厌氧处理青霉素废水的硫酸盐控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对EGSB反应器处理青霉素生产废水的厌氧脱硫工艺进行了较系统的研究。
     试验首先对青霉素生产废水的水质特征进行细致分析,包括废水常规水质指标、营养物质分析、VFA和无机阴离子及废水厌氧可生化性的测定。试验结果表明,①青霉素生产废水是一类含有高浓度硫酸盐等生物毒性物质,氮源过剩(COD:N:P约为200:43.37:0.78)、生物降解较难(BOD/COD约为0.26)的高浓度有机废水,其厌氧可生化性较差。②废水中SO42-浓度对厌氧降解有较强的抑制作用,随着SO42-浓度的增高,COD去除率逐渐下降,当5042-浓度达到5000mg/L以上,COD/SO42-值小于1时,厌氧降解受到严重抑制,甲烷气产生量极少。
     对处理青霉素生产废水过程中硫酸盐影响的研究表明,在不设脱硫装置的情况下,当SO42-浓度达到2000mg/L左右、COD/SO42-值小于3时,反应器的运行效果和稳定性变差。而实际青霉素废水5042-浓度远大于2000mg/L,且COD/SO42-值小于3,因此必须采取一定的脱硫技术控制硫酸盐的抑制作用。对一定条件下运行的EGSB反应器处理负荷,采用厌氧条件下以NO3-为电子受体的方法培养脱硫菌种,将对EGSB处理高硫酸盐废水产生抑制的S2-转变成无害的S单质,可以使EGSB反应器进水COD负荷达到12kg/(m3·d),硫酸盐负荷为4.8kg/(m3·d)。处理青霉素废水的EGSB-脱硫反应器系统运行参数为:进水COD不低于6000mg/L,有机负荷12kgCOD/(m3·d), COD/SO42-值不低于2.5,水力上升流速2.2m/h时,COD去除率高于85%,SO42-去除率达80%以上,由此可见此种厌氧条件下的脱硫技术对硫酸盐的抑制作用进行控制并达到了EGSB反应器稳定运行的条件。
     在EGSB反应器运行过程中,随着运行时间的延长,污泥床底部颗粒污泥的粒径大于上部的污泥粒径,呈明显的分层现象。在扫描电镜下观察颗粒污泥的微生物相,运行初期以丝状产甲烷菌为优势菌群;随着反应器的运行,菌群类型更加丰富多样,在产甲烷杆菌和丝菌上附着生长有部分反刍产甲烷球菌和脱硫弧菌,多种微生物菌群交织成网状。与脱硫反应器连接后,最大的区别是污泥的内部菌群中杆菌数量增加。
     在脱硫反应器运行过程中,随着运行时间的增长,污泥由运行初期的丝状菌为主转变为杆菌占绝对优势,尤其是进废水后,污泥内部以大量竹节状杆菌呈束状排列。随着进水中S2-浓度的增加,污泥的表面出现浅黄色单质S颗粒,出水中也有S单质沉淀。
Desulfurization process under anaerobic conditions of anaerobic expanded granular sludge bed (EGSB) reactor for treating penicillin waste water was systematically investigated.
     Firstly, the test analyzed the characteristic of antibiotic wastewater particularity. The result shown that:①The penicillin wastewater contains high concentration of toxic substances such as sulfate, excess nitrogen and poor anaerobic biodegradability. (COD:N: P about 200:43.37:0.78 and BOD/COD about 0.26) It is obvious that some factors of inhibiting anaerobic digestion in the wastewater.②Sulfate concentration have strong effect on the anaerobic digestion. Along with the sulfate concentration increased, COD removal rate decreased gradually. When the sulfate concentration above 5000mg/L and COD/SO42-<1, anaerobic degradation have been seriously inhibited.
     The study of the sulfate impact in penicillin wastewater treatment shown that no desulfurization unit in the circumstances, when the sulfate concentration about 2000 mg/L, COD/SO42- under 3, the reactor operating results and stability deterioration. Penicillin wastewater actually exceeded this threshold, it must be taken to a certain degree of desulfurization technology control Sulphate Inhibition. At this point, under certain conditions on the reactor EGSB organic load, under anaerobic conditions using the way of adding nitrates to the influte water to cultivate desulfurization bacteria, Will be transformed sulfide ions into harmless sulfur, EGSB which take inhibition on the process of EGSB treatment high-sulfate wastewater. And EGSB reactor influent COD concentration reached 6000mg/L sulphate concentration of 2400mg/L. When the EGSB-desulfurization System penicillin wastewater the result shown that:When the system was operated at 100%penicillin wastewater influent, and COD no less than 6000mg/L, organic loading 12kgCOD/(m3·d), COD/SO42- value no less than 2.5, liquid upflow velocity 2.2 m/h, then the COD removal efficiency higher than 85%, SO42- removal rate reached more than 80%, It can be seen under anaerobic conditions such desulfurization technology to control the inhibitory effect of sulfate and EGSB reactor reached stable operation conditions.
     Along with the EGSB's operation, the granular diameter in the bottom of the sludge bed were larger than that in the upper part of the sludge bed. Observed under the scanning electronic microscopy, we found that in the early time, there was distinct predominance of Methanosaeta. Along with the organic loading increased, it was appeared not the Methanosaeta but the Sarcina-type bacteria. In stable operation at medium, the granules had more microbe species. On the Methanosaeta and Sarcina-type bacteria, there are many Methanobacterium and Desulfovibrio congregated developed. Increase the Desulphurization Plant, the biggest difference is that the internal flora in the sludge increase in the number of bacilli.
     In the desulfurization reactor to run the course, with the growth of running time, sludge from mainly of filamentous bacteria in the early run into bacillus dominated later, especially after the Penicillin wastewater input the reactor, A large number of bamboo-shaped bacilli were arranged in fascicular sludge internal With the increasing of Sulfide's concentration in the influte wasterwater, some light yellow metallic S particles appear in the sludge surface, and Some sulfur precipitation occurred at the bottom of water.
引文
[1]王伟。EGSB反应器处理高浓度硫酸盐废水的研究,江南大学硕士论文。
    [2]杨军,陆正禹.抗生素工业废水生物处理技术的现状与展望[J].环境科学,1997,18(3):83.
    [3]竺建荣,胡纪萃,顾夏声.二相厌氧消化工艺硫酸盐还原菌的研究[J].环境科学,1997,18(6):42-48.
    [4]Omil F,Lens P.Long-term competition between sulfate reducing and metha nogenic bacteria in UASB reactors treating volatile fatty acids[J].Biotech and Bioeng,1998,57(6):677-685.
    [5]Jan Dries,Andy De Smul.High rate biological treatment of sulfate-rich wastewater in an acetate-fed EGSB reactor[J]. Biodegradation,1998,2(9):103-111.
    [6]柯建明,王凯军.采用好氧气提反应器处理含硫化物废水[J].环境科学,1998,19(4):62-66.
    [7]杨景亮,赵毅.废水中硫酸盐生物还原影响因素的研究[J].中国沼气,1999,17(2):2-5.
    [8]陈业钢,祁佩时.硫酸盐对抗生素废水厌氧生物处理的影响[J].中国给水排水,2002,18(6):81-22.
    [9]张希衡.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996.
    [10]刘建广,黄霞,俞毓馨.二相厌氧—生物接触氧化工艺处理四环素废水的研究[J].中国抗生素杂志.1993,18(6):451-455
    [11]王春平,马子川Fenton试剂处理青霉素的废水实验研究[J].重庆环境科学,2003,25(12):25-26
    [12]王春平,张素坤,马子川Fenton试剂—石灰法处理青霉素废水[J].河北师范大学学报,2003,27(1):79-80
    [13]孙京敏,王路光,王世研.水解酸化法预处理青霉素废水的试验[J].环境工程,2006,24(1):30-32.
    [14]国家环保局科技处,清华大学环境工程系编.我国几种工业废水治理技术研究[M].(第三分册)——高浓度有机废水,北京:化学工业出版社,1988.
    [15]胡晓东,胡冠民.青霉素废水处理试验研究及工程应用[J].给水排水,2002,28(1):50-52
    [16]孙振龙,陈绍伟,吴志超.一体式平片膜生物反应器处理抗生素废水研究[J].工业用水与废水,2003,34(1):33-35
    [17]孙孝龙,普红平.一体式膜生物反应器(SMBR)处理抗生素废水研究[J].四川环境,2003,22(5):12-14
    [18]孙京敏,袁怀雨,任立人.膜生物反应器(MBR)处理青霉素废水试验[J].环境工程,2005,23(4):12-14
    [19]G.Lettinga. Anaerobic digestion and wastewater treatment systems[J]. Antonie van Leeuwenhoek, 1995,67(1):3-28
    [20]杨军,陆正禹,胡纪萃,顾夏生.抗生素工业废水生物处理技术的现状与展望[J].环境科学,1997,18(3):83-85
    [21]林锡伦.上流式厌氧污泥床(UASB)工艺处理高浓度发酵药物混合有机废水[J].环境污染与防治,1999,12(3):20-22
    [22]巩有奎,相会强,穆兰.厌氧折流板反应器降解青霉素废水的特性研究[J].现代化 工,2006,26:172-175
    [23]范永哲,戚鹏,赵仁兴.水解酸化法预处理青霉素、土霉素废水实验研究,环境保护科学,2002,28(114):19-21
    [24]贾璇,EGSB反应器处理青霉素生产废水工艺研究,河北大学工学硕士论文,2007
    [25]姜峰,潘永亮,梁瑞等含硫废水的处理与研究进展[J],兰州理工大学学报2004,30(10):2-2
    [26]张小军,周军,金奇庭.等.亚硫酸盐氧化法处理高浓度含硫废水[J].给水排水,2000,26(12):47-49.
    [27]贺延龄.废水的生物处理[M].北京:中国轻工业出版社,1998.
    [28]柯建明,王凯军.采用好氧气提反应器处理含硫化物废水[J].环境科学,1998,19(7):62-64.
    [29]刘鸿元THIOPAQ生物脱硫技术中氮肥[J]2002,5(9):53-56
    [30]左剑恶袁琳胡纪萃顾夏声利用无色硫细菌氧化废水中硫化物的研究[J]环境科学1995,16(6):7-10
    [31]杨柳燕,蒋锋.二段生物接触氧化法处理含硫废水的中试研究[J].应用与环境生物学报,1999,5(专辑):99-101.
    [32]姚传中张克强季民等排硫硫杆菌生物强化处理含硫废水[J],中国给水排水2004,20:57-59
    [33]Murtuza A S,Paul F H. Effect of tube size on performance of a fixed 2film tubular bioreactor for conversion of hydrogen sulfide to elemental sulfur [J].Water Research,2003,37:1 93221 938.
    [34]郭明菲,脱H2S高效菌种筛选及其降解特性的实验研究,西安建筑科技大学硕士论文[D],2008
    [35]Schonheit P. Kinetic mechanism for t he ability of sulfate reducers to out compete met hanogens for acetate, Arch Microbiol [J],1982,132:285-288
    [36]Hen shaw P. F., Bewt ra J. K.,et al. Biological removal of hydrogen sulfide from refinery waster water and conversion to elemental sulfur, Wat. Sci. Tech.[J],1992,25 (3):265-270
    [37]Robertson L.A.,J.G..Kuenen. Anaerobic and Aerobic Denituification by Sulphide Oxidizing Bacteria from Waster Water, Anaerobic Waste Water Treatment[J], TNO Corp. Comm. Dept. Netherlands,1983a:3-12
    [38]李巍等.兼养同步脱硫反硝化工艺及影响因素,中国环境科学[J],2008,28(4):345-349
    [39]王爱杰等.一种同步脱氮脱硫并回收单质硫的新工艺初探,中国环境科学[J],2004,25(2)
    [40]马艳玲等.固定化脱氮硫杆菌净化硫化氢气体的研究,现代化工[J],2004.2(20):32-34
    [41]李军.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [42]陈坚.环境生物技术应用与发展[M].北京:中国轻工业出社,2001.
    [43]国家环境保护总局,水与废水检测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [44]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998
    [45]Daniel R.Shelton, James M.Tiedje. General method for determining anaerobic biodegradation potential[J]. Applied and Environmental Microbiology,1984,47(4):850-857
    [46]Nigel S.Battersby, Valerie Wilson. Survey of the Anaerobic Biodegradation Potential of Organic Chemicals in Digesting Sludge[J]. Applied and Environmental Microbiology,1989,55(2):433-439
    [47]Barbara A. Nuck, Thomas W. Federle. Batch test for assessing the mineralization of 14C-Radiolabeled compounds under realistic anaerobic conditions[J]. Environmental Science and Technology,1996, 30(12):3597-3603