红法夫酵母发酵生产虾青素过程关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虾青素(3,3’-二羟基-β,β’-胡萝卜素-4,4’-二酮)是从河螯虾外壳,牡蛎和鲑鱼中发现的一种红色类胡萝卜素,它具有抗氧化、抗衰老、抗肿瘤、预防心脑血管疾病作用。随着对虾青素需求量逐年加大,而化学方法合成的虾青素存在一定的安全性问题,所以从微生物(如红法夫酵母、雨生红球藻等)中提取天然虾青素是现今该领域的的热点研究问题。法夫酵母在发酵过程中需要消耗大量氧气用以维持细胞的正常代谢和虾青素的合成,如果要大幅提高法夫酵母发酵过程中的虾青素产量,需要重点解决发酵过程中酵母细胞对氧的摄取率问题。透明颤菌血红蛋白(VHb)是一种产自原核生物的氧结合蛋白,本研究尝试将透明颤菌血红蛋白基因(vgb)转入法夫酵母进行表达,试图借此提高酵母细胞对氧气的利用能力,进而达到促进菌体生长和提高产物合成的目的,而生产过程中降低搅拌速度和减少通气则降低了生产能耗,使得生产成本进一步降低。本研究还尝试在提取过程中添加适量的天然抗氧化剂(如生育酚)来提高虾青素的萃取得率,此外,在虾青素的提取过程中首次引入环境友好试剂如乳酸和乳酸乙酯。
     (1)本研究利用RT-PCR技术分析了不同碳源对法夫酵母中虾青素合成途径中的关键酶的影响,发现不同碳源对细胞中虾青素合成途径的各关键酶的诱导作用不同,从而在分子水平上优化出了最佳碳源组合。最适碳源条件下,分析了不同溶氧对法夫酵母中关键酶表达的影响,发现25%溶氧最适合虾青素的合成。同时,这些现象也在分子层面上解释了细胞产色素能力和碳源、溶氧等培养条件之间的相互联系。
     (2)本研究构建了包含cpc-1启动子、vgb基因和nos终止子的整合型表达载体pBC-Pcpc-vgb-Tnos,利用该载体,将vgb基因整合到法夫酵母的染色体上。摇瓶发酵实验结果显示:在含vgb基因的转化子中,其各项指标与对照菌株相比,以色素产量最高的一株B1为例,生物量、虾青素产量和虾青素含量分别提高了21%、37%和13%。将获得的色素高产菌株B1和C2通过斜面连续传五代后,发现两株菌产色素能力变化不大,最大降幅只有3.2%,说明该菌株生产性能比较稳定,此外,将高产菌株B1和C2在不含潮霉素的斜面上连续传五代后提取基因组DNA,通过PCR扩增vbg基因进行验证,B1和C2的传代菌株都能扩增出大约570bp大小的vgb片段,说明该质粒已经稳定的整合到法夫酵母的基因组DNA上,转化菌株的稳定性良好。
     (3)本研究在酵母细胞破壁和虾青素萃取过程中加入适量的天然抗氧化剂(抗坏血酸和生育酚),发现随着温度的升高和时间的延长,色素得率比对照组有明显的提高。而环境友好试剂乳酸和乳酸乙酯分别进行破壁和提取实验后,结果显示破壁效率和萃取效率均高于传统试剂,而且安全无毒。通过设计正交试验对虾青素提取过程进行优化,在最佳条件下:提取时间30min,破壁温度65℃,破壁时间60min,提取试剂为乙酸乙酯︰乙醇=1︰1,色素得率达到1493.80±45.31μg g-1。
The red yeast Xanthophyllomyces dendrorhous (formerly known as Phaffiarhodozyma) is one of the most promising microorganisms for biotechnological productionof dietary astaxanthin. In the process of X. dendrorhous fermentation,large amount ofoxygen was consumed to maintain cell metabolic level. Vitreosilla Hemoglobin (VHb) is akind of oxygen-binding protein of prokaryotic origin. The aim of this study is to expressvgb gene in X. dendrorhous, and to improve cell growth and astaxanthin production byenhancing the oxygen usage ability of cell. In this study, we also reported that theapplication of lactic acid and ethyl lactate to astaxanthin extraction from X. dendrorhous,and efficacy of antioxidants addition in protecting against oxidative degradation during theextraction process.
     (1) This report gives an insight into the specific changes in the transcription of fourkey carotenogenic genes (encoding geranylgeranyl diphosphate synthase (crtE), phytoenedesaturase (crtI), phytoene synthase lycopene cyclase (crtYB), and astaxanthin synthase(ast), respectively) in X. dendrorhous cultures, with regard to various dissolved oxygen(DO) contents and carbon sources. Our results suggested that a correlation betweenbiomass, astaxanthin production, and the transcripts of carotenogenic genes was evident inthe cells cultured with various substrates and DO concentration.
     (2) The recombinant vector pBC-Pcpc-vgb-Tnos contain vgb gene which waspromoted by the promoter of cpc-1was constructed, and the Recombinant vector wasintegrated in the chromosome of X. dendrorhous by electroporation. We confirmedrecombinants by Hygromycin B selection and PCR, and screened out twoastaxanthin-overproducing strains from the recombinants. The biomass, astaxanthin yieldand astaxanthin content of engineering strains were increased by21%,37%and13%,respectively than the original strain. PCR analysis indicated vgb had been integrated in tothe chromosome of X. dendrorhous, and CO binding difference speetrum analysis ofrecombinant strain showed that active VHb protein has been expressed in X. dendrorhous.At the same time the recombinant strain was stable at the generation and yield, andsuitable for industrial application.
     (3) The optimum extraction conditions were as follows: the yeast cell wall wasdisrupted by lactic acid at65oC for1h and then extracted with ethyl lactate: ethanol (1:1,v/v) for0.5h. The results showed that lactic acid and ethyl lactate has an obviouspredominance for the extraction of food-grade astaxanthin, and TOC was proved to be ahigh efficient natural antioxidant in our tests.
引文
[1] Johnson EA, Conklin D, Lewis MJ. The yeast Phaffia rhodozyma as a dietarypigment source for salmonids andcrustaceans. J Fish Beast Board Can,1977,34:2417-2421
    [2] Britton G. Overview of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S,Pfander H. Carotenoids: biosynthesis and metabolism. Birkh user Verlag, Basel,1998:13-147
    [3] Bauernfeind JC. Carotenoids as colorants and vitamin A precursors: technical andnutritional applications. New York: Academic,1981
    [4] Schroeder WA, Johnson EA. Antioxidant role of carotenoids in Phaffia rhodozyma.J Gen Microbiol,1993,139:907-912
    [5] Kobayashi M, Kakizono T, Nishio N, et al. Antioxidant role of astaxanthin in thegreen algae Haematococcus pluvialis. Appl Microbiol Biotechnol,1997,48:351-356
    [6] Bhosale P. Environmental and cultural stimulants in the production of carotenoidsfrom microorganisms. Appl Microbiol Biotechnol,2004,63:351-361
    [7] Phaff HJ, Miller MW, Yoneyama M, et al. A comparative study of the yeast floraeassociated with trees on the Japanese Islands and on the west coast of NorthAmerica. In: Terui G (ed) Fermentation Technology Today. Society of FermentationTechnology, Osaka,1972:759-774
    [8] Johnson EA, Lewis MJ. Astaxanthin formation in the yeast Phaffia rhodozyma. JGen Microbiol,1979,115:173-183
    [9] Golubev WI. Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast,1995,11:101-110
    [10] Baeza M, Retamales P, Sepúlveda D, et al. Isolation, characterization and long termpreservation of mutant strains of Xanthophyllomyces dendrorhous. J BasicMicrobiol,2009,49:135-141
    [11] Flores-Cotera LB, Martín R, Sánchez S. Citrate, a possible precursor of astaxanthinin Phaffia rhodozyma: influence of varying levels of ammonium, phosphate andcitrate in a chemically defined medium. Appl Microbiol Biotechnol,2001,55:341-347
    [12]张晓丽,刘建国,林伟等.国产雨生红球藻藻粉质量安全性评价.饲料工业,2007,28:51-53
    [13] Ping H, Duncan J, Barber J. Astaxanthin accumulation in the green algaHaematococcus pluvialis: effects of cultivation parameters. J Integrative Plant Biol,2007,49:447-451
    [14]滕长英,张立,缪静等.雨生红球藻虾青素积累机制的研究进展.海洋科学,2006,30:77-81
    [15]罗璇,钟晓凌,王金华等.红酵母产类胡萝卜素提取工艺的优化研究.生物技术,2007,17:86-88
    [16] Felix VL, Higuera CI, Goycollea VF. Supercritical CO2/ethanol extraction ofastaxanthin from blue crab (Callinectes sapidus) shell waste. J Food Process Eng,2001,24:101-112
    [17] Bernhard K. Synthetic astaxanthin. The route of a carotenoid from research tocommercialization. In: Krinsky NI et al (eds) Carotenoids: chemistry and biology.Plenum, New York,1990:337-363
    [18] Boussiba S, Vonshak A, Cohen Z, et al. Procedure for large-scale production ofastaxanthin from Haematococcus.2000, US Patent6022701
    [19] Andrewes AG, Starr MP.(3R,3′R)-astaxanthin from the yeast Phaffia rhodozyma.Phytochemistry,1976,15:1009-1011
    [20] Breivik H, Aanesen BA, Kulas E. Pigment.2004, EP1442083
    [21] Turujman SA, Wamer WG, Wei RR, et al. Rapid liquid chromatographic method todistinguish wild salmon from aquacultured salmon fed synthetic astaxanthin. JAOAC Int,1997,80:622-632
    [22] sterlie M, Bjerkeng B, Liaaen-Jensen S. Plasma appearance and distribution ofastaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single doseadministration of astaxanthin. J Nutr Biochem,2000,11:482-490
    [23] Mercke Odeberg J, Lignell A, Pettersson A, et al. Oral bioavailability of theantioxidant astaxanthin in humans is enhanced by incorporation of lipid basedformulations. Eur J Pharm Sci,2003,19:299-304
    [24] Storebakken T, Foss P, Schiedt K, et al. Carotenoids in diets for salmonids. IV.Pigmentation of Atlantic salmon with astaxanthin, astaxanthin dipalmitate andcanthaxanthin. Aquaculture,1987,65:279-282
    [25] Domínguez-Bocanegra AR, Ponce-Noyola T, Torres-Mu oz JA. Astaxanthinproduction by Phaffia rhodozyma and Haematococcus pluvialis: a comparativestudy. Appl Microbiol Biotechnol,2007,75:783-791
    [26] Kurashige M, Okimasu E, Inoue M, et al. Inhibition of oxidative injury of biologicalmembranes by astaxanthin. Physiol Chem Phys Med NMR,1990,22(1):27-38
    [27] Li Y, Sommerfeld M, Chen F, et al. Consumption of oxygen by astaxanthinbiosynthesi: A protective mechanism against oxidative stress in Haematococcuspluvialis(Chlorophyceae). J Plant Physiol,2008,165(17):1783-1797
    [28] Wolf AM, Asoh S, Hiranuma H, et al. Astaxanthin protects mitochondrial redoxstate and functional integrity against oxidative stress. J Nutr Biochem,201,21(5):381-389
    [29] McNulty HP, Byun J, Lockwood SF, et al. Differential effects of carotenoids onlipid peroxidation due to membrane interactions: X-ray diffraction analysis.Biochim Biophys Acta,2007,1768(1):167-174
    [30] Camera E, Mastrofrancesco A, Fabbri C, et al. Astaxanthin, canthaxanthin andbeta-carotene differently affect UVA-induced oxidative damage and expression ofoxidative stress-responsive enzymes. Exp Dermatol,2009,18(3):222-231
    [31] Anderson M. Method of inhibiting5a-reductase with astaxanthin.2001, US Patent6277417
    [32] Kurihara H, Koda H, Asami S, et al. Contribution of the antioxidative property ofastaxanthin to its protective effect on the promotion of cancer metastasis in micetreated with restraint stress. Life Sci,2002,70(21):2509-20
    [33] Beom JL, Park JJ. Anticancer Effects of Astaxanthin in Stomach Cancer Cell Lines.Gastrointestinal Oncology,2009,136(5, Supplement1):315-319
    [34] Tejera N, Cejas JR, Rodríguez C, et al. Pigmentation, carotenoids, lipid peroxidesand lipid composition of skin of red porgy (Pagrus pagrus) fed diets supplementedwith different astaxanthin sources. Aquaculture,2007,270(1-4):218-230
    [35] Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications forhuman health and nutrition. Trends Biotechnol,2003,21(5):210-216
    [36] Yang YX, Kim YJ, Jin Z, et al. Effects of dietary supplementation of astaxanthin onproduction performance, egg quality in layers and meat quality in finishing pigs.Asian Australas J Anim Sci,2006, l9(7):1019-1025
    [37] Andrewes AG, Starr MP.(3R,3’R)-astaxanthin from the yeast Phaffia rhodozyma.Phytochemistry,1976,15:1009-1011
    [38] Ducrey Sanpietro LM, Kula MR. Studies of astaxanthin biosynthesis inXanthophyllomyces dendrorhous (Phaffia rhodozyma). Effects of inhibitors and lowtemperature. Yeast,1998,14:1007-1016
    [39] Verdoes JC, Sandmann G, Visser H, et al. Metabolic engineering of the carotenoidbiosyntheticpathway in the yeast Xanthophyllomyces dendrorhous (Phaffiarhodozyma). Appl Environ Microbiol,2003,69:3728-3738
    [40] Visser H, van Ooyen AJJ, Verdoes JC. Metabolic engineering of theastaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS YeastRes,2003,4:221-231
    [41] Rodríguez-Sáiz M, de la Fuente JL, Barredo JL. Xanthophyllomyces dendrorhousfor the industrial production of astaxanthin. Appl Microbiol Biotechnol,2010,88:645-658
    [42] Kajiwara P, Fraser PD, Kondo K, et al. Expression of an exogenous isopentenyldiphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli.Biochem J,1997,324:421-426
    [43] Niklitschek M, Alcaíno J, Barahona S, et al. Genomic organization of the structuralgenes controlling the astaxanthin biosynthesis pathway of Xanthophyllomycesdendrorhous. Biol Res,2008,41:93-108
    [44] Verdoes JC, Krubasik KP, Sandmann G, et al. Isolation and functionalcharacterisation of a novel type of carotenoid biosynthetic gene fromXanthophyllomyces dendrorhous. Mol Gen Genet,1999a,262:453-461
    [45] Verdoes JC, Misawa N, van Ooyen AJ. Cloning and characterization of theastaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomycesdendrorhous. Biotechnol Bioeng,1999b,63:750-755
    [46] Ojima K, Breitenbach J, Visser H, et al. Cloning of the astaxanthin synthase genefrom Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as abeta-carotene-3-hydroxylase/4-ketolase. Mol Genet Genomics,2006,275:148-158
    [47] álvarez V, Rodríguez-Sáiz M, de la Fuente JL, et al. The crtS gene ofXanthophyllomyces dendrorhous encodes a novel cytochrome-P450hydroxylaseinvolved in the conversion of β-carotene into astaxanthin and other xanthophylls.Fungal Genet Biol,2006,43:261-272
    [48] Martín JF, Gudi a E, Barredo JL. Conversion of beta-carotene into astaxanthin: Twoseparate enzymes or a bifunctional hydroxylase-ketolase protein? Microb Cell Fact,2008,7:3
    [49] Alcaíno J, Barahona S, Carmona M, et al. Cloning of the cytochrome p450reductase (crtR) gene and its involvement in the astaxanthin biosynthesis ofXanthophyllomyces dendrorhous. BCM Microbiol,2008,8:169-181
    [50] Ukibe K, Hashida K, Yoshida N, et al. Metabolic engineering of Saccharomycescerevisiae for astaxanthin production and oxidative stress tolerance. Appl EnvironMicrobiol,2009,75:7205-7211
    [51] An GH, Cho MH, Johnson EA. Monocyclic carotenoid biosynthetic pathway in theyeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous). J Biosci Bioeng,1999,88:189-193
    [52] Johnson EA. Phaffia rhodozyma: colorful odyssey. Int Microbiol,2003,6:169-174
    [53] Libkind D, Ruffini A, van Broock M, et al. Biogeography, host specificity, andmolecular phylogeny of the basidiomycetous yeast Phaffia rhodozyma and its sexualform, Xanthophyllomyces dendrorhous. Appl Environ Microbiol,2007,73:1120-1125
    [54] Libkind D, Moliné M, de García V, et al. Characterization of a novel SouthAmerican population of the astaxanthin producing yeast Xanthophyllomycesdendrorhous (Phaffia rhodozyma). J Ind Microbiol Biotechnol,2008,35:151-158
    [55] Kucsera J, Pfeiffer I, Ferenczy L. Homothallic life cycle in the diploid red yeastXanthophyllomyces dendrorhous (Phaffia rhodozyma). Antonie Leeuwenhoek,1998,73:163-168
    [56] An GH, Schuman DB, Johnson EA. Isolation of Phaffia rhodozyma mutants withincreased astaxanthin content. Appl Environ Microbiol,1989,55:116-124
    [57] Lewis MJ, Ragot N, Berlant MC, et al. Selection of astaxanthin-overproducingmutants of Phaffia rhodozyma with beta-ionone. Appl Environ Microbiol,1990,56:2944-2945
    [58] Fang TJ, Cheng YS. Isolation of astaxanthin over-producing mutants of Phaffiarhodozyma and their fermentation kinetics. Zhonghua MinGuo WeiShengWu JiMianYi Xue ZaZhi,1992,25:209-222
    [59] An GH, Bielich J, Auerbach R, et al. Isolation and characterization of carotenoidhyperproducing mutants of yeast by flow cytometry and cell sorting. Biotechnol NY,1991,9:70-73
    [60] Ukibe K, Katsuragi T, Tani Y, et al. Efficient screening for astaxanthin-overproducing mutants of the yeast Xanthophyllomyces dendrorhous by flowcytometry. FEMS Microbiol Lett,2008,286:241-248
    [61] Sun N, Lee S, Song KB. Characterization of a carotenoid hyperproducing yeastmutant isolated by low-dose gamma irradiation. Int J Food Microbiol,2004,94:263-267
    [62] Liu ZQ, Zhang JF, Zheng YG, et al. Improvement of astaxanthin production by anewly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation. JAppl Microbiol,2008,104:861-872
    [63] Lodato P, Alcaíno J, Barahona S, et al. Study of the expression of carotenoidbiosynthesis genes in wild-type and deregulated strains of Xanthophyllomycesdendrorhous (ex.: Phaffia rhodozyma). Biol Res,2004,37:83-93
    [64] Lodato P, Alcaíno J, Barahona S, et al. Expression of the carotenoid biosynthesisgenes in Xanthophyllomyces dendrorhous. Biol Res,2007,40:73-84
    [65] Wery J, Gutker D, Renniers AC, et al. High copy number integration into theribosomal DNA of the yeast Phaffia rhodozyma. Gene,1997,184:89-97
    [66] Martin MA, Acheampong E, Patel RT. Production of astaxanthin by Phaffiarhodozyma using peat hydrolysates as substrate. J Chem Technol Biotechnol,1993,58:223-230
    [67] Moriel DG, Chociai MB, Pereira Machado IM, et al. Effect of feeding methods onthe astaxanthin production by Phaffia rhodozyma in fed-batch process. Braz ArchBiol Technol,2005,48:397-401
    [68] Meyer PS, du Preez JC. Astaxanthin production by a Phaffia rhodozyma mutant ongrape juice. World J Microbiol Biotechnol,1994a,10:178-183
    [69] Domínguez-Bocanegra AR, Torres-Mu oz JA. Astaxanthin hyperproduction byPhaffia rhodozyma (now Xanthophyllomyces dendrorhous) with raw coconut milkas sole source of energy. Appl Microbiol Biotechnol,2004,66:249-252
    [70] Haard NF. Astaxanthin formation by the yeast Phaffia rhodozyma on molasses.Biotechnol Lett,1988,10:609-614
    [71] Ramírez J, Obledo N, Arellano M, et al. Astaxanthin production by Phaffiarhodozyma in a fed-batch culture using a low cost medium feeding. e-Gnosis,2006,4:1-9
    [72] Tinoi J, Rakariyatham N, Deming RL. Utilization of mustard waste isolates forimproved production of astaxanthin by Xanthophyllomyces dendrorhous. J IndMicrobiol Biotechnol,2006,33:309-314
    [73] Vázquez M, Martín AM. Optimization of Phaffia rhodozyma continuous culturethrough response surface methodology. Biotechnol Bioeng,1998,57:314-320
    [74] An GH, Jang BG, Cho MH. Cultivation of the carotenoid-hyperproducing mutant2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) withmolasses. J Biosci Bioeng,2001,92:121-125
    [75] Liu YS, Wu JY. Hydrogen peroxide-induced astaxanthin biosynthesis and catalaseactivity in X. dendrorhous. Appl Microbiol Biotechnol,2006b,73:663-668
    [76] Kim SK, Lee JH, Lee CH, et al. Increased carotenoid production inXanthophyllomyces dendrorhous G276using plant extracts. J Microbiol,2007,45:128-132
    [77] de la Fuente JL, Rodríguez-Sáiz M, Schleissner C, et al. High-titer production ofastaxanthin by the semi-industrial fermentation of Xanthophyllomyces dendrorhous.J Biotechnol,2010,148(2-3):144-146
    [78] Ni H, Chen QH, Ruan H, et al. Studies on optimization of nitrogen sources forastaxanthin production by Phaffia rhodozyma. J Zhejiang Univ Sci B,2007,8:365-370
    [79] Wang W, Yu L. Effects of oxygen supply on growth and carotenoids accumulationby Xanthophyllomyces dendrorhous. Z Naturforsch C,2009,64:853-858
    [80] Yamane Y, Higashida K, Nakashimada Y, et al. Influence of oxygen and glucose onprimary metabolism and astaxanthin production by Phaffia rhodozyma in batch andfed-batch cultures: kinetic and stoichiometric analysis. Appl Environ Microbiol,1997,63:4471-4478
    [81] Lu M, Ji L, Liu Y, et al. Kinetic model for optimal feeding strategy in astaxanthinproduction by Xanthophyllomyces dendrorhous. Sheng Wu Gong Cheng Xue Bao,2008,24:1937-1942
    [82] Kim JH, Kang SW, Kim SW, et al. High-level production of astaxanthin byXanthophyllomyces dendrorhous mutant JH1using statistical experimental designs.Biosci Biotechnol Biochem,2005,69:1743-1748
    [83] Hu ZC, Zheng YG, Wang Z, et al. Production of astaxanthin by Xanthophyllomycesdendrorhous ZJUT46with fed-batch fermentation in2.0m3fermentor. FoodTechnol Biotechnol,2007,45:209-212
    [84] Zheng YG, Hu ZC, Wang Z, et al. Large-scale production of astaxanthin byXanthophyllomyces dendrorhous. Food Bioprod Process,2006,84:164-166
    [85] Liu YS, Wu JY. Perfusion culture process plus H2O2stimulation for efficientastaxanthin production by Xanthophyllomyces dendrorhous. Biotechnol Bioeng,2007,97:568-573
    [86] Okagbue RN, Lewis MW. Autolysis of the red yeast Phaffia rhodozyma: a potentialtool to facilitate extraction of astaxanthin. Biotechnol Lett,1984,6:247-250
    [87] Nghiem NP, Montanti J, Johnston D. Production of astaxanthin from corn fiber as avalue-added co-product of fuel ethanol fermentation. Appl Biochem Biotechnol,2009,154:48-58
    [88] Hayman GT, Mannarelli BM, Leathers TD. Production of carotenoids by Phaffiarhodozyma grown on media composed of corn wet-milling co-products. J IndMicrobiol,1995,14:389-395
    [89] Jirasripongpun K, Pewlong W, Kitraksa P, et al. Carotenoid production byXanthophyllomyces dendrorhous: use of pineapple juice as a production medium.Lett Appl Microbiol,2008,47:112-116
    [90] Ramírez CJ, Nú ez ML, Valdivia R. Increased astaxanthin production by a Phaffiarhodozyma mutant grown on date juice from Yucca fillifera. J Ind Microbiol,2000,24:187-190
    [91] Acheampong EA, Martin AM. Kinetic studies on the yeast Phaffia rhodozyma. JBasic Microbiol,1995,35:147-155
    [92] Parajó JC, Santos V, Vázquez M. Production of carotenoids by Phaffia rhodozymagrowing on media made from hemicellulosic hydrolysates of Eucaliptus globuluswood. Biotechnol Bioeng,1998,59:501-506
    [93] Vázquez M, Santos V, Parajó JC. Fed-batch cultures of Phaffia rhodozyma inxylose-containing media made from wood hydrolysates. Food Biotechnol,1998,12:43-55
    [94] Fontana JD, Guimar es MF, Martins NT, et al. Culture of the astaxanthinogenicyeast Phaffia rhodozyma in low-cost media. Appl Biochem Biotechnol,1996,57-58:413-422
    [95] Fontana JD, Chocial MB, Baron M, et al. Astaxanthinogenesis in the yeast Phaffiarhodozyma: optimization of low-cost culture media and yeast cell-wall lysis. ApplBiochem Biotechnol,1997,63-65:305-314
    [96] Nelis HJ, de Leenheer AP. Microbial sources of carotenoid pigments used in foodsand feeds. J Appl Bacteriol,1991,70:181-191
    [97] Florencio JA, Soccol CR, Furlanetto LF, et al. A factorial approach for a sugarcanejuice-based low cost culture media: increasing the astaxanthin production by the redyeast Phaffia rhodozyma. Bioprocess Eng,1998,19:161-164
    [98] Gu WL, An GH, Johnson EA. Ethanol increases carotenoid production in Phaffiarhodozyma. J Ind Microbiol Biotechnol,1997,19:114-117
    [99] Liu YS, Wu JY. Use of n-hexadecane as an oxygen vector to improve Phaffiarhodozyma growth and carotenoid production in shake-flask cultures. J ApplMicrobiol,2006a,101:1033-1038
    [100] Ramírez J, GutiérrezH, Gschaedler A. Optimization of astaxanthin production byPhaffia rhodozyma through factorial design and response surface methodology. JBiotechnol,2001,88:259-268
    [101] Palágyi ZS, Ferenczy L, Vágv lgyi Cs. Carbon-source assimilation pattern of theastaxanthin-producing yeast Phaffia rhodozyma. World J Microbiol Biotechnol,2001,17:95-97
    [102] An GH, Johnson EA. Influence of light on grow and pigmentation of the yeastPhaffia rhodozyma. Antonie Leeuwenhoek,1990,57:191-203
    [103] Meyer PS, du Preez JC. Effect of culture conditions on astaxanthin production by amutant of Phaffia rhodozyma in batch and chemostat culture. Appl MicrobiolBiotechnol,1994b,40:780-785
    [104] Vázquez M. Effect of the light on carotenoid profiles of Xanthophyllomycesdendrorhous strains (formerly Phaffia rhodozyma). Food Technol Biotechnol,2001,39:123-128
    [105] Schroeder WA, Johnson EA. Singlet oxygen and peroxyl radicals regulatecarotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem,1995,270:18374-18379
    [106] Wang W, Yu L, Zhou P. Effects of different fungal elicitors on growth, totalcarotenoids and astaxanthin formation by Xanthophyllomyces dendrorhous.Bioresour Technol,2006,97:26-31
    [107] Liu YS, Wu JY. Modeling of Xanthophyllomyces dendrorhous growth on glucoseand overflow metabolism in batch and fed-batch cultures for astaxanthin production.Biotechnol Bioeng,2008,101:996-1004
    [108] Strohl WR, Schmidt TM, Lawry NH, et al. Characterization of Vitreoscillabeggiatodes and Vitreoscilla filifornis sp. nov., nom, rev., and comparison withVitreoscilla stercoraria and Beggiatoa alba. Int J syst Bacteriol,1986,36:302-313
    [109] Tyree B, Webster DA. The binding of cyanide and carbon monoxide to cytochromeo purified from Vitreoscilla. Evidence for subunit interaction in the reduced protein.J Biol Chem,1978,253(19):6988-6991
    [110] Joshi M, Mande S, Dikshit KL. Hemoglobin Biosynthesis in Vitreoscilla stercorariaDW: Cloning, Expression, and Characterization of a New Homolog of a BacterialGlobin Gene. Appl Environ Microbiol,1998,64:2220-2228
    [111] Wakabayashi S, Matsubara H, Webster DA. Primary sequence of a dimeric bacterialhaemoglobin from Vitreoscilla. Nature,1986,322(6078):481-483
    [112] Choc MG, Webster DA, Caughey WS. Oxygenated intermediate and carbonylspecies of cytochrome o (Vitreoscilla). Characterization by infrared spectroscopy. JBiol Chem,1982,257(2):865-869
    [113] Khosla C, Bailey JE. Heterologous expression of a bacterial hemoglobin improvesthe growth properties of recombinat E. coli. Nature,1988,381(6157):633-635
    [114]李莉莉.透明颤菌血红蛋白基因和λ噬菌体裂解基因在产聚羟基烷酸重组大肠杆菌中作用的研究:[硕士学位论文].北京:中国农业大学,2004
    [115] Dikshit KL, Webster DA. Cloning, characterization and expression of the bacterialglobin gene from Vitreoscilla in Escherichia coli. Gene,1988,70(2):377-386
    [116] Khosla C, Bailey JE. The Vitreoscilla hemoglobin gene: molecular cloning,nucleotide sequence and genetic expressionin Escherichia coli. Mol Gen Genet,1988,214:158-161
    [117] Khosravi M, Webster DA, Stark BC. Presence of the bacterial hemoglobin geneimproves alpha-amylase production of a recombinant Escherichia coli strain.Plasmid,1990,24(3):190-194
    [118] Joshi M, Dikshit KL. Oxygen dependent regulation of Vitreoscilla globin gene:evidence for positive regulation by FNR. Biochem Biophys Res Commun,1995,202:535-552
    [119] Sharrocks AD, Green J, Guest JR. FNR activates and represses transcription in vitro.Proc Biol Sci,1991,245(1314):219-226
    [120] Spiro S, Guest JR. FNR and its role in oxygen-regulated gene expression inEscherichia coli. FEMS Microbiol Rev,1990,6(4):399-428
    [121]吴奕,杨胜利.透明颤菌血红蛋白基因调控与功能的研究,生物工程学报,1997,13(1):1-5
    [122] Khosla C, Bailey JE. Characterization of the Oxygen-Dependent Promoter of theVitreoscilla Hemoglobin Gene in Escherichia coli. J Bacteriol,1989,171(11):5995-6004
    [123]竺嘉. Vitreoscilla血红蛋白基因的研究:[博士学位论文].上海:中国科学院上海药物研究所,1994
    [124] Yang J, Webster DA, Stark BC. ArcA works with Fnr as a positive regulator ofVitreoscilla(bacterial)hemoglobin gene expression in Escherichia coli. MicrobiolRes,2005,160:405-415
    [125] Khosla C, Curtis JE, Bydalek P, et al. Expression of recombinant proteins inEscherichia coli using an oxygen-responsive promoter. Biotechnology (N/Y),1990,8(6):554-558
    [126] Wittenberg JB. The molecular mechanism of hemoglobin-facilitated oxygendiffusion. J Biol Chem,1996,241:104-114
    [127] Kallio PT, Kim DJ, Tsai PS, et al. Intracellular expression of Vitreoscillahemoglobin alters Escherichia coli energy metabolism under oxygen-limitedconditions. Eur I Biochem,1994,219:201-208
    [128]周艳芬,赵晓瑜,静天玉等.透明颤菌血红蛋白的生理功能机制与应用.河北大学学报,2003,26:139-141
    [129] Tsai PS, Nageli M, Bailey JE. Intracellular expression of Vitreoscilla hemoglobinmodifies microaerobic Escherichia coli metabolism through elevated concentrationand specific activity of cytochrome o. Biotechnol Bioeng,2002,79(5):558-567
    [130] Chen W, Hughes DE, Bailey JM. Intracellular expression of Vitreoscilla hemoglobinalters the aerobic metabolism of Saccharomyces cerevisiae. Biotechol Prog,1994,10(3):308-313
    [131] Zhang L, Li Y, Wang Z, et al. Recent developments and future prospects ofVitreoscilla hemoglobin application in metabolic engineering. Bitechnol Adv,2007,25(2):123-126
    [132] Suthar DH, Chattoo BB. Expression of Vitreoscilla hemoglobin enhances growthand levels of alpha-amylase in Schwanniomyces occidentalis. Appl MicrobiolBiotechnol,2006,72(1):94-102
    [133] Chien LJ, Lee CK. Expression of bacterial hemoglobin in the yeast, Pichia pastoris,with a low O2-induced promoter. Biotechnol Lett,2005,27:1491-1497
    [134] Aydin S, Webster DA, Stark BC. Nitrite inhibition of Vitreoscilla hemoglobin (VHb)in recombinant E. coli: direct evidence that VHb enhances recombinant proteinproduction. Biotechnol Prog,2000,16:917-921
    [135] Kallio PT, Bailey JE. Intracellular expression of Vitreoscilla hemoglobin (VHb)enhances total protein secretion and improves the production of alpha-amylase andneutral protease in Bacillus subtilis. Biotechnol Prog,1996,12:31-39
    [136] Khosla C, Curtis JE, DeModena J, et al. Expression of intracellular hemoglobinimproves protein synthesis in oxygen-limited Escherichia coli. Biotechnology,1990,8:849-853
    [137] Zhu H, Sun S, Zhang S. Enhanced production of total flavones andexopolysaccharides viaVitreoscilla hemoglobin biosynthesis in Phellinus igniarius.Bioresour Technol,2011,102(2):1747-1451
    [138] Dogan I, Pagilla KR, Webster DA, et al. Expression of Vitreoscilla hemoglobin inGordonia amarae enhances biosurfactant production. J Ind Microbiol Biotechnol,2006,33:693-700
    [139] Geckil H, Arman A, Gencer S, et al. Vitreoscilla hemoglobin renders Enterobacteraerogenes highly susceptible to heavy metals. Biometals,2004a,17:715-723
    [140] Geckil H, Barak Z, Chipman DM, et al. Enhanced production of acetoin andbutanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobingene. Bioprocess Biosyst Eng,2004b,26:325-330
    [141] Yu HM, Shi Y, Zhang YP. Introduction of Vitreoscilla hemoglobin gene in arecombinant E. coli for PHB production. Wei Sheng Wu Xue Bao,2001,41:548-552
    [142] He P, Lu D, Wang Q, et al. Cloning and expression of VHB gene in D-arabitolproducing yeast. Wei Sheng Wu Xue Bao,2001,41:315-319
    [143] DeModena JA, Gutiérrez S, Velasco J, et al. The production of cephalosporin C byAcremonium chrysogenum is improved by the intracellular expression of a bacterialhemoglobin. Biotechnology,1993,11:926-929
    [144] Brunker P, Minas W, Kallio PT, et al. Genetic engineering of an industrial strain ofSaccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobingene (vhb). Microbiology,1998,144:2441-2448
    [145] Minas W, Brünker P, Kallio PT, et al. Improved erythromycin production in agenetically engineered industrial strain of Saccharopolyspora erythraea. BiotechnolProg,1998,14:561-566
    [146] Wen Y, Song Y, Li JL. The effects of Vitreoscilla hemoglobin expression on growthand antibiotic production in Streptomyces cinnamonensis. Sheng Wu Gong ChengXue Bao,2001,17:24-28
    [147] Meng C, Ye Q, Shi X, et al. Cloning and expression of Vitreoscilla hemoglobin inStreptomyces aureofaciens. Wei Sheng Wu Xue Bao,2002,42:305-310
    [148] So J, Webster DA, Stark BC, et al. Enhancement of2,4-dinitrotoluenebiodegradation by Burkholderia sp. in sand bioreactors using bacterial hemoglobintechnology. Biodegradation,2004,15:161-171
    [149] Kim Y, Webster DA, Stark BC. Improvement of bioremediation by Pseudomonasand Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vhb) integratedinto their chromosomes. J Ind Microbiol Biotechnol,2005,32:148-154
    [150] Liu SC, Liu YX, Webster DA, et al. Genetic engineeringto contain the Vitreoscillahemoglobin gene enhances degradation of benzoic acid by Xanthomonasmathophillia. Biotechnol Bioeng,1996,49:101-105
    [151] Lin JM, Stark BC, Webster DA. Effects of Vitreoscilla hemoglobin on the2,4-dinitrotoluene (2,4-DNT) dioxygenase activity of Burkholderia and on2,4-DNTdegradation in two-phase bioreactors. J Ind Microbiol Biotechnol,2003,30:362-368
    [152] Urgun-Demirtas M, Pagilla KR, Stark BC, et al. Biodegradation of2-chlorobenzoate by recombinant Burkholderia cepacia expressing Vitreoscillahemoglobin under variable levels of oxygen availability. Biodegradation,2003,14:357-365
    [153] Urgun-Demirtas M, Pagilla KR, Stark BC. Enhanced kinetics of geneticallyengineered Burkholderia cepacia: the role of vhb in the hypoxic metabolism of2-CBA. Biotechnol Bioeng,2004,87:110-118
    [154] Zhu H, Wang TW, Sun SJ, et al. Chromosomal integration of the Vitreoscillahemoglobin gene and its physiological actions in Tremella fuciformis. ApplMicrobiol Biotechnol,2006,72(4):770-776
    [155] Khleifat KM. Correlation between bacterial hemoglobin and carbon sources: theireffect on copper uptake by transformed E. coli strain alpha DH5. Curr Microbiol,2006,52:64-68
    [156] Erenler SO, Gencer S, Geckil H, et al. Cloning and expression of the Vitreoscillahemoglobin gene in Enterobacter aerogenes: effect on cell growth and oxygenuptake. Appl Biochem Microbiol,2004,40:241-248
    [157] Wu JM, Hsu TN, Lee CK. Expression of the gene coding for bacterial hemoglobinimproves beta-galactosidase production in a recombinant Pichia pastoris.Biotechnol Lett,2003,25:1457-1462
    [158] Frey AD, Farres J, Bollinger CJ, et al. Bacterial hemoglobins and flavohemoglobinsfor alleviation of nitrosative stress in Escherichia coli. Appl Environ Microbiol,2002,68:4835-4840
    [159]章银梅,李心治,黄凡等.血红蛋白基因在枯草芽孢杆菌中的表达及其作用的研究.遗传学报,2000,27:183-188
    [160]贺鹃,卢大军,王钦宏.细菌血红蛋白基因在产D-阿拉伯糖醇酵母菌中的克隆与表达.微生物学报,2001,41:315-319
    [161]范楠,李炎,周全.透明颤菌血红蛋白的表达对酵母中麦角固醇合成的影响.生物工程学报,2004,20:441-444
    [162] Esteve-Nunez A, Caballero A, Ramos JL. Biological degradation of2,4,6-trinitrotoluene. Microbiol Mol Biol Rev,2001,65:335-352
    [163] Holmberg N, Lilius G, Bailey JE, et al. Transgenic tobacco expressing Vitreoscillahemoglobin exhibits enhanced growth and altered metabolite production. NatBiotechnol,1997,15:244-247
    [164]朱国萍.(一)7号淀粉酶链霉菌M1033GI双点突变体GIGl38P-G247D的构建、性质的初步分析及通过穿梭载体实现其在变铅青链霉菌TK54中的表达;(二)透明颤菌血红蛋白(VHb)转基因油菜的构建及检测:[博士学位论文].合肥:中国科学技术大学图书馆,2001
    [165]毛自朝,胡鸢雷,钟瑾等.粪透明颤菌血红蛋白基因促进转基因矮牵牛在水培条件下生长并增强其抗涝能力.植物学报,2003,45:205-210
    [166]杨翠竹,李艳,阮南等.酵母细胞破壁技术研究与应用进展.食品科技,2006,7:138-142
    [167]陈晓明,徐学明,金征宇.法夫酵母的碱法破壁.淮阴工学院学报,2000,9(4):24-29
    [168]倪辉,何国庆,杨远帆等.法夫酵母虾青素提取工艺的优化研究.农业工程学报,2004,20(2):204-207
    [169]李兴鸣,徐学明.法夫酵母的酶法破壁研究.粮食与饲料工业,2006,6:38-39
    [170]曾子丹,姚朔影.红法夫酵母酶法提取条件研究.食品工业科技,2007,28(8):91-93
    [171]蹇华丽,梁世中,宋光均.红法夫酵母与环状芽孢杆菌混合培养破壁提取虾青素的研究.食品与发酵工业,2007,33(7):6-9
    [172]林晓.高产虾青素红法夫酵母的选育及菌种特性研究:[硕士学位论文].武汉:华中科技大学图书馆,2007
    [173] Sun N, Wang Y, Li YT, et al. Sugar-based growth, astaxanthin accumulation andcarotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta).Process Biochem,2008,43:1288-1292
    [174] Jia SR, Chen GB, Kahar P, et al. Effect of soybean oil on oxygen transfer in theproduction of tetracycline with an airlift bioreactor. J Biosci Bioeng,1999,87:825-827
    [175] Giuseppin MLF. Effects of dissolved oxygen concentration on lipase production byRhizopus delemar. Appl Microbiol Biotechnol,1984,20:161-165
    [176] Wecker A, Onken U. Influence of dissolved oxygen concentration and shear rate onthe production of pullulan by Aureobasidium pullulans. Biotechnol Lett,1991,13:155-160
    [177] Ausubel FM, Brent R, Kingston RE, et al.精编分子生物学实验指南(第四版).北京:科学出版社,2005:22-24,26,55-58
    [178] Visser H, Sandmann G, Verdoes JC. Xanthophylls in Fungi: Metabolic Engineeringof the Astaxanthin Biosynthetic Pathway in Xanthophyllomyces dendrorhous.Microbial Processes and Products, Methods in Biotechnology,2005,18:257-272
    [179] Kim WK, Mauthe W. Isolation of high molecular weight DNA and double-strandedRNAs from fungi. Can J Bot,1990,68:1898-902
    [180]于慧敏,尹进,李红旗等.透明颤菌血红蛋白基因在产PHB重组大肠杆菌中的克隆表达.清华大学学报,2000,40(2):32-35
    [181]Silar P. Two new easy to use vectors for transformations. Fungal Genet Newsl,1995,42:73
    [182] Bailey-Shrode L, Ebbole DJ. The fluffy gene of Neurospora crassa is necessary andsufficient to induce conidiophore development. Genetics,2004,166:1741-1749
    [183]任志红,徐平,王富强等.产黄青霉工业生产菌种基因报告系统的构建及启动子效率的评价.菌物学报,2005,24(3):376-384
    [184] Lu MB, Zhang YE, Zhao CF, et al. Analysis and identification of astaxanthin and itscarotenoid precursors from Xanthophyllomyces dendrorhous by high-performanceliquid chromatography. Z Naturforsch,2010,65c:489-494
    [185] Datta R, Tsai SP, Bonsignore P, et al. Technological and economic potential ofpoly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev,1995,16:221-231
    [186] Vu DT, Lira CT, Asthana NS, et al. Vapor Liquid Equilibria in the Systems EthylLactate+Ethanol and Ethyl Lactate+Water. J Chem Eng Data,2006,51:1220-1225
    [187] Gentles A, Haard NF. Pigmentation of rainbow trout with enzyme-treated andspray-dried Phaffia rhodozyma. Prog Fish-culture,1991,53:1-6
    [188] Storebakken T, S rensen M, Bjerkeng B, et al. Stability of astaxanthin from the redyeast, Xanthophyllomyces dendrorhous, during feed processing: effects ofenzymatic cell wall disruption and extrusion temperature. Aquaculture,2004,231:489-500
    [189] Johnson EA, An GH. Astaxanthin from microbial sources. Crit Rev Biotechnol,1991,11:297-326