新型平面人工传输线及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异向介质是由人工微结构组成的等效均匀电磁材料,由于电磁波在其传播时具有特殊的传导或辐射特性,已成为材料科学、光学和微波工程领域的前沿研究热点。广义地说,异向介质包括所有对电磁波传播具有特定影响且满足亚波长条件的人造材料或结构,如慢波结构、左手材料和复合左/右手结构等等。人工传输线通常由周期性微结构组成,可视为一维异向介质,其等效媒质参数可由单元结构控制。同时,由于人工传输线具有均匀传输线难以实现的可控奇特色散特性,为新型微波器件与电路的设计提供了新思路。
     本文主要研究平面人工传输线及其在微波器件中的应用。论文提出了多种新型平面人工传输线结构,包括具有高慢波因子和线性相位特性的慢波传输线、左/右手通带可独立控制的复合左/右手传输线及具有近零相位常数的负介电常数传输结构;并进一步探索新型平面人工传输线在微波器件如滤波器、耦合器、天线等小型化、多频/宽带化中的应用。主要工作如下:
     1、概述了分析人工周期性结构的基本理论和方法——Floquet定理和Bloch阻抗分析法,重点研究了平面人工传输线等效媒质参数的散射参数提取方法,阐述了人工传输线的等效媒质思想和控制方法;并且根据其等效媒质参数,把人工传输线分为慢波、复合左/右手和单负传输线;
     2、提出了基于混合型单元传输网络的新型慢波传输线。新结构不仅获得了较大的慢波因子和较小的插损,还具有线性相位特性,可以在宽带范围替代均匀传输线;
     1)由于X形传输网络具有与π形传输网络互补的相位响应,混合单元传输网络的相位响应和截止频率可以通过调整二者比例进行控制,在很宽的频带内实现类似均匀传输线的传输特性;
     2)基于混合型传输单元网络的新型平面慢波传输线具有较大的等效介电常数和磁导率,应用于微波器件中,可获得明显的小型化效果。其在环形混合网络中的应用表明,与采用均匀传输线的相比尺寸缩减54%,而性能相当;
     3、提出了一种改进的复合左/右手结构单元网络,在传统的复合左/右手结构单元内部引入交叉耦合,使其左/右手通带可独立控制;设计并制作了基于该网络的平衡型超宽带复合左/右手传输线,应用面耦合结构,显著改善传输线的高频特性,获得了超宽通带。并采用一单元该改进型复合左/右手结构设计了小型超宽带滤波器,其高端阻带由单元内部交叉耦合形成,具有小尺寸、低插损和良好选择性等优势;
     4、研究了谐振单元的负本构参数的形成机理,并由此提出了两种新型ENG传输结构,应用该ENG传输结构的窄带阻/陷波特性设计并制作了双陷波的超宽带滤波器。在不增加器件尺寸的前提下,实现了有实用水平的可控双陷波,从而有效降低了超宽带通信系统与其他通信系统(如WLAN等)间的相互干扰;
     5、研究了人工传输线零阶(Zeroth-Order Resonator, ZOR)和负数阶谐振器的特性和控制方法;提出了由一单元ENG传输结构构成的新型零阶谐振天线,通过在传输单元并联支路引入串联电容的方式降低Q值,从而使电小天线也获得了较高的辐射效率和增益。
Meta-materials (MTMs), which are broadly defined as effectively homogenous materials composed of artificial micro-structures, become the foreland and hotspot field of material science, optics and microwave engineering since they can guide or radiate electromagnetic waves in some unusual manners without violating the basic laws of physics. Generally speaking, all the artificial structures can be called meta-materials if they exert a special influence on the wave propagation and satisfy the sub-wavelength condition, such as the slow-wave structures, left-handed mediums (LHMs), composite right/left-handed (CRLH) structures and so on. Artificial transmission lines (ATLs), commonly composed of periodical unit cells, can be regarded as 1-D meta-materials. They have the effective permittivityεand permeabilityμdetermined by their micro-structures. Moreover, due to their fantastic controllable dispersion characteristic which cannot be achieved by the uniform transmission lines, the artificial transmission lines can pave the way for a novel generation of microwave devices and circuits.
     In this dissertation, the attention is paid to the novel planar artificial transmission lines and their applications in the microwave components. Several kinds of artificial transmission lines are proposed, such as a slow-wave transmission line with the large slow-wave factor and linear phase response, an ultra-wide-band composite right/left-handed transmission line of which RH/LH passband can be adjusted respectively, single negative transmission lines with near zero phase constant and so on. The design methods of the miniaturized, multi/wide-band microwave components such as couplers, filters and antennas are investigated by using the artificial transmission lines as well. The main contents and contributions are listed as follows:
     1. The basic method of analyzing the periodical artificial structures has been established. Firstly, by means of Floquet theorem and Bloch impedance analysis, the effective constitutive parameters of artificial transmission lines are retrieved from the scattering parameters. Secondly, the effective medium theory and control method of the artificial transmission lines are analyzed. Finally, the artificial transmission lines are classified as slow-wave, double negative and single negative transmission lines according to their effective constitutive parameters.
     2. A slow-wave structure based on the mixed lattice topology has been proposed. Both large slow-wave factor and low insertion loss are achieved by the new structure. Besides, due to its linear phased response, the uniform transmission line can be replaced by the slow-wave one within a wide band.
     1) Owing to the complementary dispersions of the lattice and pi-shaped topology, the phase characteristic and cutoff-frequency of the mixed structure can be well controlled by varying the proportion of lattice to pi-shaped part. As a result, the mixed slow-wave structure has the similar phase shift characteristic to that of the ideal transmission line within wideband.
     2) Because the proposed slow-wave transmission line has large effective permittivity and permeability, significant miniaturization can be achieved if the uniform transmission lines in the microwave devices are replaced by the proposed structures. A rat-race coupler using this slow-wave structure demonstrates the evident size reduction (54%) with a little performance degradation compared with the one using uniform transmission lines.
     3. A modified composite-right/left handed (CRLH) unit cell has been proposed. By introducing the cross coupling to the conventional CRLH structure, the right-handed pass-band can be controlled with little effect on left-handed pass-band. An ultra-wide-band balance CRLH TL based on this topology has been presented. The surface coupling structure improves the transmission response at high frequencies evidently. Moreover, an ultra-wide-band bandpass filter has been designed and fabricated based on this modified CRLH structure. A wide stopband at high frequencies is generated by the cross coupling in the CRLH structure. The fabricated filter has a compact size and exhibits good selectivity and low insertion loss.
     4. Two epsilon negative transmission structures have been proposed based on the study of the essential principle for the single negative resonant unit cell. By using these ENG structures, two ultra-wide-band bandpass filters with dual notched bands have been designed and implemented. The rejection level of those notched bands is good enough for the practical application without additional circuit size. The notched bands can restrain the interference between the UWB communication system and other undesired narrow band radio signals, such as wireless local area network (WLAN).
     5. The characteristics and control methods of the negative and zeroth-order resonators based on the artificial transmission lines are studied. A novel zeroth-order resonator (ZOR) antenna has been presented, which comprises a single unit cell of the epsilon negative (ENG) transmission line (TL). Its Quality factor can be substantially reduced by introducing a series capacitor in connection with the shunt branch of the ENG TL unit cell, which produces higher radiation efficiency and gain with a very compact size.
引文
[1] Cunningham J H. Design, Construction and Test of an Artificial Transmission Line[J]. American Institute of Electrical Engineers, Transactions of the. 1911, XXX(1): 245-256.
    [2] Magnusson C E, Burbank S R. An Artificial Transmission Line with an Artificial Transmission Line with Adjustable Line Constants[J]. American Institute of Electrical Engineers, Transactions of the. 1916, XXXV(2): 1137-1153.
    [3] Xu Y, Bosisio R G. Analysis and Design of Novel Structures of Artificial Transmission Lines for Mmic/Mhmic Technology[J]. Microwave Theory and Techniques, IEEE Transactions on. 1999, 47(1): 99-102.
    [4] Kimura S, Imai Y, Yamaguchi S, et al. Artificial-Line-Division Distributed Ics with 0.1-Mu M-Gate-Length Gaas Mesfet and Three-Dimensional Transmission Lines[J]. Microwave Theory and Techniques, IEEE Transactions on. 2002, 50(6): 1603-1608.
    [5] Eccleston K W, Ong S H M. Compact Planar Microstripline Branch-Line and Rat-Race Couplers[J]. Microwave Theory and Techniques, IEEE Transactions on. 2003, 51(10): 2119-2125.
    [6] Kangaslahti P, Alinikula P, Porra V. Miniaturized Artificial-Transmission-Line Monolithic Millimeter-Wave Frequency Doubler[J]. Microwave Theory and Techniques, IEEE Transactions on. 2000, 48(4): 510-518.
    [7] Gorur A. A Novel Coplanar Slow-Wave Structure[J]. Microwave and Guided Wave Letters, IEEE. 1994, 4(3): 86-88.
    [8] Yang F, Qian Y, Coccioli R, et al. A Novel Low-Loss Slow-Wave Microstrip Structure[J]. Microwave and Guided Wave Letters, IEEE. 1998, 8(11): 372-374.
    [9] Guckel H, Brennan P A, Palocz I. A Parallel-Plate Waveguide Approach toMicrominiaturized, Planar Transmission Lines for Integrated Circuits[J]. Microwave Theory and Techniques, IEEE Transactions on. 1967, 15(8): 468-476.
    [10] Fukuoka Y, Yi-Chi S, Itoh T. Analysis of Slow-Wave Coplanar Waveguide for Monolithic Integrated Circuits[J]. Microwave Theory and Techniques, IEEE Transactions on. 1983, 31(7): 567-573.
    [11] Seki S, Hasegawa H. Cross-Tie Slow-Wave Coplanar Waveguide On Semi-Insulating GaAs Substrates[J]. Electronics Letters. 1981, 17(25): 940-941.
    [12] Lin Y D, Itoh T. Frequency-Scanning Antenna Using the Crosstie-Overlay Slow-Wave Structures as Transmission Lines[J]. Antennas and Propagation, IEEE Transactions on. 1991, 39(3): 377-380.
    [13] Hasegawa H, Okizaki H. M.I.S. And Schottky Slow-Wave Coplanar Striplines On GaAs Substrates[J]. Electronics Letters. 1977, 13(22): 663-664.
    [14] Sor J, Qian Y, Itoh T. Miniature Low-Loss Cpw Periodic Structures for Filter Applications[J]. Microwave Theory and Techniques, IEEE Transactions on. 2001, 49(12): 2336-2341.
    [15] Ma T G, Cheng Y T. Miniaturised Broadside Coupler Using Coupled Slow-Wave Artificial Lines[J]. Electronics Letters. 2009, 45(10): 511-512.
    [16] Huang F. Novel Slow-Wave Structure for Narrow-Band Quasi-Transversal Filters[J]. Microwaves, Antennas and Propagation, IEE Proceedings -. 1995, 142(5): 389.
    [17] Ogawa H, Itoh T. Slow-Wave Characteristics of Ferromagnetic Semiconductor Microstrip Line[J]. Microwave Theory and Techniques, IEEE Transactions on. 1986, 34(12): 1478-1482.
    [18] Fukuoka Y, Itoh T. Slow-Wave Coplanar Waveguide On Periodically Doped Semiconductor Substrate[J]. Microwave Theory and Techniques, IEEE Transactions on. 1983, 31(12): 1013-1017.
    [19] Jager D. Slow-Wave Propagation Along Variable Schottky-Contact Microstrip Line[J]. Microwave Theory and Techniques, IEEE Transactions on. 1976,24(9): 566-573.
    [20] Wheeler H A. Transmission~Line Properties of Parallel Wide Strips by a Conformal~Mapping Approximation[J]. Microwave Theory and Techniques, IEEE Transactions on. 1964, 12(5): 280-289.
    [21] Oliner A. A Periodic-Structure Negative-Refractive-Index Medium without Resonant Elements[C]. San Antonio,TX: 2002.
    [22] Caloz C, Itoh T. Application of the Transmission Line Theory of Left-Handed(LH) Materials to the Realization of a Microstrip Lh Transmission Line[C]. San Antonio,TX: 2002.
    [23] Iyer A K, Eleftheriades G V. Negative Refractive Index Metamaterials Supporting 2-D Waves[C]. Seattle,WA: 2002.
    [24] Sanada A, Caloz C, Itoh T I. Characteristics of the Compositeright/Left-Handed Transmission Lines[J]. Microwave and Wireless Components Letters,IEEE. 2004, 14(2): 68-70.
    [25] Karthikeyan S S, Kshetrimayum R S. Composite Right/Left Handed Transmission Line Based On Open Slot Split Ring Resonator[J]. Microwave and Optical Technology Letters. 2010, 52: 1729-1731.
    [26] Li C, Liu K Y, Li F. Composite Right/Left-Handed Coplanar Waveguide Band-Pass Filter Using Capacitively-Coupled Zeroth-Order Resonators[J]. Applied Physics A-Material Science. 2007, 87: 317-319.
    [27] Siso G, Bonache J, Martin F. Composite Right/Left-Handed Metamaterial Transmission Lines with Unconventional Dispersion and Applications[J]. Microwave And Optical Technology Letters. 2010, 52: 904-909.
    [28] Lee C, Leong K M K H, Itoh T. Composite Right/Left-Handed Transmission Line Based Compact Resonant Antennas for Rf Module Integration[J]. IEEE Transactions On Antennas And Propagation. 2006, 54: 2283-2291.
    [29] Lai A, Itoh T, Caloz C. Composite Right/Left-Handed Transmission Line Metamaterials[J]. Microwave Magazine, IEEE. 2004, 5(3): 34-50.
    [30] Casares-Miranda F P, Marquez-Segura E, Otero P, et al. Composite Right/ Left-Handed Transmission Line with Wire Bonded Interdigital Capacitor[J].Microwave and Wireless Components Letters, IEEE. 2006, 16(11): 624-626.
    [31] Nguyen H V, Caloz C. Dual-Band Crlh Branch-Line Coupler in Mim Technology[J]. Microwave and Optical Technology Letters. 2006, 48: 2331-2333.
    [32] Bongard F, Perruisseau-Carrier J, Mosig J R. Enhanced Crlh Transmission Line Performances Using a Lattice Network Unit Cell[J]. Microwave and Wireless Components Letters, IEEE. 2009, 19(7): 431-433.
    [33] Mao S, Wu M, Chueh Y, et al. Modeling of Symmetric Composite Right/Left-Handed Coplanar Waveguides with Applications to Compact Bandpass Filters[J]. Microwave Theory and Techniques, IEEE Transactions on. 2005, 53(11): 3460-3466.
    [34] Okabe H, Caloz C, Itoh T. A Compact Enhanced-Bandwidth Hybrid Ring Using an Artificial Lumped-Element Left-Handed Transmission-Line Section[J]. Microwave Theory and Techniques, IEEE Transactions on. 2004, 52(3): 798-804.
    [35] Duran-Sindreu M, Velez A, Aznar F, et al. Applications of Open Split Ring Resonators and Open Complementary Split Ring Resonators to the Synthesis of Artificial Transmission Lines and Microwave Passive Components[J]. Microwave Theory and Techniques, IEEE Transactions on. 2009, 57(12): 3395-3403.
    [36] Podilchak S K, Frank B M, Freundorfer A P, et al. Composite Right/Left Handed Artificial Transmission Line Structures in Cmos for Controlled Insertion Phase at 30 Ghz[J]. International Journal of Rf And Microwave Computer-Aided Engineering. 2009, 19: 163-169.
    [37] Damm C, Freese J, Schussler M, et al. Electrically Controllable Artificial Transmissionline Transformer for Matching Purposes[J]. Microwave Theory and Techniques, IEEE Transactions on. 2007, 55(6): 1348-1354.
    [38] Podilchak S K, Frank B M, Freundorfer A P, et al. Metamaterial Artificial Transmission Line Structures in Cmos for Tunable Insertion Phase at 30 Ghz[C]. 2008. 1-4.
    [39] Siragusa R, Nguyen H V, Lemaitre-Auger P, et al. Modeling and Synthesis of the Interdigital/Stub Composite Right/Left-Handed Artificial Transmission Line[J]. International Journal of RF And Microwave Computer-Aided Engineering. 2009, 19: 549-560.
    [40] Caloz C, Itoh T. Transmission Line Approach of Left-Handed (LH) Materials and Microstrip Implementation of an Artificial LH [J]. Antennas and Propagation, IEEE Transactions on. 2004, 52(5): 1159-1166.
    [41] Hasegawa H, Furukawa M, Yanai H. Properties of Microstrip Line On Si-Sio2 System[J]. Microwave Theory and Techniques, IEEE Transactions on. 1971, 19(11): 869-881.
    [42] Wu K, Vahldieck R. Propagation Characteristics of Mis Transmission Lines with Inhomogeneous Doping Profile[J]. Microwave Theory and Techniques, IEEE Transactions on. 1990, 38(12): 1872-1878.
    [43] Spickermann R, Dagli N. Experimental Analysis of Millimeter Wave Coplanar Waveguide Slow Wave Structures On Gaas[J]. Microwave Theory and Techniques, IEEE Transactions on. 1994, 42(10): 1918-1924.
    [44]曹毅,王光明,张晨新.一种新型一维微带PBG单元结构[J].微波学报. 2005, 21(06): 47-49.
    [45] Shau-Gang M, Chih-Mying C, Dau-Chyrh C. Modeling of Slow-Wave Ebg Structure for Printed-Bowtie Antenna Array[J]. Antennas and Wireless Propagation Letters, IEEE. 2002, 1: 124-127.
    [46] Yang N, Caloz C, Wu K. Lowpass Filter with Slow-Wave Rail Coplanar Stripline (R-Cps)[J]. Electronics Letters. 2009, 45(17): 895-897.
    [47] Zhou C, Yang H Y D. Design Considerations of Miniaturized Least Dispersive Periodic Slow-Wave Structures[J]. Microwave Theory and Techniques, IEEE Transactions on. 2008, 56(2): 467-474.
    [48] Wang C, Ma T, Yang C. A New Planar Artificial Transmission Line and its Applications to a Miniaturized Butler Matrix[J]. Microwave Theory and Techniques, IEEE Transactions on. 2007, 55(12): 2792-2801.
    [49] Koochakzadeh M, Abbaspour-Tamijani A. Miniaturized Transmission LinesBased On Hybrid Lattice-Ladder Topology[J]. Microwave Theory and Techniques, IEEE Transactions on. 2010, 58(4): 949-955.
    [50] Zhu L. Guided-Wave Characteristics of Periodic Coplanar Waveguides with Inductive Loading - Unit-Length Transmission Parameters[J]. Microwave Theory and Techniques, IEEE Transactions on. 2003, 51(10): 2133-2138.
    [51] Wu C, Wu H, Tzuang C C. Electric-Magnetic-Electric Slow-Wave Microstrip Line and Bandpass Filter of Compressed Size[J]. Microwave Theory and Techniques, IEEE Transactions on. 2002, 50(8): 1996-2004.
    [52] Pendry J B, Holden A J, Stewart W J, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures[J]. Physical Review Letters. 1996, 76(25): 4773-4776.
    [53] Pendry J B, Holden A J, Robbins D J, et al. Magnetism From Conductors and Enhanced Nonlinear Phenomena[J]. Microwave Theory and Techniques, IEEE Transactions on. 1999, 47(11): 2075-2084.
    [54] Smith D R, Vier D C, Padilla W, et al. Loop-Wire Medium for Investigating Plasmons at Microwave Frequencies[J]. Applied Physics Letters. 1999, 75(10): 1425-1427.
    [55] Horii Y, Caloz C, Itoh T. Super-Compact Multilayered Left-Handed Transmission Line and Diplexer Application[J]. IEEE Transactions On Microwave Theory And Techniques. 2005, 53(4): 1527-1534.
    [56] Wei T, Zhirun H, Hong S C, et al. Left-Handed Metamaterial Coplanar Waveguide Components and Circuits in Gaas Mmic Technology[J]. Microwave Theory and Techniques, IEEE Transactions on. 2007, 55(8): 1794-1800.
    [57] Caloz C, Itoh T. Positive/Negative Refractive Index Anisotropic 2-D Metamaterials[J]. Microwave and Wireless Components Letters, IEEE. 2003, 13(12): 547-549.
    [58]李超,刘潇,李芳,等.平面左手结构色散与传播特性分析[J].电波科学学报. 2009, 24(01): 9-14.
    [59] Zedler M, Caloz C, Russer P. A 3-D Isotropic Left-Handed MetamaterialBased On the Rotated Transmission-Line Matrix (TLM) Scheme[J]. Microwave Theory and Techniques, IEEE Transactions on. 2007, 55(12): 2930-2941.
    [60] Alu A, Engheta N. Pairing an Epsilon-Negative Slab with a Mu-Negative Slab: Resonance, Tunneling and Transparency[J]. Antennas and Propagation, IEEE Transactions on. 2003, 51(10): 2558-2571.
    [61] Li H, Zhang Y, Zhang L, et al. Experimental Investigation of Mu Negative of Bragg Gap in One-Dimensional Composite Right/Left-Handed Transmission Line[J]. Journal Of Applied Physics. 2007, 102(3): 33711.
    [62]徐善驾,朱旗.复合左右手传输线构成的异向介质及其应用[J].中国科学技术大学学报. 2008, 38(07): 711-724.
    [63] Rawat K, Ghannouchi F M. A Design Methodology for Miniaturized Power Dividers Using Periodically Loaded Slow Wave Structure with Dual-Band Applications[J]. Microwave Theory and Techniques, IEEE Transactions on. 2009, 57(12): 3380-3388.
    [64] Lin I, Devincentis M, Caloz C, et al. Arbitrary Dual-Band Components Using Composite Right/Left-Handed Transmission Lines[J]. Microwave Theory and Techniques, IEEE Transactions on. 2004, 52(4): 1142-1149.
    [65] Mao S, Chueh Y, Wu M. Asymmetric Dual-Passband Coplanar Waveguide Filters Using Periodic Composite Right/Left-Handed and Quarter-Wavelength Stubs[J]. Microwave and Wireless Components Letters, IEEE. 2007, 17(6): 418-420.
    [66] Lee J, Lee J. Zeroth Order Resonance Loop Antenna[J]. Antennas and Propagation, IEEE Transactions on. 2007, 55(3): 994-997.
    [67]张鹏飞,龚书喜.小型化新型宽频带环形电桥[J].西安电子科技大学学报. 2006, 33(04): 593-597.
    [68] Tseng C H, Chang C L. Wide-Band Balun Using Composite Right/Left-Handed Transmission Line[J]. Electronics Letters. 2007, 43(21): 1154-1155.
    [69] Lin X Q, Ma F H, Bao D, et al. Design and Analysis of Super-Wide BandpassFilters Using a Novel Compact Meta-Structure[J]. Microwave Theory and Techniques, IEEE Transactions on. 2007, 55(4): 747-753.
    [70] Antoniades M A, Eleftheriades G V. A Broadband Dual-Mode Monopole Antenna Using Nri-Tl Metamaterial Loading[J]. Antennas and Wireless Propagation Letters, IEEE. 2009, 8: 258-261.
    [71] Zhang Y, Yang H Y D. Bandwidth-Enhanced Electrically Small Printed Folded Dipoles[J]. Antennas and Wireless Propagation Letters, IEEE. 2010, 9: 236-239.
    [72]朱旗,韩璐,陈鹏,等.交指型左手微带天线研究[J].电波科学学报. 2009, 24(05): 787-792.
    [73]朱旗,吴磊,徐善驾.基于左手传输线的双线极化微带阵列天线[J].电波科学学报. 2007, 22(03): 359-364.
    [74]张忠祥,朱旗,徐善驾.左手微带传输线在毫米波天线阵中的应用[J].红外与毫米波学报. 2005, 24(05): 341-343.
    [75] Park J, Ryu Y, Lee J, et al. Epsilon Negative Zeroth-Order Resonator Antenna[J]. IEEE Transactions On Antennas And Propagation. 2007, 55: 3710-3712.
    [76] Park J, Ryu Y, Lee J. Mu-Zero Resonance Antenna[J]. Antennas and Propagation, IEEE Transactions on. 2010, 58(6): 1865-1875.
    [77] Park J, Ryu Y, Lee J, et al. Epsilon Negative Zeroth-Order Resonator Antenna[J]. IEEE Transactions On Antennas And Propagation. 2007, 55: 3710-3712.
    [78] Li C, Li F. Microstrip Bandpass Filters Based On Zeroth-Order Resonators with Complementary Split Ring Resonators[J]. Microwaves, Antennas & Propagation, IET. 2009, 3(2): 276-280.
    [79] Caloz C, Itoh T. Novel Microwave Devices and Structures Based On the Transmission Line Approach of Meta-Materials[C]. 2003.
    [80] Lim S, Caloz C, Itoh T. Metamaterial-Based Electronically Controlled Transmission-Line Structure as a Novel Leaky-Wave Antenna with Tunable Radiation Angle and Beamwidth[J]. Microwave Theory and Techniques, IEEETransactions on. 2004, 52(12): 2678-2690.
    [81] Pistono E, Robert M, Duvillaret L, et al. Compact Fixed and Tune-All Bandpass Filters Based On Coupled Slow-Wave Resonators[J]. Microwave Theory and Techniques, IEEE Transactions on. 2006, 54(6): 2790-2799.
    [82] Smith D R, Vier D C, Koschny T. Electromagnetic Parameter Retrieval From Inhomogeneous Metamaterials[J]. Physical Review E. 2005, 71.
    [83]张辉,李有权,付云起,等.零平均折射率带隙中离散模的实验研究[J].物理学报. 2010, 59(01): 336-339.
    [84] Caloz C, Itoh T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications[M]. John Wilery & Sons, Inc., Hoboken, New Jersey, 2005.
    [85] Weir W B. Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies[J]. Proceedings Of The IEEE. 1974, 62(1): 33-36.
    [86] Nicolson A M, Ross G F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques[J]. IEEE Transactions On Instrumentation And Measurement. 1970, 19(4): 377-382.
    [87] Chen X, Grzegorczyk T M, Wu B. Robust Method to Retrieve the Constitutive Effective Parameters of Metamaterials[J]. Physical Review E. 2004, 70(1-1): 16608.
    [88] Mao S G, Chen S L, Huang C W. Effective Electromagnetic Parameters of Novel Distributed Left-Handed Microstrip Lines[J]. IEEE Transactions On Microwave Theory And Techniques. 2005, 53(4): 1515-1521.
    [89] Smith D R, Vier D C, N K, et al. Direct Calculation of Permeability and Permittivity for a Left-Handed Metamaterial[J]. Applied Physics Letters. 2000, 77(14): 2246-2248.
    [90]张辉.超常介质的电磁特性及其应用研究[D].国防科学技术大学, 2009.
    [91]王文祥.微波工程技术[M].北京:国防工业出版社, 2009.
    [92] Collin R E. Foundations for Microwave Engineering[M]. Hoboken New Jersey: wiley interscience, 2001.
    [93] Han N, Dong Y, Wang M. A Dual-Band Bandpass Filter Using Parallel Doubly Coupled Structure with Loading Capacitance[C]. 2010.
    [94] Chi P L, Waterhouse R, Itoh T. Antenna Miniaturization Using Slow Wave Enhancement Factor From Loaded Transmission Line Models[J]. Antennas and Propagation, IEEE Transactions on. 2010, PP(99): 1.
    [95] Zhou C, Yang H Y D. The Design of Miniaturized Printed Wire Antennas Using Double-Layer Periodic Metallization[J]. Antennas and Wireless Propagation Letters, IEEE. 2007, 6: 11-14.
    [96] Hong J, Lancaster M J. Theory and Experiment of Novel Microstrip Slow-Wave Open-Loop Resonator Filters[J]. Microwave Theory and Techniques, IEEE Transactions on. 1997, 45(12): 2358-2365.
    [97] Pozar D M. Microwave Engineering(Third Edition)[M]. John Wilery & Sons, Inc., 2005.
    [98]王子宇,张肇仪,徐承和等译.射频电路设计-理论与应用[M].北京:电子工业出版社, 2005.
    [99] Gorur A, Karpuz C, Alkan M. Characteristics of Periodically Loaded Cpw Structures[J]. Microwave and Guided Wave Letters, IEEE. 1998, 8(8): 278-280.
    [100] Chen C, Tzuang C C. Synthetic Quasi-Tem Meandered Transmission Lines for Compacted Microwave Integrated Circuits[J]. IEEE Transactions On Microwave Theory And Techniques. 2004, 52(6): 1637-1647.
    [101] Lee J J, Park C S. A Slow-Wave Microstrip Line with a High-Q and a High Dielectric Constant for Millimeter-Wave Cmos Application[J]. Microwave and Wireless Components Letters, IEEE. 2010, 20(7): 381-383.
    [102] Prodromakis T, Papavassiliou C. An Experimental Technique for Characterizing Slow-Wave Characteristics of Mis-Like Transmission Lines Using Aqueous Dielectrics[J]. Microwave Theory and Techniques, IEEE Transactions on. 2010, 58(4): 985-993.
    [103] Sayag A, Ritter D, Goren D. Compact Modeling and Comparative Analysis of Silicon-Chip Slow-Wave Transmission Lines with Slotted Bottom MetalGround Planes[J]. Microwave Theory and Techniques, IEEE Transactions on. 2009, 57(4): 840-847.
    [104] Kaddour D, Issa H, Franc A L, et al. High-Q Slow-Wave Coplanar Transmission Lines On 0.35 Um Cmos Process[J]. Microwave and Wireless Components Letters, IEEE. 2009, 19(9): 542-544.
    [105] Kim S H, Oh K H, Lim H, et al. Slow-Wave Characteristics of a1D Ebg Structure for Aminiaturized Monopole Antenna[J]. Microwave and Optical Technology Letters. 2009, 51(5): 1231-1235.
    [106] Hsu H P. On the General Relation Between Alpha and Q[J]. Microwave Theory and Techniques, IEEE Transactions on. 1963, 11(4): 258.
    [107] Wang T Q, Wu K. Size-Reduction and Band-Broadening Design Technique of Uniplanar Hybrid Ring Coupler Using Phase Inverter for M(H)Mic'S[J]. IEEE Transactions On Microwave Theory And Techniques. 1999, 47(2): 198-206.
    [108] Eleftheriades G V, Balmain K G. Negative-Refraction Metamaterials: Fundmental Principles and Applications[M]. IEEE Press and Wiley- Interscience, 2005.
    [109] Gil M, Bonache J, Selga J, et al. Broadband Resonant-Type Metamaterial Transmission Lines[J]. Microwave and Wireless Components Letters,IEEE. 2007, 17: 97-99.
    [110] Caloz C. Dual Composite Right/Left-Handed (D-Crlh) Transmission Line Metamaterial[J]. Microwave and Wireless Components Letters,IEEE. 2006, 16: 585-587.
    [111] Safwat A M E. Microstrip Coupled Line Composite Right/Left-Handed Unit Cell[J]. Microwave and Wireless Components Letters,IEEE. 2009, 19: 434-436.
    [112] Niu J X, Zhou X L. Resonant-Type Balanced Composite Right/Left-Handed Coplanar Waveguide Structure[J]. Electronics Letters. 2008, 44: 636-638.
    [113] Ryu Y, Park J, Lee J, et al. Dgs Dual Composite Right/Left Handed Transmission Line[J]. Microwave and Wireless Components Letters,IEEE. 2008, 18: 434-436.
    [114] Sanada A, Caloz C, Itoh T. Planar Distributed Structures with Negative Refractive Index[J]. IEEE Transactions On Microwave Theory And Techniques. 2004, 52(4): 1252-1263.
    [115] Caloz C, Sanada A, Itoh T. A Novel Composite Right-/Left-Handed Coupled-Line Directional Coupler with Arbitrary Coupling Level and Broad Bandwidth[J]. Microwave Theory and Techniques, IEEE Transactions on. 2004, 52(3): 980-992.
    [116] Caloz C, Itoh T. A Novel Mixed Conventional Microstrip and Composite Right/Left-Handed Backward-Wave Directional Coupler with Broadband and Tight Coupling Characteristics[J]. Microwave and Wireless Components Letters, IEEE. 2004, 14(1): 31-33.
    [117] Allen C A, Leong K M K H, Itoh T. Design of Microstrip Resonators Using Balanced and Unbalanced Composite Right/Left-Handed Transmission Lines[C]. 2006. 3104-3112.
    [118]王海涛,张德斌,凌天庆.利用复合左右手传输线实现的两种平行耦合线定向耦合器[J].微波学报. 2008, 24(02): 50-57.
    [119] Zhu L, Wolfgang M. Broad-Band Microstrip-to-Cpw Transition Via Frequency-Dependent Electromagnetic Coupling[J]. Microwave Theory and Techniques, IEEE Transactions on. 2004, 52(5): 1517-1522.
    [120]张安学,胡浩,蒋延生,等.基于多层左手传输线的小型滤波器仿真设计[J].电波科学学报. 2008, 23(05): 955-959.
    [121]金秀华,黄晓东,程崇虎.基于多层结构的新型左右手混合传输线[J].南京邮电大学学报(自然科学版). 2009, 29(05): 65-68.
    [122]崔万照,马伟,邱乐德,等.电磁超介质及其应用[M].北京:国防工业出版社, 2008.
    [123]李超,刘潇,李芳,等.平面左手结构色散与传播特性分析[J].电波科学学报. 2009, 24(01): 9-14.
    [124] Chen Y, Lee C, Hsu C G. A Compact Cpw-Fed UWB BPF Using Combined Microstrip Sir[J]. Microwave and Optical Technology Letters. 2009, 51(4): 918-921.
    [125] Chen P, Wei F, Shi X, et al. A Compact Ultra-Wideband Band-Pass Filter with Defected Ground Structure[J]. Microwave And Optical Technology Letters. 2009, 51(4): 979-981.
    [126] Sun S, Zhu L. Capacitive-Ended Interdigital Coupled Lines for Uwb Bandpass Filters with Improved Out-of-Band Performances[J]. Microwave and Wireless Components Letters,IEEE. 2006, 16(8): 440-442.
    [127] Kuo T, Lin S, Chen C H. Compact Ultra-Wideband Bandpass Filters Using Composite Microstrip-Coplanar-Waveguide Structure[J]. IEEE Transactions On Microwave Theory And Techniques. 2006, 54: 3772-3778.
    [128] Thomson N, Hong J. Compact Ultra-Wideband Microstrip/Coplanar Waveguide Bandpass Filter[J]. Microwave and Wireless Components Letters,IEEE. 2007, 17(3): 184-186.
    [129] Li R, Zhu L. Compact Uwb Bandpass Filter Using Stub-Loaded Multiple-Mode Resonator[J]. Microwave and Wireless Components Letters,IEEE. 2007, 17(1): 40-42.
    [130] Yao B, Zhou Y, Cao Q, et al. Compact Uwb Bandpass Filter with Improved Upper-Stopband Performance[J]. Microwave and Wireless Components Letters,IEEE. 2009, 19(1): 27-29.
    [131] Abbosh A M. Planar Bandpass Filters for Ultra-Wideband Applications[J]. IEEE Transactions On Microwave Theory And Techniques. 2007, 55(10): 2262-2269.
    [132] Lin Y S, Ku W C, Wang C H. Wideband Coplanar-Waveguide Bandpass Filters with Good Stopband Rejection[J]. Microwave and Wireless Components Letters, IEEE. 2004, 14(9): 422-424.
    [133] Gong J Q, Chu Q X. Scrlh Tl Based Uwb Bandpass Filter with Widened Upper Stopband[J]. Journal of Electromagnetic Waves And Applications. 2008, 22: 1985-1992.
    [134] Smith D R, Schultz S, Markos P, et al. Determination of Effective Permittivity and Permeability of Metamaterials From Reflection and Transmission Coefficients[J]. Physical Review B. 2002, 65(19): 195101-195104.
    [135] Shelby R, Smith D, Schultz S. Experimental Verification of a Negative Index of Refraction[J]. Science. 2001, 292(5514): 77-79.
    [136] Pendry J B. Negative Refraction Makes a Perfect Lens[J]. Physical Review Letters. 2000, 85(18): 3966-3969.
    [137] Ma H F, Jiang W X, Yang X M, et al. Compact-Sized and Broadband Carpet Cloak and Free-Space Cloak[J]. Optics Express. 2009, 17: 19947-19959.
    [138] Tao H, Landy N I, Fan K, et al. Flexible Terahertz Metamaterials: Towards a Terahertz Metamaterial Invisible Cloak[C]. 2008. 283-286.
    [139] Schurig D, Mock J J, Justice B J, et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies[J]. Science. 2006, 314: 977-980.
    [140] Lu W, Jin J, Lin Z, et al. A Simple Design of an Artificial Electromagnetic Black Hole[J]. Journal of Applied Physics. 2010, 108.
    [141] Narimanov E E, Kildishev A V. Optical Black Hole: Broadband Omnidirectional Light absorber[J]. appl. phys. lett. 2009, 95: 41106.
    [142] Ziolkowski R W, Kipple D. Causality and Double-Negative Metamaterials[J]. Physical Review E. 2003, 68(22): 26611-26615.
    [143] Hsu Y J, Huang Y C, Lin J S, et al. Electromagnetic Resonance in Deformed Split Ring Resonators of Left-Handed Meta-Materials[J]. Journal Of Applied Physics. 2004, 96(4): 1979-1982.
    [144] Cheng C Y, Ziolkowski W. Tailoring Double Negative Metamaterial Responses to Achieve Anomalous Propagation Effects Along Microstrip Transmission Lines[J]. IEEE Transactions On Microwave Theory And Techniques. 2003, 51(12): 2306-2314.
    [145] Khan S N, Zhang Q L, He S. Left Handed Microstrip Transmission Lineloaded with Combination of Split Ringresonator and Complementary-Srr[J]. J. of Electromagn. Waves and Appl. 2008, 22: 1857-1863.
    [146] Hao Z, Hong J. Compact Uwb Filter with Double Notch-Bands Using Multilayer Lcp Technology[J]. Microwave and Wireless Components Letters,IEEE. 2009, 19: 500-502.
    [147] Yang G M, Jin R H, Geng J P. Planar Microstrip Uwb Bandpass Filter UsingU-Shaped Slot Coupling Structure[J]. Electronics Letters. 2006, 42: 1461-1463.
    [148] Gil I, Bonache J, Gil M, et al. Accurate Circuit Analysis of Resonant-Type Left Handed Transmission Lines with Inter-Resonator Coupling[J]. Journal Of Applied Physics. 2006, 100.
    [149] Kim T G, Lee B. Metamaterial-Based Compact Zeroth-Order Resonant Antenna[J]. Electronics Letters. 2009, 45: 12-15.
    [150] Park J, Ryu Y, Lee J, et al. A Zeroth-Order Resonator Antenna Using Epsilon Negative Meta-Structured Transmission Line[C]. 2007. 3214-3217.
    [151] Yu Y, Kim G, Seong W, et al. An Internal Multiband Antenna with Zeroth-Order Resonator for Usb Dongle Applications[J]. Microwave And Optical Technology Letters. 2010, 52: 2212-2214.
    [152] Tang H, Zhao X. Center-Fed Circular Epsilon-Negative Zeroth-Order Resonator Antenna[J]. Microwave And Optical Technology Letters. 2009, 51: 2423-2428.
    [153] Ji J K, Kim G H, Seong W M. Compact Quad-Band Antenna Based On Zeroth-Order Resonator for Mobile Handset Applications[J]. Microwave And Optical Technology Letters. 2010, 52: 1298-1301.
    [154] Sipal V, Ajami A, Heberling D. Effect of Substrate Dimensions On Zeroth-Order Resonator Antennas[J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS. 2010, 9: 107-109.
    [155] Vrba D, Polivka M. Radiation Efficiency Improvement of Zeroth-Order Resonator Antenna[J]. RADIOENGINEERING. 2009, 18: 1-8.
    [156] Ma H F, Lin X Q, Bao D, et al. Zeroth-Order Resonators Using Novel Compact Meta-Structures[C]. 2006. 533-535.
    [157] Sanada A, Murakami K, Aso S, et al. A Via-Free Microstrip Left-Handed Transmission Line[C]. 2004 IEEE MTT-S International Microwave Symposium, 2004.
    [158] Lai A, Leong K M K H, Itoh T. Infinite Wavelength Resonant Antennas with Monopolar Radiation Pattern Based On Periodic Structures[J]. IEEETransactions On Antennas And Propagation. 2007, 55: 868-876.
    [159] Pyo S, Han S, Baik J, et al. A Slot-Loaded Composite Right/Left-Handed Transmission Line for a Zeroth-Order Resonant Antenna with Improved Efficiency[J]. IEEE Transactions On Microwave Theory And Techniques. 2009, 57: 2775-2782.
    [160] Rennings A, Otto S, Caloz C, et al. Enlarged Half-Wavelength Resonator Antenna with Enhanced Gain[C]. Antennas and Propagation Society International Symposium, 2005 IEEE , 2005.
    [161] Chen J, Xue Q. Novel 5 : 1 Unequal Wilkinson Power Divider Using Offset Double-Sided Parallel-Strip Lines[J]. Microwave and Wireless Components Letters,IEEE. 2007, 17: 175-177.
    [162] Hong J, Langcaster M J. Microstrip Filters for Rf/Microwave Applications[M]. New York: Wiley, 2001.
    [163] Antoniades M A, Eleftheriades G V. A Folded-Monopole Model for Electrically Small Nri-Tl Metamaterial Antennas[J]. IEEE Antennas and Wireless Propagation Letters. 2008, 7: 425-428.