大跨度桥梁的风致振动分析与被动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁技术的突飞猛进使得桥梁的跨越能力不断增强,导致桥梁的刚度不断下降,体现出柔性结构特征。1940年Tacoma大桥的垮塌使得风对桥梁结构的作用走进桥梁工程技术人员的视野,众多学者对桥梁风致振动进行了相关研究,基本上得到了各种风致振动机理。时至今日,风致振动对大跨度桥梁的影响无论是在建设阶段还是在运营阶段都已不容忽视。同时,风致振动也是限制桥梁跨度进一步增加的重要制约因素。
     本文从风致振动以及控制的研究现状出发,在总结和吸收国内外前人研究成果的基础上,对大跨度桥梁的风致振动以及被动控制加以研究,给出了大跨度桥梁风致振动的频域分析方法和时域分析方法,并使用多种TMD装置对风致振动的被动控制的原理、效果以及参数加以研究,且均编制程序加以实现。本文的主要研究内容包括:
     (1)分析了桥梁结构在非线性静力荷载作用下桥梁成桥状态。介绍了悬索桥成桥状态分析的解析法和有限元法、斜拉桥成桥状态和索力优化,分析了大跨度桥梁静风稳定问题。利用增量与内外两重迭代法分别计算了两座桥梁的静风失稳的临界风速,以此静力计算结果作为模态分析的基础。
     (2)分析了频域范围内桥梁结构的颤振。详细介绍以有限模态为基础的多种多模态分析方法中的多模态颤振自动分析法,并以具有理想平板截面的简支梁和某在建长江公路悬索桥为例,使用该方法分析了颤振发生的规律和形态。
     (3)分析了频域范围内桥梁结构的抖振。利用计算速度较快的虚拟激励法(PEM)对大跨度桥梁进行了抖振分析过程加以推导,在其中使用更为精确的桥梁结构节点等效气动抖振力公式,并与较为精确的大跨度桥梁抖振分析的CQC方法进行比较。以具有理想平板截面的简支梁和某在建长江公路悬索桥作为数值算例进行了验证分析。
     (4)分析了时域范围内桥梁结构的风致振动问题。结合大跨度桥梁的结构非线性静力计算结果,分析大跨度桥梁的颤振以及颤抖振在时域内的分析手法。介绍了时域内自激力和脉动风速的模拟方法。对原结构的有限元模型叠加自激力生成的气动刚度、阻尼和质量,将自激力中的时间历程项和抖振力作为外部荷载加入有限元模型。使用ANSYS实现了颤抖振统一时程分析。
     (5)利用TMD研究了大跨度桥梁的被动控制问题。结合风致振动的频域计算结果,分析大跨度桥梁的颤振以及颤抖振的被动控制方法,研究了被动控制参数的设定问题。以TMD为代表,介绍了被动控制的基本理论,推导了STMD、DTMD这两种TMD设备的控制原理以及与结构共同运动的动力微分方程。研究大跨度桥梁颤振和考虑自激力的抖振的TMD控制问题,并分别以STMD、DTMD为基础分别计算了具有理想平板截面的简支梁和某在建长江公路悬索桥在TMD装置作用下TMD的颤振控制效率和颤抖振控制效率,并对TMD的参数的取值做了分析研究。
With the rapid development of bridge technology, the span ability of the bridge is continuously enhanced, and the stiffness of the bridge is decreasing, reflecting the flexible structure. The wind effect on the bridge goes into the vision of engineers and technicians since the collapse of Tacoma Bridge in 1940. After that, the wind-induced vibration of bridge is studied densely, and various basic wind-induced vibration mechanisms have been put forward. At present, the influence of vibration to the long span bridge induced by the wind cannot be neglected whether in construction phase or in operation stage. Meanwhile, the vibration of bridge induced by wind is also an important factor restraining the lengthening of the bridge span.
     From the research status quo of the wind-induced vibration and its control, the paper studies the wind-induced vibration and passive control of a long span bridge, on the basis of the predecessors' achievements at home and abroad. The paper puts forward the frequency domain and the time domain of the wind-induced vibration of long span bridges, and uses a variety of TMD devices to study the theories, effects and parameters of the passive control, and all these are programming realization. The main research contents include:
     (1) Analyzing the completion state of the bridge structure under the effect of a nonlinear static load. The paper introduces the analytical method and finite element method of the completion state of the suspension bridge, the completion state and cable force optimization of cable-stayed bridge, and the problem on the aerostatics stability of long-span bridges. It also has calculated the critical wind speeds in static instability of the two bridges, using the internal and external incremental double method .These are the foundation of modal analysis.
     (2) Analyzing the flutter of bridge structure in frequency domain. The multi-mode flutter automatic analysis method, one of the multi-mode analysis methods which are based on the finitude modes, is introduced detailed and used to analyze the rules and patterns of the flutter of the simple supported thin airfoil beam (SSTAB) and a suspension bridge across the Yangtze River being built.
     (3) Analyzing the buffeting of bridge structure in frequency domain. The paper uses the pseudo-excitation method (PEM), a method with a fast calculating speed, to deduce the buffeting of the long-span bridge. During the deduction, the paper uses more accurate bridge structure node equivalent aerodynamic force formula, and compares the method with the CQC method. At last, taking SSTAB and the erecting suspension bridge across the Yangtze River as the numerical example, the paper also does a validating analysis.
     (4) Analyzing the wind-induced vibration in time domain. Combining with the structure nonlinearity static result, the paper analyzes the flutter and buffeting calculation method in time domain. The paper also introduces the simulation method of self-excited force and turbulence wind velocity in the time domain, adds the aerodynamic stiffness, damper and mass on the original finite element model, uses the time history term of the self-excited force and buffeting force as applied force on the FEM model and realizes the combined flutter and buffeting analysis in time domain by using ANSYS.
     (5) Studying the passive control problem of the long-span bridge by the TMD. Combining with the calculated results in frequency domain of the wind-induced vibration, the paper analyzes the passive control method about the flutter and the buffeting in frequency domain, and studies the preferences of passive control parameter. Taking the TMD as an example, it introduces the basic theory of passive control, and deduces the control theory of STMD and DTMD and dynamic differential equation of TMD-structure. It also studies the TMD control issues of flutter and buffeting considering the self-excited force, calculates the flutter control efficiencies and buffeting control efficiencies of the SSTAB and the suspension bridge being built across the Yangtze River on the base of the STMD and DTMD individually, and studies the value selection of TMD’s parameter.
引文
[1] T. Theodorsen. General theory of aerodynamic instability and the mechanism of flutter[J]. NACA report, 1935, 496: 413-433.
    [2] H. W.伏欣,沈克扬.气动弹性力学原理[M].上海科学技术文献出版社, 1982.
    [3] F. Bleich, Dynamic instability of truss-stiffened suspension bridges under wind action Proc. ASCE 1948, pp. 1269-1314.
    [4] K. Kl?ppel, F. Thiele. Modell ver suche im Windkanal zur Bemessung vonücken gegen die Gefahr winderregter Schwingungen[J]. Der Stahlbau, 1967, 36(12): 353-365.
    [5] Van Der Put. Rigidity of structures against aerodynamic forces[C]. IABSE. 1976.
    [6] H. Tanaka, N. J. Gimsing. Aerodynamic stability of non-symmetrically erected suspension bridge girders[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1999, 80(1-2): 85-104.
    [7] R. H. Scanlan, A. Sabzevari. Suspension bridge flutter revisited[C]. ASCE Structure Engineering Conference. 1967.
    [8] R. H. Scanlan, A. Sabzevari. Experimental aerodynamic coefficients in the analytical study of suspension bridge flutter[J]. J. Eng. Mech, 1969, 11(3): 234-242.
    [9] R. H. Scanlan, J. J. Tomko. Airfoil and bridge deck flutter derivatives[J]. Journal of the Engineering Mechanics Division, 1971, 97(6): 1717-1737.
    [10] N. P. Jones, A. Jain, R. H. Scanlan. Multi-mode aerodynamic analysis of long-span bridges[C]. Proc. Strcut. Congress, ASCE. Atlanta , Geogia: 1994.
    [11] P. P. Sarkar, N. P. Jones, R. H. Scanlan. Identification of aeroelastic parameters of flexible bridges[J]. Journal of Engineering Mechanics, 1994, 120(8): 1718-1742.
    [12]谢霁明,项海帆.桥梁三维颤振分析的状态空间法[J].同济大学学报, 1985, 12(3): 1-13.
    [13] J. Xie, H. Xiang, State-space method for 3-D flutter analysis of bridge structures 1985, pp. 269-276.
    [14] T. J. A. Agar. Aerodynamic flutter analysis of suspension bridges by a modal technique[J]. Engineering Structures, 1989, 11(2): 75-82.
    [15] T. J. A. Agar. Dynamic instability of suspension bridges[J]. Computers & Structures, 1991, 41(6): 1321-1328.
    [16] H. Tanaka, N. Yamamura, N. Shiraishi, Multi-Mode Flutter Analysis and Two & Three Dimensional Model Tests on Bridges with Non-Analogous Modal Shapes 1993, pp. 35-35.
    [17] J. G. Beith. A practical engineering method for the flutter analysis of long span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77: 357-366.
    [18]陈政清.桥梁颤振临界状态的三维分析与机理研究[C].一九九四年斜拉桥国际学术讨论会论文集.上海, 1994.
    [19]陈政清,张相庭.桥梁颤振临界风速值上下限预测与多模态参与效应.结构风工程新进展及应用[M].上海:同济大学出版社, 1993, 197-203.
    [20]华旭刚,陈政清.桥梁风致颤振临界状态的全域自动搜索法[J].工程力学, 2002, 19(002): 68-72.
    [21] A. Namini, P. Albrecht, H. Bosch. Finite element-based flutter analysis of cable-suspended bridges[J]. Journal of Structural Engineering, 1992, 118(6): 1509-1526.
    [22]张新军.大跨度桥梁三维非线性颤振分析[D].上海:同济大学, 2000.
    [23]丁泉顺,陈艾荣,项海帆.大跨度桥梁多模态耦合颤振的自动分析[J].土木工程学报, 2002, 35(4).
    [24] T. Miyata, H. Yamada. Coupled flutter estimate of a suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33(1-2): 341-348.
    [25] T. Miyata, H. Yamada, K. Kazama, On a application of the direct flutter FEM analysis for long-span bridges 1995, p. 1033?1041.
    [26] T. Miyata, H. Yamada. Introduction of mode shape control concept in improvement of aerodynamics behaviors of long-span suspension bridges[C]. Bridge into 21st Century. Hong Kong: 1995.
    [27] N. Dung. Flutter responses in long span bridges with wind induced displacement by the mode tracing method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77: 367-379.
    [28] Y. J. Ge, H. Tanaka. Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 86(2-3): 123-153.
    [29] C. Scruton. Aerodynamics buffeting on bridge[J]. Engineer, 1955, 199(5181).
    [30] A. G. Davenport. Buffeting of a suspension bridge by storm winds[J]. J. Struct. Div. ASCE, 1962, 88(3): 233―252.
    [31] A. G. Davenport. The application of statistical concepts to the wind loading of structures[J]. Proceedings of the Institution of Civil Engineers, 1961, 19: 449-472.
    [32] A. G. Davenport, The response of slender, line-like structures to a gusty wind 1962, pp. 389-408.
    [33] A. G. Davenport, The action of wind on suspension bridges 1966, pp. 79-100.
    [34] A. G. Davenport, The dependence of wind load upon meteorological parameters Proc. Int. Res. Seminar on Wind Effects on Building and Struct. 1968, University of Toronto Press pp. 19-82.
    [35] A. G. Davenport, N. Isyumov, D. J. Fader, et al. A Study of Wind Action on a Suspension Bridge During Erection and Completion[J]. The University of Western Ontario, Faculty of Engineering Science, Research Report BLWT-3-1969, London, Ontario, Canada, 1969.
    [36] C. G. Bucher, F. J. Wall. Stochastic response of bridges in turbulent wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1-3): 1347-1358.
    [37] R. H. Scanlan, R. H. Gade. Motion of suspended bridge spans under gusty wind[J]. Journal of the Structural Division, 1977, 103(9): 1867-1883.
    [38] R. H. Scanlan. The action of flexible bridges under wind, II: Buffeting theory[J]. Journal of Sound and vibration, 1978, 60(2): 201-211.
    [39] A. Jain, N. P. Jones, R. H. Scanlan. Coupled flutter and buffeting analysis of long-span bridges[J]. Journal of Structural Engineering, 1996, 122(7): 716-725.
    [40] E. Simiu, R. H. Scanlan.风对结构的作用――风工程导论[M].上海:同济大学出版社, 1992.
    [41] R. H. Scanlan, N. P. Jones. Aeroelastic analysis of cable-stayed bridges[J]. Journal of Structural Engineering, 1990, 116(2): 279-297.
    [42] H. Katsuchi, N. P. Jones, R. H. Scanlan, et al. A study of mode coupling in flutter and buffeting of the Akashi-Kaikyo bridge[J]. STRUCTURAL ENGINEERING EARTHQUAKE ENGINEERING, 1998, 15: 175-190.
    [43] H. Katsuchi, N. P. Jones, R. H. Scanlan. Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo Bridge[J]. Journal of Structural Engineering, 1999, 125: 60.
    [44] N. P. Jones, R. H. Scanlan, A. Jain, et al. Advances (and challenges) in the prediction of long-span bridge response to wind[J]. Bridge aerodynamics, 1998: 59-85.
    [45] Yl Xu, Dk Sun, Jm Ko, et al. Buffeting analysis of long span bridges: a new algorithm[J]. Computers and Structures, 1998, 68(4): 303-313.
    [46] Dk Sun, H Zhi, Ws Zhang, et al. Highly efficient and accurate buffeting analysis of complex structures[J]. Communications in Numerical Methods in Engineering, 1998, 14(6): 559-567.
    [47] L Jiahao. A fast CQC algorithm of PSD matrices for random seismic responses[J]. Computers & Structures, 1992, 44(3): 683-687.
    [48]林家浩,李建俊.任意相干多激励随机响应[J].应用力学学报, 1995, 12(001): 97-103.
    [49]林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记[J].计算力学学报, 1998, 15: 2.
    [50] Y. L. Xu, D. K. Sun, J. M. Ko, et al. Fully coupled buffeting analysis of Tsing Ma suspension bridge[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2000, 85(1): 97-117.
    [51] Yk Lin. Motion of suspension bridges in turbulent winds[J]. Journal of the Engineering Mechanics Division, 1979, 105(6): 921-932.
    [52]李明水.连续大气湍流中大跨度桥梁的抖振响应[D].西南交通大学, 1993.
    [53]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析[D].同济大学, 2001.
    [54] Rh Scanlan. Role of indicial functions in buffeting analysis of bridges[J]. Journal of Structural Engineering, 1984, 110: 1433.
    [55] Rh Scanlan, Jg Béliveau, Ks Budlong. Indicial aerodynamic functions for bridge decks[J]. Journal of the Engineering Mechanics Division, 1974, 100(4): 657-672.
    [56] Pd Spanos, Ba Zeldin. Monte Carlo treatment of random fields: a broad perspective[J]. Applied Mechanics Reviews, 1998, 51: 219.
    [57] Cg Bucher, Ykl Fellow. Stochastic stability of bridges considering coupled modes[J]. Journal of Engineering Mechanics, 1988, 114: 2055.
    [58] Qc Li, Ykl Fellow. New stochastic theory for bridge stability in turbulent flow. II[J]. Journal of Engineering Mechanics, 1995, 121: 102.
    [59] I Kovacs, E Jordet. Analytical Aerodynamic Investigation of Cable?Stayed Helgeland Bridge[J]. Journal of Structural Engineering, 1992, 118: 147.
    [60]刘春华,项海帆,顾明.大跨度桥梁抖振响应的空间非线性时程分析法[J].同济大学学报:自然科学版, 1996, 24(004): 380-385.
    [61]刘春华.大跨度桥梁抖振响应的非线性时程分析[D].同济大学, 1995.
    [62]曹映泓,项海帆.大跨度桥梁随机风场的模拟[J].土木工程学报, 1998, 31(003): 72-79.
    [63]曹映泓,项海帆.大跨度桥梁颤振和抖振统一时程分析[J].土木工程学报, 2000, 33(005): 57-62.
    [64] Y Cao, H Xiang, Y Zhou. Simulation of stochastic wind velocity field on long-span bridges[J]. Journal of Engineering Mechanics, 2000, 126: 1.
    [65] M. Di Paola. Digital simulation of wind field velocity[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74: 91-109.
    [66] Y Li, A Kareem. Simulation of multivariate random processes: hybrid DFT and digital filtering approach[J]. Journal of Engineering Mechanics, 1993, 119: 1078.
    [67]周述华.大跨度悬索桥空间非线性抖振响应仿真分析[D].成都: :西南交通大学, 1993.
    [68] X Chen, A Kareem. Nonlinear response analysis of long-span bridges under turbulent winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14-15): 1335-1350.
    [69] X Chen, M Matsumoto, A Kareem. Time domain flutter and buffeting response analysis of bridges[J]. Journal of Engineering Mechanics, 2000, 126(1): 7-16.
    [70] Virote Boonyapinyo, Toshio Miyata, Hitoshi Yamada. Advanced Aerodynamic Analysis of Suspension Bridges by State-Space Approach[J]. Journal of Structural Engineering, 1999, 125(12): 1357-1366.
    [71] Jt Yao. Concept of structural control[J]. Journal of the Structural Division, 1972, 98(st 7).
    [72] Sj Dyke. Current directions in structural control in the US[C]. 9th World Seminar on Seismic Isolation. Kobe, Japan: Energy Dissipation and Active Vibration Control of Structures, 2005.
    [73] Tk Datta. A state-of-the-art review on active control of structures[J]. ISET Journal of Earthquake Technology, 2003, 40(1): 1-17.
    [74] Sy Chu, Tt Soong, Am Reinhorn. Active, hybrid, and semi-active structural control: a design and implementation handbook[M]. Wiley New York, 2005.
    [75]欧进萍.结构振动控制:主动,半主动和智能控制[M].科学出版社, 2003.
    [76] M. Gu. Control of wind-induced vibration of long-span bridges and tall buildings[J]. Frontiers of Architecture and Civil Engineering in China, 2007, 1(1): 51-62.
    [77] F. Casciati, F. Giuliano. Performance of Multi-TMD in the Towers of Suspension Bridges[J]. Journal of Vibration and Control, 2009, 15(6): 821-847.
    [78] C. Adam, T. Furtmüller. Seismic Performance of Tuned Mass Dampers[J]. Mechanics and Model-Based Control of Smart Materials and Structures, 2009: 11.
    [79]曾宪武,韩大建.考虑多模态气动耦合效应桥梁颤振TMD控制参数分析[J].振动与冲击, 2005, 24(003): 32-35.
    [80]刘刚亮,汪正兴.应用大型TMD抑制崖门大桥RC桥塔的抖振响应[J].世界地震工程, 2002, 18(002): 48-55.
    [81]项海帆,葛耀君.悬索桥跨径的空气动力极限[J].土木工程学报, 2005, 38(001): 60-70.
    [82]李国豪.桥梁结构稳定与振动[M].中国铁道出版社, 1992.
    [83] R Rana, Tt Soong. Parametric study and simplified design of tuned mass dampers[J]. Engineering Structures, 1998, 20(3): 193-204.
    [84] H Frahm. VIBRATIONS OF BODIES[P].
    [85] Jp Den Hartog. Mechanical vibrations[M]. New York: 1934.
    [86] M Gu, H Xiang. Optimization of TMD for suppressing buffeting response of long-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1-3): 1383-1392.
    [87]项海帆,陈艾荣.调质阻尼器(TMD)对桥梁涡激共振的抑制[J].同济大学学报:自然科学版, 1994, 22(002): 159-164.
    [88]曾宪武.大跨度桥梁多模态耦合颤抖振及其控制研究[D].华南理工大学, 2006.
    [89]陈艾荣,项海帆.斜拉桥涡激扭转振动的被动控制[J].同济大学学报:自然科学版1994,22(004): 487-492.
    [90]陈艾荣,陈伟.大跨斜拉桥的侧向弯曲抖振及其控制[J].振动与冲击, 1995, 14(002): 35-39.
    [91]陈艾荣,项海帆.多重调质阻尼器制振性能及对桥梁抖振的控制[J].同济大学学报:自然科学版, 1998, 26(002): 125-129.
    [92] M. Gu, C. C. Chang, W. Wu, et al. Increase of critical flutter wind speed of long-span bridges using tuned mass dampers[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1998, 73(2): 111-123.
    [93] K Xu, T Igusa. Dynamic characteristics of multiple substructures with closely spaced frequencies[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(12): 1059-1070.
    [94]曾宪武,韩大建.多重双频率调谐质量阻尼器制振性能及对桥梁抖振的控制[J].工程力学, 2006, 23(001): 74-80.
    [95]曾宪武,韩大建.模态间气动耦合效应对调谐质量阻尼器最优参数的影响[J].土木工程学报, 2005, 38(011): 64-68.
    [96]曾宪武,韩大建.桥梁多模态耦合抖振控制方法研究[J].计算力学学报, 2006, 23(001): 107-112.
    [97]曾宪武,韩大建.双频率调谐质量阻尼器在桥梁抖振控制中的应用[J].华南理工大学学报:自然科学版, 2005, 33(009): 45-50.
    [98] M Gu, R Zhang, H Xiang. Identification of flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(2): 151-162.
    [99] S. D. Kwon, K. S. Park. Suppression of bridge flutter using tuned mass dampers based on robust performance design[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2004, 92(11): 919-934.
    [100]曾宪武,韩大建.大跨度桥梁多模态耦合颤振DTMD控制研究[J].计算力学学报, 2005, 22(004): 492-496.
    [101]潘永仁.悬索桥结构非线性分析理论与方法[M].北京:人民交通出版社, 2004.
    [102]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社., 2003.
    [103]张哲.混凝土自锚式悬索桥[M].北京:人民交通出版社, 2005.
    [104]狄谨,武隽.自锚式悬索桥主缆线形计算方法[J].交通运输工程学报, 2004, 4(003): 38-43.
    [105]肖海波,俞亚南,沈毅.悬索桥主缆成桥线形精确分析[J].中国市政工程, 2003, (004): 21-22.
    [106]肖汝诚,项海帆.大跨径悬索桥结构分析理论及其专用程序系统的研究[J].中国公路学报, 1998, 11(004): 42-50.
    [107]王建国,逄焕平,李雪峰.悬索桥线形分析的悬链线单元法[J].应用力学学报, 2008, 25(004): 627-631.
    [108]陈常松,陈政清,颜东煌.悬索桥主缆初始位形的悬链线方程精细迭代分析法[J].工程力学, 2006, 23(008): 62-68.
    [109]林元培.斜拉桥[M].人民交通出版社, 2004.
    [110]颜东煌,刘光栋.混凝土斜拉桥合理成桥状态确定的分步算法[J].中国公路学报, 2003, 16(001): 43-46.
    [111]李熠,颜东煌,李学文.混凝土斜拉桥合理成桥状态研究[J].重庆交通大学学报:自然科学版, 2008, 27(006): 1017-1019.
    [112]杜国华,姜林.斜拉桥的合理索力及其施工张拉力[J].桥梁建设, 1989, (003): 11-17.
    [113]范立础,杜国华.斜拉桥索力优化及非线理想倒退分析[J].重庆交通学院学报, 1992, 11(001): 1-13.
    [114]陆楸,徐有光.斜拉桥最优索力的探讨[J].中国公路学报, 1990, 3(001): 38-48.
    [115]郭文复.斜拉桥最优化调索[C]. 1994年斜拉桥国际学术讨论会论文集.上海:同济大学出版社, 1995.
    [116]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报:自然科学版, 1998, 26(003): 235-240.
    [117] D Janjic, M Pircher, H Pircher. Optimization of cable tensioning in cable-stayed bridges[J]. Journal of Bridge Engineering, 2003, 8: 131.
    [118] Ty Lee, Yh Kim, Sw Kang. Optimization of tensioning strategy for asymmetric cable-stayed bridge and its effect on construction process[J]. Structural and Multidisciplinary Optimization, 2008, 35(6): 623-629.
    [119]张建民,肖汝诚.斜拉桥合理成桥状态确定的一阶分析法[J].力学季刊, 2004, 25(002): 297-303.
    [120]巩春领,陶海,吴文明, et al.斜拉桥合理成桥状态确定的序列二次规划法[J].力学季刊, 2005, 26(002): 305-309.
    [121]陶海,沈祥福.斜拉桥索力优化的强次可行序列二次规划法[J].力学学报, 2006, 38(003): 381-384.
    [122]李传习,夏桂云.大跨度桥梁结构计算理论[M].北京:人民交通出版社, 2002.
    [123]中华人民共和国交通部标准.公路桥梁抗风设计规范(JTG/T D60-01-2004). 2004
    [124] Virote Boonyapinyo, Hitoshi Yamada, Toshio Miyata. Wind-Induced Nonlinear Lateral-Torsional Buckling of Cable-Stayed Bridges[J]. Journal of Structural Engineering, 1994, 120(2): 486-506.
    [125]方明山.超大跨度缆索承重桥梁非线性空气静力稳定理论研究[D]. 1997.
    [126]程进,肖汝诚.大跨径斜拉桥非线性静风稳定性全过程分析[J].中国公路学报, 2000, 13(003): 25-28.
    [127]程进,肖汝诚,项海帆.大跨径桥梁静风稳定性分析方法的探讨与改进[J].中国公路学报, 2001, 14(002): 30-32.
    [128]程进.考虑几何与材料及静风荷载的非线性因素的大跨径桥梁静风稳定分析法[J].应用力学学报, 2002, 19(4).
    [129]韩大建,邹小江.大跨度斜拉桥非线性静风稳定分析[J].工程力学, 2005, 22(001): 206-210.
    [130]张志田,葛耀君.考虑抖振影响的大跨度桥梁静风稳定性分析[J].工程力学, 2006, 23(008): 96-101.
    [131] R. Scanlan. The action of flexible bridges under wind, I: Flutter theory[J]. Journal of Sound Vibration, 1978, 60: 187-199.
    [132] U. Starossek. Complex notation in flutter analysis[J]. Journal of Structural Engineering, 1998, 124(8): 975-977.
    [133] R. W.克拉夫, J.彭津,王光远.结构动力学[M].科学出版社, 1981.
    [134]陈政清.桥梁风工程[M].北京:人民交通出版社, 2005.
    [135] J. C. Kaimal, J. C. Wyngaard, Y. Izumi, et al. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417): 563-589.
    [136] M. Hino. Spectrum of gusty wind[C]. Proceedings of International Conference on Wind Effects on Buildings and Structures. Tokyo: 1971.
    [137] H. A. Panofsky, R. A. Mccormick. The spectrum of vertical velocity near the surface[J]. Quarterly Journal of the Royal Meteorological Society, 1960, 86(370): 495-503.
    [138] J. L. Lumley, H. A. Panofsky. The structure of atmospheric turbulence[M]. John Wiley & Sons Inc, 1964.
    [139] Jones N.P., Jain A., Scanlan R.H. Wind cross-spectrum effects on long-span bridges[C]. Proceedings of Engineering Mechanics Special Conference ASCE New York: 1992.
    [140]林家浩,张亚辉.随机振动的虚拟激励法[M].科学出版社, 2004.
    [141]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动, 1985, 5(1): 89-94.
    [142] L Jiahao, Z Wenshou, L Jianjun. Structural responses to arbitrarily coherent stationary random excitations[J]. Computers & Structures, 1994, 50(5): 629-633.
    [143]林家浩,李建俊.结构受多点非平稳随机地震激励的响应[J].力学学报, 1995, 27(005): 567-576.
    [144] W Zhong. Review of a high-efficiency algorithm series for structural random responses[J].PROGRESS IN NATURAL SCIENCE-BEIJING-, 1996, 6: 257-268.
    [145] J Lin, J Li, W Zhang, et al. Random seismic responses of multi-support structures in evolutionary inhomogeneous random fields[J]. Earthquake Engineering & Structural Dynamics, 1997, 26(1): 135-145.
    [146] Jh Lin, Dk Sun, Y Sun, et al. Structural responses to non-uniformly modulated evolutionary random seismic excitations[J]. Communications in Numerical Methods in Engineering, 1997, 13(8): 605-616.
    [147] M Shinozuka. Simulation of multivariate and multidimensional random processes[J]. The Journal of the Acoustical Society of America, 1971, 49: 357.
    [148] M Shinozuka, Cm Jan. Digital simulation of random processes and its applications[J]. Journal of Sound and vibration, 1972, 25(1): 111-128.
    [149] Le Borgman, California Univ Berkeley Hydraulic Engineering Lab. Ocean wave simulation for engineering design[M]. University of California, Hydraulic Engineering Laboratory, Wave Research Projects, 1967.
    [150] M Shinozuka. Digital simulation of random processes in engineering mechanics with the aid of FFT technique[J]. Stochastic problems in mechanics, 1974: 277?286.
    [151] M Shinozuka, G Deodatis. Simulation of stochastic processes by spectral representation[J]. Applied Mechanics Reviews, 1991, 44: 191.
    [152] M Shinozuka, Cb Yun, H Seya. Stochastic methods in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36: 829-843.
    [153] Jn Yang. Simulation of random envelope processes[J]. Journal of Sound and vibration, 1972, 21(1): 73-85.
    [154] Jn Yang. On the normality and accuracy of simulated random processes[J]. Journal of Sound and vibration, 1973, 26(3): 417-428.
    [155] F Yamazaki, M Shinozuka. Digital generation of non-Gaussian stochastic fields[J]. Journal of Engineering Mechanics, 1988, 114(7): 1183-1197.
    [156] G Deodatis. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, 1996, 122(8): 778-787.
    [157]罗俊杰,韩大建.大跨度结构随机脉动风场的快速模拟方法[J].工程力学, 2008, 25(003): 96-101.
    [158] W Gersch, J Yonemoto. Synthesis of multivariate random vibration systems: A two-stage least squares AR-MA model approach[J]. Journal of Sound and vibration, 1977, 52(4): 553-565.
    [159] E Samaras, A Tsurui. ARMA representation of random processes[J]. Journal of Engineering Mechanics, 1985, 111: 449.
    [160] Mp Mignolet, Mv Harish. Comparison of some simulation algorithms on basis of distribution[J]. Journal of Engineering Mechanics, 1996, 122(2): 172-176.
    [161] Ptd Spanos, Je Hansen. Linear prediction theory for digital simulation of sea waves[J]. Journal of Energy Resources Technology, 1981, 103: 243.
    [162] Mp Mignolet, Pd Spanos. MA to ARMA modeling of wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36: 429-438.
    [163] Mp Mignolet, Pd Spanos. Recursive simulation of stationary multivariate random processes―Part I[J]. Journal of applied mechanics, 1987, 54: 674.
    [164] Pd Spanos, Mp Mignolet. Recursive simulation of stationary multivariate random processes―Part II[J]. Journal of applied mechanics, 1987, 54: 681.
    [165] Da Reed, Rh Scanlan. Time series analysis of cooling tower wind loading[J]. Journal of Structural Engineering, 1983, 109(2): 538-554.
    [166] A Iannuzzi, P Spinelli. Artificial wind generation and structural response[J]. Journal of Structural Engineering, 1987, 113: 2382.
    [167] Z Huang, Zs Chalabi. Use of time-series analysis to model and forecast wind speed[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 56(2-3): 311-322.
    [168] Yy Lin, Cm Cheng, Ch Lee. A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges[J]. Engineering Structures, 2000, 22(9): 1195-1204.