and design of9#inclined shaft working area were collected. The construction information is investigated including surrounding rocks, the groundwater and construction process. Base on the information, the criterion of surrounding rock classification for fault zone is proposed.
     (2) Base on the existing research, a new equation of displacement vs time and space which caused by tunneling through fault zone is brought out and calculation method for its parameters is proposed. The new equation is applied to the data of Guanjiao tunnel, and the results indicate that the equation and calculation method for the parameters reflect the temporal-spatial effect of tunneling. By the results, the characteristics of temporal-spatial effect of tunneling though fault zone were analyzed. The analysis result showes that the vault crown settlement and horizontal convergence cannot meet the code requirements for secondary lining installation due to the adjustment of equivalent modulus of wall rock in fault zone for longer periods, and that the development of horizontal and vertical release coefficient of displacement is not the same, and that the excavation has effects on the rock wall in2times of the excavation radius, which are in accordance with numerical analysis results conducted by others.
     (3) In virtue of the presented equation, the principle and optimization method for footage of the tunneling cycle is advanced and its applying condition is also analyzed. The footage of the tunneling cycle of Guanjiao tunnel through fault zone is optimized by using the proposed method. The practice proves that the method can be used to guide the engineering practice. The relationship between the footage of tunneling cycle and displacement of wall rock is also studied. The results indicate that:①When the distance is fixed, the longer length of the footage, the total vault crown settlement and horizontal convergence is smaller, while the level of rate of vault crown settlement and horizontal convergence was increased with the excavation footage, that is, the longer length of footage can reduce the total displacement and convergence, meanwhile, the risk of single cycle is increased. This also explains principle "short footage, quickly by" for tunneling in soft surrounding rock;②Maximum rate of vault crown settlement and horizontal convergence doesn't necessarily appear behind the face of1times footage range. It generally appears behind the face between1times footage and1times hole diameter range.
     (4) In fault zone, the stress and forces in surrounding rocks, primary supports, steel arch, and bolt are investigated in situ. The results show that, in fault zone, the stresses in surrounding rock, primary support and steel arch at vault are much more than what in side wall and invert; excavation disturbance to surrounding rock is larger, where in the disturbance of upper section excavation is greater than the lower section excavation and the disturbance of lower section excavation is greater than the invert excavation.
     (5) The primary support with shotcrete and steel arch are equivalent to a complex as a unit and the steel arch part. Shortcrete is assigned as different parameters of unit respectively to carry out numerical simulation. By using the model of setting steel arch part and shortcrete as different parameters of unit respectively contribute to the understanding of force, safety evaluation and parameter optimization of primary supports. Based on the proposed optimization steps, parameters of primary supports of tunnel through F3fault were optimized. The practice show that optimized parameters in economy and actual operation is feasible.
     (6) Secondary lining stress was monitored in the field in fault zone. Secondary lining is affected by force and the development of contact stress of primary-secondary lining. The effect can be roughly divided into four phases, namely, fast growth phase, a stage of stable growth, stress adjustment phase and stable phase respectively. Flac3D software is used to build the numerical models in which the tunnel axis and the fault direction are orthogonal and the fault dip angle varies. Basing on the models, the characteristics of secondary lining force are analyzed and the law of force is summarized. In fault affected zone, the influenced range is within a certain range from the boundary of hanging wall and footwall. and the moment of secondary lining increases with the growth of dip angle of the fault. Also, while the axial force of secondary lining in the cross-sectional varies in different positions, the moment and axial force increase with the reduction of distance from the hanging wall and footwall. In fault rupture zone, influence range is about within a certain range away from the boundary of hanging wall. The moment of secondary lining decrease with the growth of fault dip angle, while the axial force increases, and they both decrease with the reduction of distance from the fault boundary.
引文
[1]常士骠.工程地质手册[M].北京:科学出版社,1992
    [2]林在贯,高大钊,顾宝和等.岩土工程手册[M].北京:中国建筑工业出版社,1994
    [3]吴继敏.工程地质学[M].北京:高等教育出版社,2011
    [4]Anastasopoulos I. Gazetas G, Bransby M. F. et. Fault Rupture Propagation Through Sand:Finite Element Analysis and Validation through Centrifuge Experiments[J]. J Geotech Geoenviron Eng,2007,133(8):943-958
    [5]Shi Wenhui. Geological Calamities Research In Chinese Railway's Proceedings[J].6th International Congress. IAGE. Amsterdam,1990,2401-2407
    [6]高渠清.隧道及地下工程论文集[J].北京:中国铁道出版社,1996
    [7]黄润秋,王贤能.深埋隧道工程主要灾害地质问题分析[1J].水文地质工程地质,1998,4:21-24
    [8]杜炜平,古德生.隧道通过断层区的力学特性与技术对策研究[J].西部矿探工程,2000,5:1-2
    [9]石文慧.中国铁路地质灾害防治[J].铁道工程学报,2005,增:272-277
    [10]杨忠民.科学实施“十二五”规划-规范有序推进铁路建设[R].北京:铁路规划建设座谈会,2012
    [11]张之强.中国公路的建设现状及中、远期规划[J].公路,1998,5:1-4
    [12]石文慧.当代铁路隧道发展趋势及地质灾害防治[J].铁道工程学报,1996,2(5):55-62
    [13]王梦恕.21世纪是隧道及地下空间大发展的年代[J].岩土工程界,2000,3(6):13-15
    [14]王梦恕.中国是世界上隧道和地下工程最多、最复杂、今后发展最快的国家[J].铁道标准设计,2003,1:1-4
    [15]王梦恕.21世纪山岭隧道修建的趋势[J].隧道/地下工程,2004,9:37-40
    [16]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报,2004,1(1):7-9
    [17]Panet M.. Time-dependent Deformation in Underground Works [J]. Pro.4th Congr. ISRM,1979.3:279-289
    [18]于学馥,郑颖人,刘怀恒等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [19]Guenot A., Panet M., Sulem J. A., A New Aspect in Tunnel Ccoure Interpretation[J]. Pro.26th U.S. Sump, On Rock Mechanics.1985,1:455-460
    [20]杨林德,朱合华等,岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1995
    [21]Lunardi P.. Design and constructing tunneling-ADECO-RS Approach. Tunneling International Special Supplement. Internet reference [EB/OL]. [2000]. www.rocksoil.com.
    [22]蔡美峰.地应力量测原理和技术[M].北京:科学出版社,2000
    [23]孙钧,朱合华.软弱围岩隧洞施工性态的力学模拟与分析[J].岩土力学,1994,15(4):20-32
    [24]Kaiser P., Manoley S., Morgensterm N.. Time-dependent Bhaciour of Tunnels in Highly Stresses Rock[J]. Proc. of the 5th Int. Congr. ISMR,1983, Vol.2:329-336
    [25]Sulem J., Panet M., Gueot A.. Closure analysis in deep tunnels[J]. International Journal of Rock Mechanics and Mining Sciences,1987,24(3):145-154
    [26]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑出版社,1999
    [27]刘宝琛.矿山岩体力学概论[M].长沙:湖南科学技术出版社,1982
    [28]陈宗基.地下巷道长期稳定的力学问题[J].岩石力学与工程学报,1982,1(1):1-20
    [29]Maranini E., Briognoli M.. Creep Behafior of a Week Rock:Experimental Characterization[J]. International Journal of Rock Mechanics and Mining Science,1999.26: 127-138
    [30]Gasc-Baibier M.. Chanchole S.. Creep Behafior of Bure Clayed Rock[J]. Apply Clay Science,2004,26:449-458
    [31]贾剑青.复杂条件下隧道支护体时效可靠性和风险管理研究[D].重庆:重庆大学,2006.
    [32]贾剑青,王宏图,李晓红等.复杂条件下隧道支护体时效可靠性探讨[J].岩土工程学报,2008,20(3):390-393
    [33]齐明山,徐正良,崔勤等.风化破碎类花岗岩三轴流变试验研究[J].地下空间与工程学报,,2007,3(5):914-917
    [34]Villy Kontogianni, Panos Psimoulis, Stathis Stiros. What is the contribution of time-dependant deformation in tunnel convergence [J]. Engineering Geology,2006,82: 264-267
    [35]孙元春,尚彦军.岩石隧道围岩变形时空效应分析[J].工程地质学报,2008,16(2):211-214
    [36]曾小清,孙钧.隧道工程施工过程中的力学分析[J].同济大学学报,1998,26(5):512-515
    [37]F.I.Shalabi. FE analysis of time-dependent behavior of tunneling in squeezing ground using two different creep models [J]. Tunneling and Underground space Technology,2005, 20 (3):271-279
    [38]张宇,何川,伍晓军.复杂地质条件下隧道三维变形规律分析[J].岩土工程学报,2007,29(10):1465-1471
    [39]刘君,孔宪京.节理岩体中隧道开挖与支护的数值模拟[J].岩土力学,2007,,28(2):321-326
    [40]赵旭峰,王春苗,孔祥利.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报,2007,26(2):404-409
    [41]李东勇,徐祯祥,王琳静.地铁暗挖隧道初期支护联合系统数值模拟分析[J].铁道建筑,2007,5:34-37
    [42]王长虹,杨有海.乌鞘岭隧道F7断层的粘弹性位移反演分析[J].铁道学报,2007,29(2):132-136
    [43]杨有海,王长虹.考虑时空效应的隧道工程粘弹性位移反分析[J].地下空间与工程学报,2009,5(2):468-473
    [44]王志达,龚晓南,蔡智军.浅埋暗挖隧道开挖进尺的计算方法探讨[J].岩土力学,2007,28(增):497-500
    [45]樗木武.隧道力学[M].关宝树,麦倜曾.译.北京:中国铁道出版社,1983
    [46]Cunliffe H., Joheston A. G.. Roadway supports with special reference to yielding archs[J]. Tran. Inst. Min. Engin.1957,117:804-818
    [47]周德培.圆形隧道衬砌围岩变形压力的时间效应[J].地下空间,1993.13(1):18-25
    [48]U.H.Khan, H.S.Mitri, D.Jones. Full Scale Testing of Steel Arch Tunnel Supports[J]. Int. J. Rock Mech. Sci.& Geomech. Abstr,1996,33 (3):219-232
    [49]Jones, R.M.. Mechanics of Composite Materials[M]. New York:Hemisphere Publishing Corporation,1975
    [50]Timoshenko, S.P.. Strength of Materials[M]. Florida:Krieger Publishing Company, 1976.
    [51]P.P.Oreste. Analysis of structural interaction in tunnels using the convergence-confinement approach[J]. Tunnelling and Underground Space Technology. 2003,18:347-363
    [52]C. Carranza-Torres. M. Diederichs. Mechanical analysis of circular liners with particular reference to composite supports. For example, liners consisting of shotcrete and steel sets[J]. Tunneling and Underground Space Technology.2009.24:506-523
    [53]Fuminori Kimura, Nobuyuki Okabayashi, Tosghikazu Kawamoto. Tunneling Through Squeezing Rock in Two Large Fault Zones of the Enasan Tunnel Ⅱ [J]. Rock Mechanics and Rock Engineering.1987,20:151-166
    [54]雷晓燕.试论节理对隧道开挖和衬砌的影响[J].地下空间,1993,13(1):9-17
    [55]赵德昌.断层破碎带围岩压力[J].矿山压力与顶板管理,1996,4:64-65
    [56]W.Schubert. Dealing with Squeezing Conditions in Apline Tunnels[J]. Rock Mechanics and Rock Engineering,1996,29 (3):145-153
    [57]Seokwon Jeon,Jongwoo Kim, Youngho Seo, Changwoo Hong. Effect of A Fault and Weak Plane on the Stablity of A Tunnel in Rock-A Scaled Model Test and Numerical Analysis[J].Int. J. Rock Mech. Sci,2004,41(3):1-6
    [58]段艳燕,宋宏伟,赵坚等.岩体非连续结构面对隧道稳定性影响的数值模拟[J].岩土工程界,2004,9):34-39
    [59]生文,司铁汉,陈文胜等.断层对大跨度隧道围岩应力影响的有限元分析[J].岩石力学与工程学报,2006,25(增):3788-3793
    [60]淘波,伍法权,郭啟良等.高地应力环境下乌鞘岭深埋长隧道软弱围岩流变规律实测与数值分析研究[J].岩石力学与工程学报,2006,25(9):1828-1833
    [61]安蕊梅,刘维华,刘志春.挤压性围岩隧道变形特征分析[J].石家庄铁道学院学报,2007,20(1):14-18
    [62]李德武.断层破碎带隧道衬砌受力特性研究[D].兰州:兰州铁道学院
    [63]张楠,王述红,王晓明等.含弱层围岩的隧道变形破坏过程模型实验研究[J].地下空间与工程学报,2007,3(6):1085-1088
    [64]刘辉,宋宏伟,唐德康等.断层间距对隧道纵向稳定性的影响[J].黑龙江科技学院学报,2008,8(6):447-450
    [65]韩现民.西格二线关角隧道浅埋砂层段施工技术及力学效应研究[J].岩土力学,2010,31(增2):297-302
    [66]韩现民,孙明磊,李文江等.复杂条件下隧道断面形状和支护参数优化[J].岩土力学,2011,32(增1):725-731
    [67]Da Li, Xiao Xu Li, Yong Sheng Li, Zhan Fu Luo. Analysis of Temporal-Spatial Effect Tunnel Construction in the Fault-Rupture Zone[J].2011 International Conference on Civil Engineering and Transportation, Vol.90-93(2011), p:1981-1986
    [68]Da Li, Zhan Fu Luo, Yong Sheng Li. Research on Mechnical Characteristics of Primary Supports in Guanjiao tunnel Fault Fracture Zone and Its Influence Zone by Field Tests [J]. Vibration, Structural Engineering and Measurement, Vol.105-107(2011), p:1203-1210
    [69]王建秀,朱合华,唐益群.高速公路隧道跟踪监测及承载状况诊断[J].岩上工程学报,2005.38(2):110-114
    [70]刘志春,孙明磊,贾晓云等.乌鞘岭隧道F4~F7断层去段压力、应力实洲与分析[J].石家庄铁道学院学报,2006,19(2):13-17
    [71]刘志春,李文江,孙明磊等.乌鞘岭隧道F4断层区段监控量测综合分析[J].岩石力学与工程学报,2006,25(7):1503-1511
    [73]崔光耀,王明年,林国进等.汶川地震区典型公路隧道衬砌震害类型统计分析[J].中国地质灾害与防治学报,2011,22(1):122-127
    [74]Kawashima, K.. Seismic Design of Underground Structures[M]. Tokyo:Kajima Publishing, Co. Ltd.,1994.
    [75]蒋树屏,李鹏,林志.穿越活动断层区隧道的抗断设计对策[J].重庆交通大学学报,2008,27(6):1034-1041
    [76]徐华,李天斌.隧道不同减震层的地震动力响应与减震效果分析[J].上木工程学报,2011,44(增),201-207
    [77]P.angnosti, D.lukich. Intergrated Design and Construction of Klashnice tunnels[J]. Underground Space-4th,2007,6 (1320):947-951
    [78]C.Yoo, S.B.Kim. Iiteraction Between Tunneling and Groundwater-Its Impact on Tunnel Behavior and Ground Settlement[J]. Underground Space-4th,2007,6 (1320):939-944
    [79]S.Dalgic. Comparision of Geological Conditions Predicted from Runnel Boreholes and Found in Situ[J]. Bull Eng Geol Env,1999,58:115-123
    [80]Alessandro Gargini. Valentina, Vincenzi Leonardo Piccinini. et. Groundwater Flow Systems in Turbidites of the Northern Apennines (Italy):Natural Discharge and High Speed Railway Tunnel[J]. Hydrogeology Journal,2008,16:1577-1599
    [81]黄涛,杨立中.山区隧道涌水量计算中的双场耦合作用研究[M].西南交通大学出版社,2002
    [82]职常应,李永生,罗占夫.关角隧道二郎洞断层束破碎带涌(突)水分析[J].路基工程,2005.34(4):125-129
    [83]中华人民共和国行业标准编写组.GB50287-99水利水电工程地质勘察规范[S].北京:中国建筑工业出版社,1999
    [84]中华人民共和国行业标准编写组.TB10077-2001铁路工程岩土分类标准[S].北京:中国铁道出版社,2001
    [85]中华人民共和国行业标准编写组.GB50218-94工程岩体分级标准[S].北京:中国水利水电出版社,2001
    [86]齐万鹏,张德华,严竟雄等.软弱千枚岩地层围岩亚分级及支护方式研究[J].中国工程科学,2012,14(1):98-104
    [87]张凯,巨能攀,霍宇翔等.岩溶隧道围岩动态分级方法研究[J].中国地质灾害与防 治学报,2012.23(1):67-71
    [88]梁庆国,李浩,李德武等.黄土隧道围岩分级研究的若干问题[J].岩土工程学报,2011,33(增1):170-176
    [89]童建军,王明年,李培楠等.公路隧洞围岩亚级及支护参数设计研究[J].岩土力学,2011.32(增1):515-519
    [90]祁生文,伍法权.基于模糊数学的TBM施工岩体质量分级研究[IJ].岩石力学与工程学报,2011,30(6):1225-1229
    [91]姜贤平,李刚,李鹏.考虑相关性的铁路隧洞围岩概率分级方法研究[J].铁道工程学报,2010,12:64-72
    [92]Barton.N., Lien.R., Lunde.J.. Engineering Classification of Rock Masses for Design of Tunnel Support[J].Rock Mechanics and Rock Engineering,1974,64(4):183-336
    [93]Barton.N.. TBM Tunneling in Jointed Rock[M]. Netherland:A.A.Balkema.2000,72-73
    [94]王桂芳.隧道计算(共同变形理论)[M].成都:成都科技大学出版社,1992
    [95]刘淳源粘弹性断裂力学[M].武汉:华中理工大学出版社,1994
    [96]康颖安,刘红石.用弹性-粘弹性对应原理求解材料力学问题[J].湖南工程学院学报,2005.15(3):32-34
    [97]李世辉.隧道支护设计新论(典型类比分析方法应用和理论)[M].北京:科学出版社,1999
    [98]苏永华,何满潮,高谦Rosenblueth方法在软破围岩锚喷支护系统评价中的应用[J].岩土工程学报,2004.26(3):378-382
    [99]闫春岭,丁德馨,毕忠伟.深埋隧道围岩稳定性的粘弹性力学分析[J].贵州工业大学学报,2005,34(4):125-129
    [100]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993
    [101]Kirsten.H.A.D.. Determination of Rock Mass Elastic modular by Analysis of Deformation Measurement[C]//In:Proceedings of Symposium on Exploration for Rock Engineering. Johanesburg,1976:1154-1160
    [102]Cristescun.N, Hunsche.U. Time effects in rock mechanics[M].London:John Wiley and Sons Ltd,1998:231-252
    [103]朱珍德,杨喜庆,郝振群等.基于粒子群优化BP神经网络的隧道围岩位移反分析[J].水利与建筑工程学报,2010,.8(4):16-20
    [104]韩昌瑞,贺光宗,王贵宾.双线并行隧道施工中影响地标沉降的因素分析[J].岩土力学,2011.32(增2):484-495
    [105]负永峰,范永慧,孙扬.基于BP神经网络的隧道围岩力学参数反分析方法[J].沈阳建筑大学学报,2011,27(2):292-296
    [106]田洪铭,陈卫忠,田田等.软岩蠕变损伤特性的试验与理论研究[J].岩石力学与工程学报,2012.31(3):610-617
    [107]关永平,宋建,王述红等.基于GA-BP算法的隧道围岩力学参数反演分析[J].东北大学学报,2012,33(2):276-278
    [108]汪波,何川,吴德兴等.苍岭特长公路隧道地应力场反演分析[J].岩土力学,2012.33(2):628-634
    [109]铁道部第二工程局.隧道[M].北京:中国铁道出版社,1981
    [110]王梦恕.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010
    [111]中华人民共和国行业标准编写组.TB10204-2002铁路隧道施工规范[S].北京:中国铁道出版社
    [112]中华人民共和国行业标准编写组.JTJ024-94公路隧道施工技术规范[S].北京:人民交通出版社
    [113]中华人民共和国行业推荐性标准编写组.JTG/TF60-2009公路隧道施工技术细则[S].北京:人民交通出版社,.2009
    [114]铁道第一勘察设计院.青藏铁路西宁至格尔木段增建二线关角隧道施工图设计—工程地质勘察报告[R].西安:铁道第一勘察设计院,2007
    [115]杨小林.隧洞开挖循环进尺的模糊分级统计方法与研究[J].水利水电技术,2003.34(2):37-43
    [116]杜彬.长梁山隧道水平软弱围岩地段施工效应分析[J].岩石力学与工程学报,2005,24(13):2357-2361
    [117]梁巍,黄明利.大跨度隧道CRD法穿越含水软弱层沉降变形控制[J].岩石力学与工程学报,2007.26(增2):3738-3742
    [118]蔚立元,李术才,徐帮树.小间距海底隧道施工优化的有限差分分析[J].岩石力学与工程学报,2009.28(增2):3564-3570
    [119]杨永波,刘明贵,张国华等.邻近既有隧道的新建大断面隧道施工参数优化分析[J].岩土力学,2010,31(4):1217-1225
    [120]周毅,李术才,李利平等.底层条件对超大断面隧道软弱破碎围岩施工影响过程规律的数值模拟分析[J].岩上力学,2011,32(增2):673-678
    [121]王凯,张成平,王梦恕.胶州湾海底隧道不对称双连拱断面施工优化分析[J].中国工程科学,2011.14(1):90-97
    [122]雷军,张金柱,林传年.乌鞘岭特长隧道复杂地质条件下断层带应力及变形现场监测分析[J].岩土力学,2008,29(5):1367-1371
    [123]刘泉声,白山云,肖春喜等.基于现场监控量测的龙潭隧道施工期围岩稳定性研究[J].岩石力学与工程学报,2007,26(10):1982-1990
    [124]李春林,李天斌,陈强等.龙溪隧道初期支护监控量测技术初步研究[J].地质灾害与环境保护,2007.18(4):85-90构造作用下隧道变形模拟分析
    [125]Ioannis Anastasopoulos, Geogre Gazetas. Analysis of cut-and-cover tunnels against large tectonic deformation[J]. Bull Earthquake Eng,2010,8:283-307断层倾角、隧道稳定性
    [126]Annamaria Cividini, Giancarlo Gioda, Vincenzo Petrini. Finite element evaluation of the effects of faulting on a shallow tunnel in alluvial soil[J]. Acta Geotechnica,2010, 5:113-120
    [127]中国中铁隧道集团洛阳科学技术研究所.新建铁路石家庄至太原客运专线工程太行山隧道—膏溶角砾岩特殊岩体隧道施工技术研究[R].洛阳:中国中铁隧道集团,2007
    [128]闫莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社,2004
    [129]Ioannis Anastasopoulos, Geogre Gazetas. Analysis of cut-and-cover tunnels against large tectonic deformation[J]. Bull Earthquake Eng,2010,8:283-307断层倾角、隧道稳定性
    [130]Annamaria Cividini, Giancarlo Gioda, Vincenzo Petrini. Finite element evaluation of the effects of faulting on a shallow tunnel in alluvial soil[J]. Acta Geotechnica.2010, 5:113-120
    [131]朱小明,刘明.断层角度对隧道纵向稳定性影响的数值模拟[J].徐州建筑职业技术学院学报,2007,7(4):17-19