飞秒激光显微操作进行单细胞水平的虾青素生物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单细胞技术在研究细胞的生化组成与行为特性的关系,细胞之间及细胞与环境的关系和胞内反应动力学等方面有重要意义,对于高产株的筛选等生物工程问题的解决也有方法学的意义。飞秒激光的高时间分辨率和空间分辨率以及以极小的单脉冲能量便可获得极高的峰值功率的特性,使其在单细胞研究中有独到的优势。本文以雨生红球藻和红发夫酵母为研究对象,以飞秒激光显微操作系统为实验平台,围绕在单细胞水平的虾青素高产株选育,进行了系列研究。
     研究了飞秒激光光镊对活体单细胞的捕获。测出了飞秒光镊捕捉细胞的Q值,比较了飞秒激光光镊和连续激光光镊对单细胞的捕获能力,从理论和实验两个方面证明了飞秒激光和连续激光一样可以作为光镊的光源使用。另外,对光子晶体光纤用作光镊进行了初步的尝试。
     首次进行了飞秒光镊对细胞活性影响的系统研究,通过研究飞秒光镊的功率和作用时间对细胞活性的影响,给出用飞秒光镊进行活体单细胞操作的参数范围。以飞秒光镊对单细胞的捕捉为基础,成功实现了细胞悬液中活体单细胞的转移培养。
     首次将飞秒激光作为诱变方法用于虾青素高产株的选育。分别对雨生红球藻和红发夫酵母用飞秒激光在单细胞水平进行了诱变处理,结果表明飞秒激光对雨生红球藻的单细胞诱变有一定的效果。在用光谱的方法直接检测单细胞的虾青素含量方面做了初步的探索,实现了红发夫酵母单细胞中虾青素含量的测试。
     首次实现了飞秒激光诱导细胞融合。以飞秒激光显微操作系统为实验平台,以红发夫酵母为对象,实现了飞秒激光诱导的细胞融合;对影响飞秒激光诱导细胞融合的因素进行了分析;在此基础上,对其机理进行了研究,提出了飞秒激光诱导细胞融合的模型。
Single-cell techniques have been used to describe the composition and activities of cells, have been a key element in revealing the relationship of environmental distribution and activities of microorganisms, and have been used to detail dynamics of reactions in cells. Single-cell methods have also been essential to understanding problems in bioengineering such as the screening of high-product strains. Femtosecond laser has attractive in single-cell research for high temporal resolution and high spatial resolution. Study of astaxanthin biosynthesize at single cell level was performed with Haematococcus pluvialis and Phaffia rhodozyma by femtosecond laser manipulation in this article.
     The trapping of living cells by femtosecond laser tweezers was been studied. Q-value of femtosecond laser tweezers was measured and the trapping capability of femtosecond laser and continuous wave was compared. The result proved that femtosecond laser could be used as optical tweezers as well as continuous laser. Additional, a primary attempt was made in using optical crystal fiber as optical tweezers.
     A system study of activity of cells in the trapping of femtosecond laser tweezers was performed by the analysis of the effect of laser power and exposure time on cell activity. The range of laser power and exposure time for safe trapping has been provided. The transfer of single cell from the suspension to plate has been achieved successfully on the base of the trapping by femtosecond laser.
     Femtosecond laser pulse has been used as the method of mutagenesis for the first time. The cells of Haematococcus pluvialis and Phaffia rhodozyma have been treated with femtosecond laser at single cell level. The results showed that the mutagenesis by femtosecond laser at single cell level succeed for Haematococcus pluvialis while failed for Phaffia rhodozyma. A primary attempt was carry out in detecting of astaxanthin content in single cell by microspectroscopic method.
     The preparation of protoplast of Haematococcus pluvialis and Phaffia rhodozyma has been accomplished through the selection of appropriate enzyme and the analysis of conditions.
     Femtosecond laser induced cell fusion was achieved for the first time. The fusion of Phaffia rhodozyma protoplast was performed with femtosecond laser manipulation system. The factor which may affect the result of femtosecond laser induce fusion was investigated and the possible mechanism was studied. A hypothetical model of cell fusion induced by femtosecond laser was presented on the base of experimental result.
引文
1 Hutchison III C A, Venter J C. Single-cell genomics. Nature biotechnology, 2006, 24(6): 657-658
    2林炳承,秦建华.微流控芯片实验室.科学出版社.2006年7月
    3 Wang H Y, Lu C. High-throughput and real-time study of single cell electroporation using microfluidics: effects of medium osmolarity. Biotechnology and Bioengineering, 2006, 95(6): 1116-1125
    4 Xie C G, Chen De, Li Y Q. Raman sorting and identification of single living micro-organisms with optical tweezers. Opt. Lett. , 2005, 30(14): 1800-1803.
    5 Zhang Hua, Jin Wenrui. Single-cell analysis by intracellular immuno-reaction and capillary electrophoresis with laser-induced fluorescence detection. Journal of Chromatography A, 2006,1104: 346-351
    6 Xiao Hua, Li Xin, Zou Hanfa,et al. Immunoassay of P-glycoprotein on single cell by capillary electrophoresis with laser induced fluorescence detection. Analytica Chimica Acta, 2006, 556:340-346
    7 Zhi Qing, Xie Chao, Huang Xiangyi, et al. Coupling chemiluminescence with capillary electrophoresis to analyze single human red blood cells. Analytica Chimica Acta, 2007, 583:217-222
    8 Sun Yue, Lu Min, Yin Xue-Feng, et al. Intracellular labeling method for chip-based capillary electrophoresis fluorimetric single cell analysis using liposomes. Journal of Chromatography A, 2006,1135:109-114
    9 Lu Xin, Huang Wei-Hua, Wang Zong-Li, Cheng Jie-Ke. Recent developments in single-cell analysis. Analytica Chimica Acta, 2004,510:127–138
    10 El-Ali J, Sorger P K, Jensen K F. Cells on chips. Nature, 2006, 442: 403-411
    11 Heisterkamp A, Maxwell I Z, Mazur E, et al. Pulse energy dependence of subcellular dissection by femtosecond laser pulses. Opt. Express, 2005, 13: 3690-3696
    12 Tirlapur U K., K?nig K. Targeted transfection by femtosecond laser. Nature,2002, 418(18): 290-291
    13 Shen N, Datta D, Schaffer C B, et al. Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser microscissors. Mech. Chem. Biosyst., 2005, (2): 17-26
    14 Watanabe W, Arakawa N, Matsunaga S, et al. Femtosecond laser disruption of subcellular organelles in a living cell. Opt. Express, 2004, 12(18): 4203-4213
    15 Ashkin A, Dziedic J M, Bjorkbolm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particle. Opt. Lett., 1986, 11(5): 288-290
    16 Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria. Science, 1987, 235: 1517-1520
    17 Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 330: 769-771
    18 Xing Q R, Mao F L, Chai L, et al. Numerical modeling and theoretical analysis of femtosecond laser tweezers. Opti. Laser Technol., 2004, 36: 635-639
    19 Agate B, Brown C T A, Sibbett W, et al. Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt. Express, 2004, 12(13): 3011-3017
    20 Mao F L, Xing Q R, Wang K, et al. Optical trapping of red blood cells and two-photon excitation-based photodynamic study using a femtosecond laser. Opt. Commun., 2005, 256: 358-363
    21 Goks?r M, Enger J, Hanstorp D. Optical manipulation in combination with multiphoton microscopy for single-cell studies. Appl. Opt., 2004, 43(25): 4831-4837
    22 Lim C.T., Dao M., Suresh S., et al. Large deformation of living cells using laser traps. Acta Materialia, 2004, 52: 1837-1845
    23 Simpsona K H, Bowdenb M G, Peacockc S J, et al. Adherence of Staphylococcus aureus fibronectin binding protein A mutants: an investigation using optical tweezers. Biomol. Eng., 2004, 21: 105-111
    24 Wakamoto Y, Ramsden J, Yasuda K. Single-cell growth and division dynamics showing epigenetic correlations. The Analyst, 2005, 130(3): 311-317
    25 Stracke F, Rieman I, K?nig K. Optical nanoinjection of macromolecules into vital cells. J. Photoch. Photobio. B, 2005, 81:136-142
    26 Zeira E, Manevitch A, Khatchatouriants A, et al. Femtosecond infrared laser - an efficient and safe in vivo gene delivery system for prolonged expression. Mol. Therapy, 2003, 8: 342-350
    27 Sibbett W, Gunn-Moore F, Dholakia K. Optical transfection of mammalian cells. In: Grzymala, Romualda. Biophotonics and New Therapy Frontiers. Strasbourg, France: SPIE, 2006: 3-7
    28 Stevenson D, Agate B, Tsampoula X,et al.Femtosecond optical transfection of cells: viability and efficiency. Opt. Express, 2006, 14(16): 7125-7133
    29 Ohkohchi N, Itagaki H, Doi H. New technique for producing hybridoma by using laser radiation. Lasers Surg. Med., 2000, 27(3): 262-268
    30 Bayoudh S, Mehta M, Rubinsztein-dunlop H, et al. Micromanipulation of chloroplasts using optical tweezers. J. Microsc., 2001,230:214-222
    31 Meimberg H., Thalhammer S, Brachmann A, et al. Selection of Chloroplasts byLaser Microbeam Microdissection for Single-Chloroplast PCR. BioTechniques, 2003, 34:1238-1243
    32 Liu X H,Wang H W,Li Y M, et al. Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap. J. Biotechnol., 2004,109 (3): 217-226
    33 Kubickova S, Cernohorska H, Musilova P, et al. The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res., 2002,10: 571-577
    34 Thalhammer S, Langer S, Speicher MR, et a1. Generation of chromosome painting probes from single chromosomes by laser microdissection and linker-adaptor PCR. Chromosome Res, 2004, 12(4): 337-343
    35 Zhuang X. Unraveling DNA Condensation with Optical Tweezers. Science, 2004, 305: 188-190
    36 Bryant Z, Stone M D, Gore J, et al. Structural transitions and elasticity from torque measurements on DNA. Nature 2003, 424:338-341
    37 Bockelmann U, Thomen P, Essevaz-Roulet B, et al.Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys. J., 2002, 82: 1537-1553
    38 Onoa B, Dumont S, Liphardt J, et al. Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science, 2003, 299:1892-1895
    39 Harlepp S, Marchal T, Robert J, et al. Probing complex RNA structure by mechanical force. Eur. Phys. J. E, 2003, 12:605-615
    40 Perkins T T, Dalal RV, Mitsis P G, et al. Sequence-dependent pausing of single lambda exonuclease molecules. Science, 2003, 301:1914-1918
    41 Mallik R, Carter B C, Lex S A, et al. Cytoplasmic dynein functions as a gear in response to load. Nature, 2004, 427: 649-652
    42 Burgess S A, Walker M L, Sakakibara H, et al. Dynein structure and power stroke. Nature, 2003, 421: 715-718
    43 Neuman K C, Abbondanzieri E A, Landick R, et al. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell, 2003, 115: 437-447
    44 Shaevitz J W, Abbondanzieri E A, Landick R, et al. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 2003, 426: 684-687
    45 Abbondanzieri E A, Greenleaf W J., Shaevitz J W, et al. Direct observation of base-pair stepping by RNA polymerase. Nature, 2005, 438: 460-465
    46 Harada Y. Studies on biomolecules using single molecule imaging and manipulation techniques. Sci. Technol. Adv. Mater, 2004, 5: 709-713
    47 Cecconi C, Shank E A, Bustamante C, et al. Direct observation of the three-state folding of a single protein molecule. Science, 2005, 309: 2057-2060
    48 Hendry G.A.F., Houghton J.D. Natual Food Colorants, second edition. Blanckie A&P, 1996
    49 Andrewes A. G., Borch G., Liaaen-Jensen S. et al. Animal carotenoids. 9. On the absolute configuration of astaxanthin and actinioerythrin. Acta Chem. Scand. 1974, B28: 730-734
    50 Andrewes A. G., Starr M.P. (3R,3’R)-Astaxanthin from the yeast Phaffia rhodozyma. Phytochemistry. 1976, 15: 1009-1011
    51 Obajimi O, Black K D, Glen I, et al. Antioxidant modulation of oxidant-stimulated uptake and release of arachidonic acid in eicosapentaenoic acid-supplemented human lymphoma U937 cells. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2007, 76(2): 65-71
    52 Briviba K, Bornemann R, Lemmer U. Visualization of astaxanthin localization in HT29 human colon adenocarcinoma cells by combined confocal resonance Raman and fluorescence microspectroscopy. Molecular Nutrition & Food Research, 2006, 50(11): 991 - 995
    53 Abe K, Hattori H, Hirano M. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chemistry, 2007, 100(2): 656-661
    54 Mcnulty H P, Byun J, Lockwood S F, et al. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2007, 1768(1): 167-174
    55 Santocono M, Zurria M, Berrettini M, et al. Lutein, zeaxanthin and astaxanthin protect against DNA damage in SK-N-SH human neuroblastoma cells induced by reactive nitrogen species. Journal of Photochemistry and Photobiology B: Biology, 2007(In Press)
    56 Santocono M, Zurria M, Berrettini M, et al. Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. Journal of Photochemistry and Photobiology B: Biology, 2006, 85(3): 205-215
    57 Hussein G, Nakagawa T, Goto H, et al. Astaxanthin ameliorates features of metabolic syndrome in SHR/NDmcr-cp. Life Sciences, 2007, 80(6): 522-529
    58 Suzuki Y, Ohgami K, Shiratori K, et al. Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-κB signaling pathway. Experimental Eye Research, 2006, 82(2): 275-281
    59 Anderson M. Method of Inhibiting 5-αReductase with Astaxanthin to prevent and Treat Begnign Prostate Hyperplasia (BPH) and Prostate Cancer in Human Males. US Patent #6277417, 2001
    60 Kurihara H. et al. Contribution of the antioxidative property of astaxanthin to itsprotective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life Sci. 2002, 70: 2509-2520
    61 Donkin P. Ketocarotenoids biosynthesis by Haematococcus lacustrus. Phytochemistry, 1976, 15: 711-715
    62 Droop M. R. Carotenogenesis in Haematococcus pluvialis, Nature 1955, 175:42
    63 Liu B. H., Lee Y. K. Composition and biosynthetic pathways co carotenoids in the astaxanthin-producing green alga Chlorococcum sp. Biotechnology letters. 1999, 21:1007-1010
    64 Bar E., Rise M., Vishkautasn M.et al. Pigement and structural changes in Chlorella zofingensis upon light and nitrogen stress. Journal of plant physiology. 1995, 146: 527-534
    65 Fraser P. D., Mirua Y., Misawa N. In vitro characterization of astaxanthin biosynthetic enzymes. Journal of Biological Chemistry. 1997, 272, 6128-6135
    66 Boussiba S. Carotenogenesis in the green alga Haematococcus pluvialis: celluar physiology and stress response. Physiol. Plant. 2000, 108: 111-117
    67 Lee P.C., Schmidt Dannert C. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 2002, 60: 1-11
    68 Hazen, T.E. The life history of Sphaerella lacustris. Mem. Torrey Bot. Club 1899,6(3): 376-381
    69 Santos M.F., Mesquita J.F. Ultrastructural study of Haematococcus lacustris(Girod) Rostafinski(Volvocates).I. some aspects of carotenogenesis Cytologia, 1984, 49: 215-228
    70殷明淼,刘建国,张京浦等.雨生红球藻和虾青素研究评述,海洋与湖沼, 1998, 2:53-61
    71 Kobayashi M.,Korimura Y., Kakizono T., Nishio N., Tsuji Y. Morphological changes in the life cycle of the green alga, Haematococcus pluvialis . J. Ferment. Bioeng. 1997, 84: 94-97
    72 Tan S., Cunningham F.X., Youmans M., Grabowski B. Cytocharome-floss in astaxanthin-accumulation red-cells of Haematococcus pluvilis (Chlorophyceae) comparison of photosynthetic enzymes and thylakoid membrane polypeptides in red and green cells J. Phycol. 1995, 31(60): 897-905
    73 Lee Y.K., Ding S.Y. Cell cycle and accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta) J. Phycol. 1994, 30: 445-449
    74 Chaumont D.,Thepenier C. Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle J. Appl. Phycol. 1995, 7: 529-537
    75 Hagen C., Grünewald K., Effect of cultivation parameters on growth andpigment biosynthesis in flagellated cells of Haematococcus pluvialis . J. Appl Phycol. 2001, 13: 79-87
    76 Kobayashi M., Kakizono T. Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions J. Ferment. Bioeng. 1992, 74:17-20
    77 Kobayashi M., Kakizono T., Nagai S. Enhanced carotenoid biosynthesis by oxidative stress in acetate induced cyst cells of a green unicellular alga Haematococcus pluvialis Appl. Environ. Microbiol. 1993, 59: 867-873
    78 Wang S.B., Hu Qiang Cell wall proteomics fo the green alga Haematococcus pluvialis (Chlorophyceae) Proteomics 2004, 4: 692-708
    79 Elliot A.M. Morphology and life history of Haematococcus pluvialis. Arch Protistenk, 1934, 82: 250-272
    80 Bubrick P. Production of astaxanthin from Haematococcus. Bioresource Technol, 1991, 38: 237-239
    81 Yong YYR., Lee Y.K. Do carotenoids play a photoprective role in the cytoplasm of Haematococcus lacustris.(Chlorophyta)? Phycologia , 1991, 30: 257-261
    82 Grünewald K., Eckert M., Hirschberg J., and Hagen C. Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis(Volvocales Chlorophyceae) Plant Physiol 2000, 122(4): 1261-1268
    83 Lang N.J. Electron microscopic studies of extraplastidic astaxanthin in Haematococcus. J. Phycol., 1968, 4: 12-19
    84 Grung M., D′souza FML., Borowitzka M., Liaaen-Jensen S. Algal carotenoids
    51. secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters. J. Appl Phycol, 1992, 4(2): 165-171
    85 Hagen C., Braune W., Birckner E., Nuske J. Functional aspects of secondary carotenoids in Haematococcus lactustris(Girod) Rostafinski(Volvocales).1. the accumulation period as an active metabolic process. New Phytol,1993, 125: 624-633
    86 Zlotnik I., Sukenik A., Dubinsky Z. Physiological and photosynthetic changes during the formation of red aplanospores in the chlorophyte Haematococcus pluvialis. J. Phycol., 1993, 29: 463-469
    87 Miao F, Lu D, Li Y, et al. Characterization of astaxanthin esters in Haematococcus pluvialis by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Analytical Biochemistry, 2006,352(2): 176-181
    88 Kaewpintong K, Shotipruk A, Powtongsook S. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor.Bioresource Technology, 2007,98(2): 288-295
    89 Miller M.W., Yoneyama M., Soneda M. Phaff a new yeast genus in the Deuteromyotina(Blastomycetes). Int. J. Syst. Bactriol. 1976, 15: 286-291
    90 Andrewes A.G., Phaff H.J., Starr M.P. Carotenoids of Phaffia rhodozyma a red-pigmented fermenting yeast. Phytochemistry, 1976, 15: 1003-1007
    91 Golubev. W. I. Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast, 1995, 11: 101-110
    92 Johnson E.A., Phaffia rhodozyma: colorful odyssey. Int Microbiol, 2003, 6: 169-174
    93 Calo P., Gonzalez T. The yeast Phaffia rhodozyma as an industrial source of astaxanthin. Microbiologia,1995,11: 386–388
    94 Hayman G.T., Mannarelli B.M. and Leathers T. Production of carotenoids by Phaffia rhodozyma grown on media composed of corn wet-milling co-products. J. Gen. Microbiol., 1995, 115: 173-183
    95梁新乐,岑沛霖,法夫酵母高密度培养及虾青素的高产研究,菌物系统,2001,20(4): 508-514
    96 Liu Y S, Wu J Y, Ho K P. Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures.Biochemical Engineering Journal, 2006, 27(3): 331-335
    97 An G. H., Schuman D.B., Johnson E.A. Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl. Environ. Microbiol. 1989, 55: 116-124
    98 Meyer P.S., du Preez J.C., Kilian S.G. Selection and evaluation of astaxanthin- overproducing mutants of Phaffia rhodozyma. World J. Microbiol. Biotechnol. 1993, 9: 514-520
    99 Lewis M.J., Ragot N., Berlant M.C. et al. Selection of astaxanthin-overproducing mutants of Phaffia rhodozyma withβ-ionone. Appl. Environ. Microbiol. 1990, 56: 2944-2945
    100 Fang T.J., Cheng Y.S. Improvement of astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions. J. Ferment. Bioeng. 1993, 75: 466-469
    101 Namkyu S., Seunghee Lee., Kyung B. S. Characterization of a carotenoid- hyperproducing yeast mutant isolated by low-dose gamma irradiation. International Journal of Food Microbiology. 2004, 94: 263-267
    102 Chun S.B., Chin J.E., An G. H., et al. Strain improvement of Phaffia rhodozyma by protoplast fusion. FEMS Microbiol. Lett., 1992, 93: 21-226
    103 Verdoes J.C., Wery J., van Ooyen, A.J.J. Improved methods for transforming Phaffia strains, transformed Phaffia strains so obtained and recombinant DNA in said method. International Patent Application PCT/EP96/05887, 1996
    104 Tjahjono A. E., Kakizono T., Hayama Y., et al. Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green alga Haematococcus pluvialis, and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers. Journal of Fermentation and Bioengineering, 1994,77(4): 352-357
    105 Chumpolkulwong N., Kakizono T., Handa T., et al. Isolation and characterization of compactin resistant mutants of an astaxanthin synthesizing green alga Haematococcus pluvialis. Biotechnology Letters, 1997,19: 299–302
    106 Tripathi U, Venkateshwaran G, Sarada R, et al. Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis. World Journal of Microbiology and Biotechnology, 2001,17:143–148
    107 Yong Chen, Defa Li, Wenqing Lu ,et al.Screening and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis. Biotechnology Letters 2003,25: 527-529
    108庄惠如,陈荣等.雨生红球藻的紫外、激光复合诱变育种.激光生物学,2001,10(2):135-139
    109 Calo P., Trinidad de Miguel, Jorge B. Velázquez et al. Mevalonic acid increases trans-astaxanthin and carotenoid biosynthesis in Phaffia rhodozyma. Biotechnology Letters., 1995, 17(6): 575-578
    110 Johnson E.A., Schroeder W. Astaxanthin from the yeast Phaffia rhodozyma. Stud. Mycol., 1995, 38: 81-89
    111 Namthip C., Toshihide D. et al. Increased astaxanthin production by Phaffia rhodozyma mutants isolated as resistant to diphenylamine. J. Fermentation and Bioengineering., 1997, 83(5):429-434
    112 Fan L, Vonshak A, Gabbay R, et al. The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with diphenylamine. Plant Cell Physiol., 1995, 36:1519-1524
    113 Grünewald K, Hagen C, Braune W. Secondary carotenoid accumulation in flagellates of the green alga Haematococcus lacustris[J]. European Journal of Phycology, 1997, 32: 387 - 392
    114 Harker M,Young A J.Inhibition of astaxanthin synthesis in the green alge,Haematococcus pluvialis[J].European Journal of Phycology,1995,30:179-187
    115 Sanpietro L.M.D., Kula M.R. Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature. Yeast. 1998, 14: 1007-1016
    116 Chamovitz D.,Sandmann G., Hirschnerg J., et al. Molecular and biochemical characterization of herbicide-resistant mutant of cyanobacterial reveals that phytoene desaturation is a rate limiting step in carotenoid biosythesis. Journal ofBiological Chemistry, 1993, 201: 17348-17353
    117 Linden H, Sandmann G., Chamovitz D.,et al.Biochemical characterization of Synechococcus mutants selected against the bleaching herbicide norflorazon. Pesticide Biochemistry and Physiology, 1990, 36: 46-51
    118 Diza A., Blanco P., Villa T.G. Effect of squalene on astaxanthin production by a mutant of Phaffia rhodozyma. World J. Microbiology & Biotechnology. 2002, 18: 811-812
    119 Gu W.L., An G. H., Johnson E.A. Ethanol increases carotenoid production in Phaffia rhodozyma. J. Industrial Microbiology & Biotechnology. 1997, 19: 114-117
    120 Goldstein, J.L., Brown, M.S.. Regulation of the mevalonate pathway.Nature 1990,343, 425–430.
    121 Yang, Z., Park, H., Lacy, G.H., et al. Differential Activation of Potato 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Genes by Wounding and Pathogen Challenge. The Plant Cell, 1991, 3, 397-405.
    122 Stermer B.A., Bianchini G.M., Korth, K. L.. Regulation of HMG-CoA reductase activity in plants. J. Lipid Res. 1994, 35, 1133-1140.
    123 Lam W.L., Doolittle W. F.. Mevinolin-resistant mutations identify a promoter and the gene for a eukaryote-like 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the archaebacterium Haloferax volcanii. J. Biol. Chem. 1992,267, 5829–5834.
    124 Bach T. J.. Some new aspects of isoprenoid biosynthesis in plants. Lipids 1995, 30, 191-202.
    125 Schwender J., Seemann M., Lichtenthaler H.K., Rohamer M. Biosynthesis fo isoprenoids(carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehydes-3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem. J., 1996, 316:73-80
    126 Lichtenthaler H.K. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoiid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50:47-65
    127 Schroeder W.A., Johnson E.A. Antioxidant role of carotenoids in Phaffia rhodozyma. J. Gen. Microbiol., 1993, 139: 907-912
    128 Schroeder W.A., Johnson E.A. Carotenoids protect Phaffia rhodozyma against singlet oxygen damage. J. Ind. Microbiol., 1995, 14: 502-507
    129 An G. H., Bielich J., Johnson E.A. et al. Isolation and characterization of carotenoid hyperproducing mutants of yeast by low cytometry and cell sorting. Bio/Technology., 1991, 9: 70-73
    130 Prevatt W.D., Bartlesville O. Spheroplast fusions of Phaffia rhodozyma cells. US patent. 1993, 5,212,088A
    131田小群,红发夫酵母(Phaffia rhodozyma)的诱变和原生质体融合及发酵优化研究,华南理工大学,2003
    132曲秋皓,红色酵母原生质体融合选育虾青素高产菌株的研究,中国农业科学研究院,1999
    133李杰伟,红发夫酵母高产虾青素菌株的选育,华南理工大学,2001
    134 Sanpietro L.M.D., Spencer J.F.T, Spencer D.M. et al. Characterization of intergeneric hybrids obtained by protoplast fusion between Phaffia rhodozyma, Cryptoococcus laurentii and Saccharomyces cerevisiae. Biotechnology Techniques. 1997, 11(10): 769-771
    135 Verdoes J. C., Misawa N., van Ooyen A. J. J. Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol. Bioeng., 1999, 63: 750-755
    136 Verdoes J.C., Krubasik P., van Ooyen A.J.J. Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol. Gen. Genet. 1999, 262: 453-461
    137 Lee J H, Kim Y T. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene, 2006, 370(29): 86-95
    138 Tao L, Wilczek J, Odom J M, at al. Engineering aβ-carotene ketolase for astaxanthin production. Metabolic Engineering, 2006, 8(6): 523-531
    139 Schut T C B, Hesselink G, Grooth B G de, et al. Experiment and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps. Cytometry, 1991, 12(6): 479-485
    140 Ren K F, Greha G, Gouesbet G. Radiation pressure force exerted in a particle arbitrarily located in a Gaussian-beam by using the Generalized Lorenz-Mie theory and associatied resonance effects. Optics Communications, 1994, 108(4-6): 343-354
    141 Wadsworth W. J., Percivar. M. I, Bouwmans G., et al. Very high numerical aperture fibers, IEEE Photonics Technology Letters, 2004, 16(3): 843-845
    142 Hori M., Sato S., Yamaguchi S., et al. Two-crossing laser beam trapping of dielectric particles using compact laser diodes, Conference on lasers and Electro-Optics, Optical Society of America, Washington D.C., 1991
    143 Neil A.T.O’, Padgett M.J. Axial and lateral trapping efficiency of LG modes in inverted Optical tweezwes, Optics Communications 2001, 193: 45-50
    144 Zhang D.W., Yuan X.C.. Optical doughnut for optical tweezers, Optics Letters, 2003, 28(9): 740-742
    145崔国强,李银妹,环形光对光阱有效捕获力的提高,中国激光,2001, 28,(1): 89-92
    146 Hu Ming-Lie, Wang Ching-Yue, Song You-Jian et al., A hollow beam from a holey fiber, Optics Express, 2006, 14(9): 4218-4224
    147 Fro?hlich J, K?nig H. New techniques for isolation of single prokaryotic cells. FEMS Microbiology Reviews, 2000, 24: 567-572
    148 Thomas Ish?y, Thomas Kvist, Peter Westermann, et al. An improved method for single cell isolation of prokaryotes from meso-, thermo- and hyperthermophilicenvironments using micromanipulation. Appl Microbiol Biotechnol, 2006, 69(5): 510-514
    149 Grimbergen J A, Visscher K, Gomes de Mesquita DS, et al. Isolation of single yeast cells by optical trapping. Yeast. 1993, 9(7): 723-732
    150 Huber R, Burggraf S, Mayer T, et al. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature, 1995, 376(6): 57-58
    151 Vogel A, Noack J, Huttmann G, et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues, Applied Physics B, 2005, 81:1015-1047
    152 Owuor E D, Kong A N. Antioxidants and oxidants regulated signal transduction pathways. Biochemical Pharmacology, 2002, 64: 765-770
    153 An G H, Suh O S, Kwon H C, Kim K, Johnson E A. Quantification of carotenoids in cells of Phaffia rhodozyma by autofluorescence. Biotechnology Letter, 2000, 22:1031-1034
    154 Konig K, Boehme S, Leclerc N, et al. Time-gated autofluorescence microscopy of motile green microalga in an optical trap. Cell and Molecular Biology, 1998, 44(5): 763-770
    155 Tirlapur U K, K?nig K. Femtosecond near-infrared laser pulses as a versatile non-invasive tool for intra-tissue nanoprocessing in plants without compromising viability. The Plant Journal, 2002, 31(3): 365-374
    156 Hagen C, Grünewald K, Schmidt S, et al. Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. European Journal of Phycology, 2000, 35: 75-82
    157 Holly L. Gorton, Thomas C. Vogelmanny. Ultraviolet radiation and the snow alga chlamydomonas nivalis (bauer) wille. Photochemistry and Photobiology, 2003, 77(6): 608-615
    158 Kobayashi M, Okada T. Protective role of astaxanthin against u.v.-B irradiation in the green alga Haematococcus pluvialis. Biotechnology Letters, 2000, 22: 177-181
    159 Steinbrenner J.Linden H. Regulation of two carotenoid biosynthesis genes coding for phytoene xynthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. PlantPhysiology, 2001, 125: 810
    160 Kobayashi M,Kurimura Y,Tsuji Y.Light-independent,astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotech Lett,1997, 19: 507-509
    161 Boussiba, S., Vonshak, A.. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol, 1991, 32(7): 1077-1082
    162 Harker M., Tsavalos A. J., Young A J. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresource Technol. 1996, 55(3): 207-214
    163 Sarada R,Tripathi U, Ravishanker G A. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions . Process Biochemistry, 2002, 37(6): 623-627
    164 Zhang D. H., Lee Y. K. Enhanced accumulation of secondary carotenoids in a mutant of the green alga, Chlorococcum sp. Journal of Applied Phycology, 1997, 9: 459-463
    165曹恩华.激光对DNA的作用.激光生物学, 1993, 2(3): 289-295
    166曹恩华. DNA激光损伤与细胞遗传学效应.光电子·激光, 1994, 5(1): 5-9
    167 Weesie R.J., Merlin J.C., Groot H.J.M et al., Resonance Raman Spectroscopy and Quantum Chemical Modeling Studies of Protein-Astaxanthin Interactions inα-Crustacyanin (Major Blue Carotenoprotein Complex in Carapace of Lobster, Homarus gammarus), Biospectroscopy, 1999, 5: 358-370
    168 Cannizzaro C, Rhiel M, Marison I, et al. On-line monitoring of phaffia rhodozyma fed-batch process with in situ dispersive raman spectroscopy. Biotechnology and Bioengineering, 2003, 83(6): 668-680
    169 Briviba K, Bornemann R, Lemmer U. Visualization of astaxanthin localization in HT29 human colon adenocarcinoma cells by combined confocal resonance Raman and fluorescence microspectroscopy. Molecular Nutrition & Food Research, 2006, 50(11): 991-995
    170 Hagen C, Siegmund S, Braune W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. European Journal of Phycology, 2002, 37: 217-226
    171 Wang S B, Chen F, Sommerfeld M, et al. Isolation and proteomic alalysis of cell wall-deficient Haematococcus pluvialis mutants. Proteomics 2005, 5, 4839-4851
    172 Tjahjono A E, Kakizono T, Hayama Y. Formation and regeneration of protoplast from a unicellular green alga Haematococcus pluvialis. Journal of Fermentation and Bioengineering, 1993, 75(3): 196-200
    173 Triki A, Maillard P, Gudin C. Protoplasts from zoospores and cysts of Haematococcus pluvialis alga (Chlorophyta, Volvocales). Russ Plant Physiol,1997, 44: 809-815
    174 E.Schierenberg, Altered Cell-Division Rates after Laser-induced cell fusion in Nematode Embryos, Developmental Biology, 1984, 101: 240-245
    175 Hahne G, Hoffmann F.The effect of laser microsurgery on cytoplasmic strands and cytoplasmic streaming in isolated plant protoplasts. Eur. J. Cell Biol., 1984, 33(2): 175-179
    176 Wiegand R, Weber G, Zimmermann K, et a1.Laser-induced fusion of mammalian cells and plant protoplasts. J Cell Sci, 1987, 88: 145-149
    177张闻迪,赵白.不同属泥鳅受精卵的激光融合及鱼类嵌合体.生物工程学报. 1991, 7(3): 279-281
    178卜宗式,白洁玲,李曙光等.激光诱导金盏菊原生质体融合方法初探.激光生物学, 1993, 2(2): 282-284
    179 Steubing R W, Cheng S, Wright W H, et al. Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. Cytometry, 1991, 12(6): 505-510
    180李寰宇,巩继贤,邢岐荣,赵学明.飞秒激光诱导细胞融合技术的实验研究.中国激光,2006, 33(12): 1642
    181 Katsov, K., Muller, M., Schick, M. Field theoretic study of bilayer membrane fusion. I. Hemifusion mechanism. Biophys. J. 2004, 87, 3277-3290
    182 Elizabeth H Chen, Eric N. Olson. Unveiling the Mechanisms of Cell-Cell Fusion. Science, 2005, 308: 369 - 37
    183沈子威,包红霞,赵南明. UV激光微束作用于细胞膜的机理研究.自然科学进展, 1992, (4): 344-348
    184 Boudaiffa B, Cloutier P, Hunting D, et al. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science, 2000, 287:1658-1660
    185 Huels M A, Boudaiffa B, Cloutier P, et al. Single, double, and multiple double strand breaks induced in DNA by 3-100 eV electrons. Am. Chem. Soc. 2003, 125(15): 4467-4477
    186 Inoue I, Wakamoto Y, Moriguchi H, et al. On-chip culture system for observation of isolated individual cells. Lab on a Chip, 2001, 1, 50-55
    187 Arneborg N, Siegumfeldt H, Andersen G H, et al. Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture. FEMS Microbiology Letters, 2005, 245: 155-159
    188 Jaime Fábregas, Ana Otero, Ana Maseda et al. Two-stage cultures for the production of Astaxanthin from Haematococcus pluvialis. Journal of Biotechnology, 2001, 89(1): 65-71
    189 Borowitzka M A. Culture of the astaxanthin production by green alga Haematococcus pluvialis (1): effect of nutrients on growth and cell type. Journal of Applied Phycology, 1991, 3(4): 295-304
    190 Dong Qinglin, Zhao Xueming. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma, Catalysis Today, 2004, 98: 537-544
    191 Dong Qing-Lin, Zhao Xue-Ming, Ma Hong-Wu, et al. Metabolic flux analysis of the two astaxanthin-producing microorganisms Haematococcus pluvialis and Phaffia rhodozyma in the pure and mixed cultures. Biotechnology Journal, 2006, 1(11): 1283-1292