新型流体有限元方法研究及其在风场绕流和结构耦合风效应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机科学和数值求解技术的飞速发展,基于计算流体动力学(Computational Fluid Dynamic, CFD)的湍流风场数值模拟以及风和结构的流固耦合(Fluid-Structure Interaction,FSI)分析已经成为结构工程中的研究热点。
     首先,提出了一种计算不可压缩粘性流问题的新型稳定化流体有限元方法。将半隐式三步方法(Three-step Method)和流线迎风Petrov-Galerkin (SUPG)稳定化方法相结合,运用SUPG迎风格式进行空间离散,对速度场和压力场则采用同阶的线性插值函数,从而有效提高了流体速度和压力的计算稳定性与计算效率。方腔拖拽流、平行四边形腔拖拽流以及三角形腔拖拽流的数值计算结果与已有文献结果吻合较好,验证了本文方法的精确性和有效性。
     其次,在本文的新型稳定化流体有限元方法的基础上,发展了一种新型稳定化流体有限元大涡模拟方法。将经典Smagorinsky亚格子模型(Sub-grid Scale model)与SUPG稳定化方法相结合,并成功应用于瞬态、非定常高雷诺数湍流流场的数值模拟。对空间离散,采用速度和压力同阶的插值函数;对时间离散,采用二阶精度且高稳定化的三步方法。数值计算显示,本方法可有效消除高雷诺数下的速度场和压力场的数值振荡现象,在较粗糙网格条件下得到较准确的速度场、压力场和气动力特性参数等计算结果。
     第三,针对动态亚格子模型(Dynamic Sub-grid Scale model)的滤波过程,将节点滤波函数和广义盒式滤波函数相结合,发展了一种简单、快速的非结构化网格滤波方法。在本文的新型稳定化流体有限元方法和动态亚格子模型的基础上,发展了一种适用于模拟结构周围风场湍流流动特性的新型动态大涡模拟方法。数值计算结果表明,本方法可模拟复杂结构形体周围的湍流流动问题,刻画建筑结构周围风场的特征旋涡结构。
     第四,针对流体域网格更新问题,本文改进了弹簧近似法(Spring Analogy Method),在弹簧刚度定义中考虑了网格形状和尺度的影响。改进弹簧近似法具备线性弹簧和扭转弹簧的优点,适用于二维和三维边界移动问题。另一方面,基于本文新型稳定化流体有限元大涡模拟方法,推导了任意拉格朗日-欧拉(Arbitrary Lagrangian-Eulerian,ALE)描述下的风场控制方程有限元列式,并用于数值模拟结构在大振幅强迫振动下的湍流风场。
     最后,针对大跨空间结构的风致振动问题,运用流固耦合(FSI)力学理论,建立了结构风振分析方法,即采用包含流体域、结构域和网格域三个计算模块的分区算法。在流固耦合计算中,运用新型稳定化有限元大涡模拟方法计算流体域,采用有限元列式的Newmark逐步积分方法计算结构域,采用改进弹簧近似方法更新计算网格域。另一方面,运用上述方法,数值模拟了单层网壳球面屋盖结构的风振问题,揭示了球面屋盖结构的绕流特性和结构周围的特征旋涡结构,对比分析了刚性模型和考虑流固耦合模型的结构屋面平均风压、脉动风压分布情况以及结构自身的动力响应。
With the great progresses in computer technique and numerical methods, the turbulent wind simulations and the FSI (Fluid-Structure Interactions) between wind and structures, based on CFD (Computational Fluid Dynamic), have already been hot issues in structural engineering.
     First, a novel stabilized fluid finite element method is proposed for the predictions of incompressible viscous fluid problems. With the combination of semi-implicit three step method and streamline upwind Petrov-Galerkin (SUPG) method, the SUPG stabilized scheme is used for the spatial discretization, the same order interpolations are performed for both velocity and pressure fields. Thus, the computational stabilization on both velocity and pressure, and the computational efficiency are effectively improved. The numerical predictions on lid driven flows in square, triangular and skewed cavities are close to reference results which testify the accuracy and efficiency of present method.
     Secondly, based on present novel stabilized fluid finite element method, a novel large eddy simulation of stabilized fluid finite element is developed. With the combination of classical Smagorinsky sub-grid scale model and the SUPG stabilized method, the present method can be successfully applied for numerical simulation of both transient and unsteady turbulent flows with high Reynolds number. The same order interpolation is employed for spatial discretization of both velocity and pressure. The temporal discretization is applied by three-step technique which is second order accurate and high stabilized. Numerical examples show that present method can effectively suppress the computational oscillation of velocities and pressure fields, as well as yield compared accurate velocity and pressure fields as well as aerodynamic parameters.
     Thirdly, for the second filtering progress of dynamic sub-grid scale model, a simple and fast spatial filtering method on unstructured finite element grids is developed by the combination of both node-based filter and generalized box filter. Then, based on present novel stabilized fluid finite element method and dynamic sub-grid scale model, dynamic large eddy simulation is developed to predict turbulent flow characteristics around structures. Numerical simulation shows that present numerical method can model the turbulent flow problems with complex structural geometry and describe typical vortex structures of wind around structures.
     Fourthly, for the grids update of the fluid domain, spring analogy method is improved by introducing scale and shape parameters to the definition of the spring stiffness. The improved spring analogy method has the strongpoints of both lineal spring method and torsional spring method, and adapts both two and three dimensional boundary movement problems. On the other hand, based on present large eddy simulation technique of stabilized fluid finite element method, the finite element formulation of wind field described by arbitrary Lagrangian-Eulerian (ALE) formulation is deduced to numerically simulate turbulent wind field under the circumstance of large amplitude structural forced vibration.
     Finally, by applying the FSI theory, a numerical method is constituted for wind induced vibration analysis of long span spatial structures. Partitioned procedure is adopted, including fluid domain, structure domain and grid domain. Present large eddy simulation technique of finite element method is applied for the prediction of fluid domain. Newmark integral method based on finite element formulation is applied for the computation of structure domain. And improved spring analogy method is applied for the gird update of grid domain. The wind induced vibration of spherical single layer lattice shell structure is predicted, and the bluff flow characteristics and typical vortex structures around structures are indicated. Further more, the mean wind pressure, fluctuating wind pressure and dynamical responses of structures based on the rigid structural model and structural model considering FSI are analysed, respectively.
引文
[1]董石麟,姚谏.网壳结构的未来与展望.空间结构[J], 1994, 1: 3-10.
    [2]董石麟,赵阳,周岱.我国空间钢结构发展中的新技术、新结构[J].土木工程学报, 1998, 31(6): 3-14.
    [3]沈世钊.大跨空间结构的发展、回顾与展望[J].土木工程学报, 1998, 31(3): 5-14.
    [4]董石麟,赵阳.论空间结构的形式和分类[J].土木工程学报, 2004, 37(1): 7-12.
    [5]董石麟,罗尧治,赵阳.大跨度空间结构的工程实践与学科发展[J].空间结构, 2005, 11(4): 4-10.
    [6]宋延斌,初腾飞.东荷西柳——济南奥林匹克体育中心设计.建筑学报[J], 2009, 10: 57-62.
    [7]孟庆坪.第十一届亚运会建设科技集锦[M].北京,北京科学技术出版社, 1990.
    [8]傅学怡,顾磊,杨先桥等.国家游泳中心结构设计与研究[J].空间结构, 2005, 11(3): 16-21.
    [9]金海,金新阳,陈岱林.国家游泳中心及大跨度平面屋顶的风荷载CFD初步分析[C].全国结构风工程实验技术研讨会论文集,长沙, 2004, 148-154.
    [10]陈贤川,赵阳,顾磊等.新型多面体空间刚架结构的建膜方法研究.浙江大学学报(工学版)[J], 2005, 39(1): 92-97.
    [11]韩志惠周晅毅,顾明等.世博轴阳光谷大型钢结构风致线性和非线性响应比较[J].振动与冲击, 2009, 28, (12): 155-159.
    [12]黄慧娟.河北省轻钢结构住宅产业化发展及其应用[D].北京,清华大学硕士学位论文, 2006.
    [13]刘玉姝.轻钢结构住宅在国内外的应用与发展.上海住宅[J], 2002, 11: 33-34.
    [14]候兆欣,蔡昭峋,李秀力.轻型钢结构建筑节点构造[M].北京,机械工业出版社, 2004.
    [15]沈棋.用于规范的高层建筑静力等效风荷载研究[D].上海,同济大学硕士学位论文, 2008.
    [16]田久才.风荷载作用下高层建筑顶点最大加速度分析[D].重庆,重庆大学硕士学位论文. 2008.
    [17]董安正.高层建筑结构抗风可靠性分析[D].大连,大连理工大学博士论文, 2002.
    [18]葛楠,周锡元,侯爱波.有关高层建筑结构风振荷载的比较分析[J].特种结构, 2006, 23(1): 5-8.
    [19]陈细勇.方形高层建筑风荷载数值模拟[D].哈尔滨,哈尔滨工程大学硕士学位论文, 2009.
    [20]周云.土木工程减灾防灾学[M].广州,华南理工大学出版社, 2002.
    [21]王士奇,刘仲波.轻型门式刚架风灾破坏形式及其工程措施[J].钢结构, 2006, 21(88): 25-28.
    [22]项海帆.结构风工程研究的现状和展望[J].振动工程学报. 1997, 10(3): 258-263.
    [23]燕辉.复杂体型高层建筑风荷载及风振响应研究[D].杭州,浙江大学博士学位论文, 2004.
    [24]舒新玲.大跨度单层网壳结构风载风振研究[D].上海,上海交通大学硕士论文, 2003.
    [25] J.M. Roesset, J.T.P. Yao. State of the Art of Structural Engineering. J. Structural Engineering[J],2002, 128(8): 965-975.
    [26] M. Saitoh. Recent Development of Tension Structures. Current and Emerging Technologies of Shell and Spatial Structures[C], 1997: 105-118.
    [27] J. Schlaich. On Some Recent Lightweight Structures[C]. IASS Symposium 2001, Nagoya, SP4:1-12.
    [28] R. Bradshaw, D. Campbell. Special Structures: Past, Present and Future[J]. J. Structural Engineering. 2002, 128(6): 691-709.
    [29]沈世钊.大跨空间结构若干关键理论问题研究[C].萧山,第十届空间结构学术会议论文集, 2000.
    [30]林郁,卓新.开敞式叉筒网壳风场数值模拟与受力分析[J].浙江大学学报(工学版), 2004, 38(9): 1171-1174.
    [31]杨伟,顾明.高层建筑三维定常风场数值模拟[J].同济大学学报, 2003, 31(6): 647-651.
    [32]李华锋,马骏,周岱.空间结构风场风载的数值模拟[J].上海交通大学学报, 2006, 40(12): 2112-2117.
    [33] O. Nakamura, Y. Tamura, K. Miyashita, et al.. A Case of Wind Pressure and Wind-Induced Vibration of a Large Span Open-Type Roof[J]. J. Wind Engineering and Industrial Aerodynamics, 1994, (52): 237-248.
    [34]谢壮宁,倪振华,石碧青.大跨屋盖风荷载特性的风洞试验研究[J].建筑结构学报, 2001, 22(2): 23-28.
    [35] E. Simiu and R.H. Scanlan. Wind Effects on Structures - An Introduction to Wind Engineering[J]. The 3rd Edition, John Wiley & Sons, INC. 1999, 135-188.
    [36]胡继军,黄金枝,李春祥等.网壳-TMD风振控制分析.建筑结构学报[J], 2001, 22(3): 31-35.
    [37]胡继军,黄金枝,董石麟等.网壳风振随机响应有限元法分析.上海交通大学学报[J], 2000, 34(8): 1053-1056.
    [38]辛庆胜,周岱,马骏.大跨斜拉网格结构耦合风振响应分析计算的研究现状与发展前景[J].振动与冲击, 2005, 24(1): 24-27.
    [39] G. Bartoli, C. Borri, F. Mirto, et al.. Some Recent Advances Developments in Wind Dynamics of Large Lightweight Engineering Facilities[C]. Proc. Int. Conf. On Lightweight Structures in Civil Engineering, Warsaw, 2002: 950-966.
    [40]沈世钊,武岳.大跨度张拉结构风致动力响应研究进展[J].同济大学学报. 2002, 30(5): 533-538.
    [41] M.S.A. Sharekh, S.K. Pathak. Turbulent Boundary Layer over Symmetric Bodies with Rigid and Flexible Surface[J]. J. Engineering Mechanics, 2000, 126(4): 422-431.
    [42]贺德馨.我国风工程雅安就现状与展望[C].第六届全国流体力学会议论文集,北京,气象出版社, 2001.
    [43] E. Simiu, R.H. Scanlan. Wind Effects on Structures-An Introduction to Wind Engineering[J]. The 3rd Edition, NewYork, John Wiley&Sons INC, 1995, 33-99.
    [44]张相庭. 21世纪工程技术的发展对力学的挑战. (李国豪,何友声.风工程力学研究最新进展和21世纪展望[M].上海,上海交通大学出版社, 1999: 331-352.)
    [45]项海帆.力学与风工程. (李国豪,何友声.风工程力学研究最新进展和21世纪展望[M].上海,上海交通大学出版社, 1999: 318-329.)
    [46]黄本才.结构抗风分析原理及应用[M].上海,同济大学出版社, 2001.
    [47]杨庆山,王基胜,朱伟亮.薄膜结构与空气环境静力耦合作用试验研究[J].土木工程学报, 2008,41(5): 19-25.
    [48]武岳,杨庆山,沈世钊.索膜结构风振气弹效应的风洞实验研究[J].工程力学, 2008, 25(1): 8-15.
    [49] Y. Wu, J.S. Zhang, B. Chen, et al.. Identification of the dominant vibration modes of single-layer reticulated shells under wind action[J]. J. Space Structures, 2007, 22(2): 123-132.
    [50]顾明,周晅毅.大跨屋盖结构等效静力风荷载方法与应用[J].建筑结构学报, 2007, 28(1): 125-129.
    [51]顾明,杨伟,黄鹏等. TTU标准风压数值模拟与试验对比[J].同济大学学报, 2006, 34(12): 1563-1567.
    [52] Z.N. Xie, M. Gu. Mean interference effects among tall buildings[J]. J. Engineering Structures, 2004, 26(9): 1173-1183.
    [53]傅继阳,谢壮宁,李秋胜等.大跨屋盖结构考虑模态混合的等效静力风荷载[J].力学学报, 2007, 39(6): 781-786.
    [54]李秋胜,陈伏彬,傅继阳等.大跨屋盖结构风荷载特性的实验研究[J].湖南大学学报(自然科学版), 2009, 36(8): 12-17.
    [55]李正农,宫博,卢春玲等.低矮建筑的抗风研究现状[J].自然灾害学报, 2007, 16(6): 115-121.
    [56]戴益民,李正农,李秋胜等.低矮房屋的风载特性-近地风剖面变化规律的研究[J].土木工程学报, 2009, 42(3): 42-48.
    [57]殷惠君,张其林,周志勇.标准低矮建筑TTU三维定常风场数值模拟研究[J].工程力学, 2007, 24(2): 139-145.
    [58]周骥,张其林.膜结构风振响应的二维数值模拟研究[J].建筑结构学报(增刊), 2005, 6: 130-135.
    [59]楼文娟,李恒,魏开重等.典型体型高层建筑双层幕墙风荷载特性实验研究[J].哈尔滨工业大学学报, 2008, 40(2): 296-301.
    [60]楼文娟,张敏,沈国辉. L形和一字形双层幕墙平均风压分布特性的试验研究[J].建筑结构学报, 2009, 30(1): 120-125.
    [61]梁枢果,邹良浩,郭必武.基于刚性模型测压风洞试验的武汉国际证券大厦三维风致响应分析[J].工程力学, 2009, 26(3): 118-127.
    [62]梁枢果,吴海洋,郭必武等.大跨度屋盖结构等效静力风荷载数值计算方法[J].华中科技大学学报(自然科学版), 2008, 36(4): 110-114.
    [63]曹曙阳.计算流体力学在风工程中的应用[C].北京,第十四届全国结构风工程学术会议论文集, 2009.
    [64]罗尧治,孙斌.双柱面网壳并列布置风致干扰的数值模拟研究[J].空间结构, 2008, 14(1): 25-31.
    [65]李清雅,叶继红.三维空间曲面结构风荷载的数值模拟[J].振动与冲击, 2009, 28(4): 121-126.
    [66]李元齐,田村信雄,沈祖炎.柱面壳体表面风压分布特性风洞试验研究[J].同济大学学报(自然科学版), 2006, 34(11): 1457-1436.
    [67]黄本才,汪丛军,周大伟等.下游干扰体对上游高层建筑风力的影响[J].同济大学学报(自然科学版), 2007, 35(8): 1025-1029.
    [68]晏致涛,李正良,黄汉杰.空间结构涡激振动分析[J].空气动力学学报, 2008, 26(1): 26-31.
    [69]周岱,马骏,吴筑海等.空间结构三维风时程模拟及其小波分析[J].工程力学, 2006, 23(3): 88-92.
    [70]马骏,周岱,李华锋等.大跨度空间结构抗风分析的数值风洞方法[J].工程力学, 2007, 24(7): 77-85.
    [71]周岱,马骏,李华锋等.大跨柔性空间结构风压和耦合风效应分析[J].振动冲击, 2009, 28(6): 17-22.
    [72] M. Piller, E. Nobile, J. Tomas. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J]. J. Fluid Mechanics, 2002, 458(1): 419-441.
    [73] J.G. Wissink. DNS of separating low Reynolds number flow in a turbine cascale with incoming wakes[J]. J. Heat and fluid flow, 2003, 24(3):626-635.
    [74] V. Michelassi, J.G. Wissink, W. Rodi. Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulation of periodic unsteady flow in a low-pressure turbine cascade[J]. J. Power and energy, 2003, 217(4):403-412.
    [75] V. Stephane. Local mesh refinement and penalty methods dedicated to the Direct Numerical simulation of incompressible multi-phase flows[C]. Proceedings of the ASME/JSME Joint Fluids Engineering Conference: 1299-1305, 2003.
    [76] B. Cardot, F. Coron, B. Mohammadi. Simulation of turbulence with the k-e model[J]. J. Computer Methods in Applied Mechanics and Engineering, 1991, 87: 103-116.
    [77] S.S. Lee, Unsteady aerodynamic force prediction on a square cylinder using k-e turbulence models[J]. J. Wind Engineering and Industrial Aerodynamics, 1997, 67&68: 79-90.
    [78] J.A. Ross, B.E. Larock. An algebraic stress finite element model of turbulent flow[J]. J. Numerical Methods in Fluids, 1997, 24: 693-714.
    [79] R.P. Selvam. Computation of flow around Texas Tech building using k-e and Kato-Launder k~w turbulence model[J]. J. Engineering Structures, 1996, 18(11): 856-860.
    [80] A. Yeshizawa. Large-Eddy Simulation of Turbulent Flows[J]. Encyclopedia of Fluid Mechanics, 1986: 1277-1297.
    [81] C.Q. Chen, L. Tao, K.R. Rajagopal. Remarks on Large-Eddy Simulation[J]. J. Communication Nonlinear Science Numerical Simulation, 2000, 5(3): 85-90.
    [82] T.S. Smagorinsky. General circulation experiment with primitive equations: Part I, Basic experiments[J]. Monthly Weather Rev., 1963, 91: 99-164.
    [83] M. Germano, U. Piomelli, P. Moin, et al.. A dynamic subgrid-scale eddy viscosity model[J]. J. Physics of Fluids, 1991, A 3(7): 1760-1765.
    [84] D.K. Lilly. A proposed modification of the Germano subgrid-scale closure[J]. J. Physics of Fluids, 1992, 3: 2746-2757.
    [85] Y. Zang, R.L. Street, J.R. Koseff. A dynamic mixed subgrid scale model and its application to turbulent recirculating flows[J]. J. Physics of Fluids, 1993, AS: 3186-3196.
    [86] C. Meneveau, T.S. Lund, W.H. Cabot. A Lagrangian dynamic subgrid-scale model of turbulence[J]. J. Fluid Mechanics, 1996, 319: 353-385.
    [87] S. Murakami. Overview of turbulence models applied in CWE-1997[J]. J. Wind Engineering and Industrial Aerodynamics, 1998, 74-76: l-24.
    [88]吴卫中,周岱,赵尧军.复杂形体大跨叉筒网壳结构的风场风荷载模拟[J].振动与冲击, 2007, 26(10): 45-51.
    [89]王勖成.有限单元法[M].北京,清华大学出版社, 2003.
    [90]王健平.谱方法的基本问题与有限谱法[J].空气动力学学报, 2001, 19: 161-171.
    [91] J.P. WANG. Non-periodic fourier transform and finite spectral method[C]. Proc. 6th Int. Sympo. CFD, Lake Tahoe, 1995. 1339-1344.
    [92]祖迎庆,施卫平.用格子Boltzmann方法模拟流场中可变形膜的运动[J].力学学报. 2005. 37(2): 164-168.
    [93]程雪玲,胡非,赵松年等.格子玻尔兹曼方法及其在大气湍流研究中的应用[J].地球科学进展, 2007, 22(3): 249-260.
    [94]王辉.基于格子Boltzmann方法的建筑流场仿真研究[D].西安,西安建筑科技大学, 2010.
    [95]杨丽明,王晓墨.应用格子波尔兹曼机模型模拟建筑物周围流场[J].华中科技大学学报, 2002, 30(7): 17-19.
    [96]宫兆新,鲁传敬,黄华雄.浸入边界法及其应用[J].力学季刊, 2007, 28: 353-362.
    [97] R. Mulen. The immersed boundary method for the (2D) incompressible Navier-Stokes equations[D]. Department of Aerospace Engineering, Delft University of Technology, 2006.
    [98] R. Mittal, G. Iaccarino. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261.
    [99] A.M. Roma, C.S. Peskth, M.J. Berger. An adaptive version of the immersed boundary method[J]. J. Computational Physics, 2000, 153: 509-534.
    [100] L.W. Shen, E.S. Chan. Numerical simulation of fluid-structure interaction using a combined volume of fluid and immersed boundary method[J]. J. Ocean Engineering, 2008, 35: 939-952.
    [101]朱祥德,陈春刚,肖锋.一种基于多矩的有限体积浸入边界法[J].计算物理, 2010, 27(3): 342-352.
    [102]顾元通,丁桦.无网格法及其最新进展[J].力学进展, 2005, 35(3): 323-337.
    [103]张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报, 2003, 20(6): 730-742.
    [104] J.J. Monaghan. An introduction to SPH[J]. J. Computer Physics Communications, 1988, 48(1): 89-96.
    [105]刘鹏,刘更,刘天祥等.光滑粒子动力学方法及其应用[J].机械科学与技术, 2005, 24(9): 1126-1130.
    [106]张锁春.光滑质点流体动力学(SPH)方法(综述) [J].计算物理, 1996, 13(4): 385-397.
    [107] J.M. Rodriguez-Paz, J. Bonet. A corrected smooth particle hydrodynamics formulation of the shallow-water equations[J]. J. Computers and Structures, 2005, 83(17/18): 1396-1410.
    [108] S. B?rve, M. Omang, J. Trulsen. Regularized smoothed particle hydrodynamics with improved multi-resolution handling[J]. J. Computational Physics, 2005, 208(1): 345-367.
    [109] G.R. Liu, M.B. Liu. Smoothed particle hydrodynamics - a mesh free particle method[M]. New Jersey: World Scientific Publishing Company, 2003.
    [110]仇轶,由长福,祁海鹰等.用无网格法求解不同Re下圆柱绕流问题[J].清华大学学报(自然科学版), 2005, 45(2): 220-223.
    [111] T. Belytschko, Y. Krongauz, D. Organ. Meshless method: An overview and recent developments[J]. J. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 3-47.
    [112] Y.L. Wu, G.R. Liu. A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation[J]. J. Computational Mechanics, 2003, 50(5-6): 355-365.
    [113]张琰,王建国,张丙印.径向基点插值无网格法与有限元耦合法[J].清华大学学报(自然科学版), 2008, 48(6): 951-954.
    [114]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京,清华大学出版社, 2004.
    [115] T.J.R. Hughes, W.K. Liu, T.K. Zimmermann. Lagrangian-Eulerian finite element formulation for incompressible viscous flow[J]. J. Computer Methods in Applied Mechanics and Engineering, 1981, 29(3): 329-349.
    [116] T.J.R. Hughes, T.E. Tazduyar. Finite element method for first-order hyperbolic system with particular emphasis on the compressible Euler equations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1984, 45(1-3): 217-284.
    [117] A.N. Brooks, T.J.R. Hughes. Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1-3):199-259.
    [118] T.J.R. Hughes, L.P. Franca, M. Balestra. A new finite element formulations for computational fluid dynamics: V.circumventing the Babu?ka-Brezzi condition: A stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1986, 59(1):85-99.
    [119] T.J.R. Hughes, L.P. Franca, M. Mallet. A new finite element formulations for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation linear time-dependent multidimensional advective-diffusive system[J]. J. Computer Methods in Applied Mechanics and Engineering,1987, 63(1): 97-112.
    [120] T. Tezduyar, Y. Osawa. Finite element stabilization parameter computed from element matrices and vectors[J]. J. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 411-430.
    [121] T. Tezduyar, S. Sathe. Stabilization in SUPG and PSPG formulations[J]. J. Computational and Applied Mechanics, 2003, 4(1):71-88.
    [122] T. Tezduyar. Finite element methods for flow problems with moving boundaries and interfaces[J]. J. Archives of Computational Methods in Engineering, 2001, 8(2): 83-130.
    [123] T. Tezduyar, M. Behr. A new strategy for finite element computations involving moving boundaries and interfaces-The Deforming-Spatial-Domain/Space-Time procedure: I. The concept and the preliminary numerical tests[J]. J. Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 339-351.
    [124] T. Tezduyar, M. Behr, S. Mittal, et al.. A new strategy for finite element computations involving moving boundaries and interfaces-The Deforming- Spatial- Domain/ Space-Time procedure: II. computation of free-surface flows, two liquid flows, and flows with drifting cylinders[J]. J.Computer Methods in Applied Mechanics and Engineering, 1992, 94(3): 353-371.
    [125] O.C. Zienkiewicz, R. Codina, M. Vasquez. A general algorithm for compressible and incompressible flow-Part I. The split characteristic-based scheme[J]. J. Numerical Methods in Fluids, 1995, 20: 869-885.
    [126] O.C. Zienkiewicz, R. Codina, M. Vasquez. A general algorithm for compressible and incompressible flow-Part II. Tests on the explicit form[J]. J. Numerical Methods in Fluids, 1995, 20: 887-913.
    [127] E. O?ate, A. Valls, J. García. FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers[J]. J. Computational Mechanics, 2006, 38(4-5): 440-455.
    [128] E. O?ate, A. Valls, J. García. Modeling incompressible flows at low and high Reynolds numbers via a finite calculus finite element approach[J]. J. Computational Physics, 2006, 224: 332-351.
    [129] E. O?ate. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation[J]. J. Computer Methods in Applied Mechanics and Engineering, 2000, 182(1-2):355-370.
    [130] E. O?ate. Possibilities of finite calculus in computational mechanics[J]. J. Numerical Methods in Engineering, 2004, 60(1): 255-281.
    [131] E. O?ate, F.Zárate, S.R. Idelsohn. Finite element formulation for convective- diffusive problems with sharp gradients using finite calculus[J]. J. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 1793-1825.
    [132] C.B. Jiang, M. Kawahara. A three step finite element method for unsteady incompressible flows[J]. J. Computational Mechanics, 1993, 11: 355-370.
    [133]李华峰,周岚,周岱.考虑流固耦合效应的鞍形索膜结构体表风压和风致响应[J].上海交通大学学报, 2009, 43(6): 967-971.
    [134]苏波,袁行飞,聂国隽等.流固耦合理论研究述评(1)一流固耦合问题研究进展[J].工业建筑(增刊), 2007: 703-709.
    [135]魏德敏,水渊.索膜结构的非线性风振响应[J].华南理工大学学报(自然科学版). 2008, 36(12): 1-6.
    [136]顾明,叶丰,张建国.典型超高层建筑风荷载幅值特性研究[J].建筑结构学报, 2006, 27(1): 24-29.
    [137]顾明,周恒毅.大跨度屋盖结构等效静力风荷载方法及应用[J].建筑结构学报, 2007, 28(1): 125-129.
    [138]顾明,黄翔.体育场屋盖气弹模型设计及风洞试验研究[J].建筑结构学报, 2006, 27(1): 60-64.
    [139]张志田,葛耀君,陈政清.基于气动新模型的大跨度桥梁频域抖振分析[J].工程力学, 2006, 23(6): 94-101.
    [140]张志田,葛耀君.考虑抖振影响的大跨度桥梁静风稳定性分析[J].工程力学, 2006, 23(8): 96-101.
    [141]张志田,陈政清,葛耀君等.紊流中大跨桥梁的扭转发散特性[J].工程力学, 2010, 27(2): 108-116.
    [142]杨庆山,王基盛,王莉.薄膜结构与风环境的流固耦合作用[J].空间结构, 2003, 9(1): 20-24.
    [143]杨庆山,刘瑞霞.薄膜结构气弹动力失稳性研究[J].工程力学, 2006, 23(9): 18-24.
    [144]杨庆山.薄膜结构的风致动力效应初探[J].空间结构, 2002, 8(4): 3-10.
    [145]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学报. 2006, 23(1): 1-9.
    [146]武岳,沈世钊.索膜结构风振响应中的气弹耦合效应研究[J].建筑钢结构进展, 2006, 8(2): 30-36.
    [147]柳杰,周岱,黄剑伟.大跨空间结构风模拟的改进方法及其小波识别[J].振动与冲击, 2006, 25(4): 21-24.
    [148]吴卫中,周岱,赵尧军.复杂形体大跨叉筒网壳结构的风场风荷载模拟[J].振动与冲击, 2007, 26(10): 45-51.
    [149]黄橙,周岱,包艳.空间结构振动控制的阻尼器位置寻优分析[J].空间结构, 2008, 14(1): 21-24.
    [150]楼文娟,孙斌,卢旦.复杂型体悬挑屋盖风荷载风洞试验与数值模拟[J].建筑结构学报, 2007, 28(1): 107-112.
    [151]楼文娟,余世策,李恒.突然开孔对平屋盖结构静动力风荷载的影响[J].同济大学学报, 2007, 35(10): 1316-1322.
    [152]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构, 2008, 14(1): 3-15.
    [153]苏波,钱若军,袁行飞.流固耦合界面信息传递理论和方法研究进展[J].空间结构, 2010, 16(1): 3-10.
    [154] V. Shankar, H. Ide. Aeroelastic Computations of Flexible Configurations[J]. J. Computer and Structures. 1988, 30: 15-28.
    [155] L. Demkowicz. Some Remarks on Moving Finite Element Methods[J]. J. Computer methods in Application Mechanics and Engineering. 1984, 46: 339-349.
    [156] V. Kalro, T.E. Tezduyar. A Parallel 3D Computational Method for Fluid-Structure Interactions in Parachute Systems[J]. J. Computer methods in Application Mechanics and Engineering, 2000, 190: 321-332.
    [1] A.N. Brooks, T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1982, 32: 199-259.
    [2] T.J.R. Hughes, T.E. Tezduyar. Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible euler equations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1984, 45(1-3): 217-284.
    [3] T.E. Tezduyar, D.K. Ganjoo. Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems[J]. J. Computer Methods in Applied Mechanics and Engineering, 1986, 59(1): 49-71.
    [4] T.E. Tezduyar, J. Liou, D.K. Ganjoo. Petrov-Galerkin methods on multiply-connected domains for the vorticity-stream function formulation of the incompressible Navier-Stokes equations[J]. J. Numerical Methods in Fluids, 1988, 8: 1269-1290.
    [5] T.E. Tezduyar, S. Mittal, R. Shih. Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements[J]. J. Computational and Applied Mechanics, 1991, 87: 363-384.
    [6] T.J.R. Hughes, L.P. Franca, M. Balestra. A new finite element formulations for computational fluid dynamics: V.circumventing the Babu?ka-Brezzi condition: A stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1986, 59(1):85-99.
    [7] T.J.R. Hughes, L.P. Franca, G.M. Hulbert. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1989, 73(2): 173-189.
    [8] L.P. Franca, S.L. Frey. Stabilized finite element methods: II. The incompressible Navier-Stokes equations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2-3): 209-233.
    [9] O.C. Zienkiewicz, R. Codina. A general algorithm for compressible and incompressible flow. Part I: The split characteristic based scheme[J]. J. Numerical Methods in Fluids, 1995, 20(8-9): 869-885.
    [10] O.C. Zienkiewicz, K. Morgan, S. Satya, et al.. A general algorithm for compressible and incompressible flow. Part II: Tests on the explicit form[J]. J. Numerical Methods in Fluids, 1995, 20(8-9): 886-913.
    [11] Y. Bao, D. Zhou, Y.Z. Zhao. A two-step Taylor-characteristic-based Galerkin method for incompressible flows and its application to flow over triangular cylinder with different incidence angles[J]. J. Numerical Methods in Fluids, 2010, 62(11): 1181-1208.
    [12] Y. Bao, D. Zhou, C. Huang. Numerical simulation of flow over three circular cylinders in equilateral arrangements at low Reynolds number by a second-order characteristic-based splitfinite element method[J]. J. Computers and Fluids, 2010, 39(5): 882-899.
    [13] E. O?ate. Derivation of stabilized equations for advective-diffusive transport and fluid flow problems[J]. J. Computer Methods in Applied Mechanics and Engineering, 1998, 151(1-2): 233-267.
    [14] E. O?ate, A. Valls, J. Garcia. Modeling incompressible flows at low and high Reynolds numbers via a finite calculus-finite element approach[J]. J. Computational Physics, 2007, 224(1): 332-351.
    [15] J. Donea, S. Giuliani, H. Laval, et al.. Time-accurate solution of advection-diffusion problems by finite elements[J]. J. Computer Methods in Applied Mechanics and Engineering, 1984, 45(1-3): 123-145.
    [16] V. Selmin, J. Donea, L. Quartapelle. Finite element methods for nonlinear advection[J]. J. Computer Methods in Applied Mechanics and Engineering, 1985, 52(1-3): 817-845.
    [17] C.B. Jiang, M. Kawahara. A three step finite element method for unsteady incompressible flows[J]. J. Computational Mechanics, 1993, 11(5-6): 355-370.
    [18] P. Kjellgren. A semi-implicit fractional step finite element method for viscous incompressible flows[J]. J. Computational Mechanics, 1997, 20(6): 541-550.
    [19] W. Dettmer, D. Peric′. A computational framework for fluid-rigid body interaction: Finite element formulation and applications[J]. J. Computer Methods in Applied Mechanics and Engineering, 2006, 195(13-16): 1633-1666.
    [20] W. Dettmer, D. Peric′. A computational framework for fluid-structure interaction: Finite element formulation and applications[J]. J. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43): 5754-5779.
    [21] W. Dettmer, D. Peric′. A computational framework for free surface fluid flows accounting for surface tension[J]. J. Computer Methods in Applied Mechanics and Engineering, 2006, 195(23-24): 3038-3071.
    [22] H. Kohno, K.J. Bathe. A flow-condition-based interpolation finite element procedure for triangular grids[J]. J. Numerical Methods in Fluids, 2006, 51(6): 673-699.
    [23] U.Ghia, K.N. Ghia, C.T. Shin. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. J. Computational Physics, 1982, 48(3): 387-411.
    [24] E. Erturk, T.C. Corke, C. G?k??l. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers[J]. J. Numerical Methods in Fluids, 2005, 48(7): 747-774.
    [25] I. Demird?i?, Z. Lilekǎ, M. Peri?. Fluid flow and heat transfer test problems for non-orthogonal grids: benchmark solutions[J]. J. Numerical Methods in Fluids, 1992, 15(3): 329-354.
    [26] C.J. Ribbens, L.T. Watson. Steady viscous flow in a triangular cavity[J]. J. Computational Physics, 1994, 112(1): 173-181.
    [27] R. Jyotsna, S.P. Vanka. Multigrid calculation of steady, viscous flow in a triangular cavity[J]. J. Computational Physics, 1995, 122(1): 107-117.
    [1] X.X. Lia, C.H. Liub, D.Y.C. Leunga, et al.. Lamc. Recent progress in CFD modelling of wind field and pollutant transport in street canyons[J]. J. Atmospheric Environment, 2006, 40(29): 5640-5658.
    [2] M. Piller, E. Nobile, J. Tomas. DNS study of turbulent transport at low Prandtl numbers in a channel flow[J]. J. Fluid Mechanics, 2002, 458(1): 419-441.
    [3] B. Cardot, F. Coron, B. Mohammadi. Simulation of turbulence with the k-εmodel[J]. J. Computer Methods in Applied Mechanics and Engineering, 1991, 87(2-3): 103-116.
    [4] T.S. Smagorinsky. General circulation experiment with primitive equations: Part I, Basic experiments[J]. Monthly Weather Rev., 1963, 91: 99-164.
    [5] J.W. Deardorff. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. J. Fluid Mechanics, 1970, 41(2): 453-480.
    [6] J. Bardina, J.H. Ferzuger, W.C. Reynolds. Improved subgrid scale models for large eddy simulation[J]. AIAA paper, Fluid and Plasma Dynamics Conference, 1980.
    [7] M. Germano, U. Piomelli, P. Moin, et al.. A dynamic subgrid-scale eddy viscosity model[J]. J. Physics of Fluids, 1991, A 3(7): 1760-1765.
    [8] S. Murakami, A. Mochida. On turbulent vortex-shedding flow past 2D square cylinder predicted by CFD[J]. J. Wind Engineering and Industrial Aerodynamics, 1995, 54/55: 191-211.
    [9] A.N. Brooks, T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1982, 32: 199-259.
    [10] W. Dettmer, D. Peric. A computational framework for fluid-structure interaction: Finite element formulation and applications[J]. J. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43): 5754-5779.
    [11] C.B. Jiang, M. Kawahara. A three step finite element method for unsteady incompressible flows[J]. J. Computational Mechanics, 1993, 11(5-6): 355-370.
    [12] D.F.G. Durao, M.V. Heitor, J.C.F. Pereira. Measurements of turbulent and periodic flows around a square cross-section cylinder[J]. J. Experiments in Fluids, 1998, 6(5): 298-304.
    [13] D.A. Lyn, S. Einav, W. Rodi, et al.. A laser-Doppler velocimeter study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder[J]. J. Fluid Mechanics, 1995, 304: 285-319.
    [14] R. Franke, W. Rodi. Calculation of vortex shedding past a square cylinder with various turbulent models[J]. Turbulent Shear Flows VIII, 1993, 189-204.
    [15] S. Murakami, A. Mochida. On turbulent vortex-shedding flow past 2D square cylinder predicted by CFD[J]. J. Wind Engineering and Industrial Aerodynamics, 1995, 54&55: 191-211.
    [16] S. Lee, B. Bienkiewicz. Finite element implementation of large eddy simulation for separatedflows[J]. J.Wind Engineering and Industrial Aerodynamics, 1998, 77/78(2), 603-617.
    [17] U.Y. Jeong, H.M. Koh. Finite element formulation for the analysis of turbulent wind flow passing bluff structures using the RNG k-εmodel[J]. J. Wind Engineering and Industrial Aerodynamics, 2002, 90(3): 159-169.
    [18] D.H. Yu, A. Kareem. Numerical simulation of flow around a rectangular prsim[J]. J. Wind Engineering and Industrial Aerodynamics, 1997, 67/68: 195-208.
    [1] T.S. Smagorinsky. General circulation experiment with primitive equations: Part I, Basic experiments[J]. Monthly Weather Rev., 1963, 91: 99-164.
    [2] C.E. Leith. Stochastic backscatter in a subgrid-scale model: plane shear mixing layer[J]. J. Physics of Fluids, 1990, A2: 297-299.
    [3] M. Germano, U. Piomelli, P. Moin, et al.. A dynamic subgrid-scale eddy viscosity model[J]. J. Physics of Fluids, 1991, A3(7): 1760-1765.
    [4] D.K. Lilly. A proposed modification of the Germano subgrid-scale closure[J]. J. Physics of Fluids, 1992, 3: 2746-2757.
    [5] K. Yang, J.H. Ferziger. Large- eddy simulation of turbulent flow with a surface-mounted 2D obstacle[J]. J. Annual Research Briefs, Center for Turbulence Research, Stanford, CA, 1992, 97.
    [6] Y. Zang, R.L. Street, J.R. Koseff. Application of a dynamic subgrid- scale model to turbulent recirculating flows[J]. Annual Research Briefs, Center for Turbulence Research, Stanford, CA,, 1992, 85.
    [7] U. Piomelli. High Reynolds number calculations using the dynamic subgrid-scale stress model[J]. J. Physics of Fluids, 1993, A5: 1484.
    [8] P. Moin, K. Squires, W. Cabot, et al.. A dynamic subgrid- scale model for compressible turbulenceand scalar transport[J]. J. Physics of Fluids, 1991, A3: 2746.
    [9] T.S. Lund, W.A. Novikov. Parameterization of subgrid- scale stress by velocity gradient tensor[J]. J. Annual Research Briefs, Center for Turbulence Research, Stanford, CA,, 1992, 27.
    [10] A.E. Tejada-Martínez, K.E. Jansen. A dynamic Smagorinsky model with dynamic determination of the filter width ratio[J]. J. Physics of Fluids, 2004, 16(7): 2514.
    [11] T.L. Popiolek, A.M. Awruch, P.R.F. Teixeira. Finite element analysis of laminar and turbulent flows using LES and subgrid-scale models[J]. J. Applied Mathematical Modelling, 2006, 30(2): 177-199.
    [12] K.E. Jansen. A stabilized finite element method for computing turbulence[J]. J. Computer Methods in Applied Mechanics and Engineering, 1999, 174(3-4): 299-317.
    [13] W. Cabot. Near-wall models in large eddy simulations of flow behind a backward-facing step[J]. J. Annual Research Briefs, Center for Turbulence Research, Stanford, CA, 1996, 199-210.
    [14] D. Crabb, D.F.G. Durao, J.H. White. Velocity characteristic in the vicinity of a two dimensional rib[C]. Proceeding of the 4th Brazilian Congress on Mechanical Eng., Florianopolis Brazil, 1977, 47-58.
    [15] D.L. Young, T.I. Eldho, J.T. Chang. Large eddy simulation of turbulent flows in external flow fields using three-step FEM-BEM model[J]. J. Engineering Analysis with Boundary Elements, 2006, 30(7): 564-576.
    [16] I.P. Castro, A.G. Robins. The flow around a surface-mounted cube in uniform and turbulentstreams[J]. J. Fluid Mechanics, 1977, 79: 307-335.
    [17] S. Krajnovi?, L. Davidson. Large-eddy simulation of the flow around a bluff body[J]. J. AIAA, 2002, 40: 927-936.
    [18] R. Martinuzzi, C. Tropea. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow[J]. J. Fluids Engineering, 1993, 115(1): 85-92.
    [19] K.B. Shah, J.H. Ferziger. A fluid mechanicians view of wind engineering: large eddy simulation of flow past a cubic obstacle[J]. J. Wind Engineering and Industrial Aerodynamics, 1997, 67: 211-224.
    [20] G. Iaccarino, P. Durbin. Unsteady 3D RANS simulations using theν2 - f model[J]. J. Annual Research Briefs, Center for Turbulence Research, Stanford, CA, 2000: 263-269.
    [21] J.M.M. Sousa. Turbulent flow around a surface-mounted obstacle using 2D-3C DPIV[J]. J. Experiments in Fluids, 2002, 33: 838-853.
    [1] E.J. Lopez, N.M. Nigro, M.A. Storti. A minimal element distortion strategy for computational mesh dynamics[J]. J. Numerical Methods in Engineering, 2007, 69: 1898-1929.
    [2] J.T. Batina. Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis[J]. J. AIAA, 1991, 29(3): 327-333.
    [3] V. Venkatakrishnan, D.J. Mavriplis. Implicit method for the computation of unsteady flows on unstructured grids[J]. J. Computational Physics, 1996, 127: 380-397.
    [4] P.I. Crumpton, M.B. Giles. Multi-grid aircraft computations using the Oplus parallel library[J]. J. Parallel Computational Fluid Dynamics, 1996: 339-346.
    [5] E.J. Nielsen, W.K. Anderson. Recent improvements in aerodynamic design optimization on unstructured meshes[J]. J. AIAA, 2002, 40(6): 1155-1163.
    [6] R. L?hner, C. Yang, J.D. Baum. The numerical simulation of strongly unsteady flows with hundreds of moving bodies[J]. J. Numerical Methods in Fluids, 1999, 31: 113-120.
    [7] T.E. Tezduyar. Finite element methods for flow problems with moving boundaries and interfaces[J]. J. Archives of Computational Methods in Engineering, 2001, 8(2): 83-130.
    [8] J.T. Batina. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. J. AIAA, 1990, 28(8): 1381-1388
    [9] P.J. Slikkeveer, E.P. Loohuizen, S.P.G. O’Brien. An implicit surface tension algorithm for Picard solvers of surface-tension-dominated free and moving boundary problems[J]. J. Numerical Methods in Fluids, 1996, 22: 851-865.
    [10] O. Hassan, W.J. Probert, K. Morgan. Unstructured mesh procedures for the simulation of three-dimensional transient compressible inviscid flows with moving boundary components[J]. J. Numerical Methods in Fluids, 1998, 27: 41-55.
    [11] C. Farhat, M. Lesoinne, N. Mama. Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution[J]. J. Numerical Methods in Fluids, 1995, 21: 807-835
    [12] W.F. Noh. A time-dependent two-space-dimensional coupled Eulerian-lagrangian code[J]. J. Methods in Computational Physics, 1964.
    [13] J.G. Trulio. Theory and structure of the A FTON codes. Report ASWL-TR-66-19, Air Force Weapons Laboratory, 1966.
    [14] A.A. Amsden, C.W. Hirt. An arbitrary Lagrangian-Eulerian computer program for fluid flow at all speeds[J]. Report LA-5100, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
    [15] C.W. Hirt, A.A. Amsden, J.L. Cook. An arbitrary Lagrangian-Eulerian computing method for all flow speed[J]. J. Computational Physics, 1974, 14: 227-253.
    [16] W.E. Pracht. Calculating three-dimensional fluid flows at all flow speeds with an Eulerian-Lagrangian computation mesh[J]. J. Computational Physics, 1975, 17: 132-159.
    [17] L.R. Stein, R.A. Gentry, C.W. Hirt. Computational simulation of transient blast loading on three-dimensional structures[J]. J. Computer Methods in Applied Mechanics and Engineering , 1977, 11: 57-74.
    [18] A.A. Amsden, H.M. Ruppel. A simplified ALE computer program for fluid flow at all flow speed[J]. Los Alamos Scientic Laboratory, Los Alamos, NM, 1980.
    [19] A.A. Amsden, H.M. Ruppel. A simplified ALE computer program for calculating three-dimensional fluid flow[J]. Los Alamos Scientic Laboratory, Los Alamos, NM, 1981.
    [20] W.K. Liu, Y.K. Hu. ALE finite element with hydrodynamic lubrication for metal forming[J]. J. Nuclear Engineering and Design, 1992, 138: 1-10.
    [21] T.J.R. Hughes, W.K. Liu, T.K. Zimmerman. Lagrangian-Eulerian finite element formulation for incompressible viscous flows[J]. J. Computer Methods in Applied Mechanics and Engineering, 1981, 29: 329-349.
    [22] T. Belytschko, J.M. Kennedy. Computer models for subassembly simulation[J]. J. Nuclear Engineering and Design, 1978, 49: 17-38
    [23] T. Belytschko, J.M. Kennedy. Quasi-Eulerian finite element formulation for fluid-structure interaction[J]. J. Pressure Vessel Technol, ASME, 1980, 102: 62-69
    [24] A. Huerta, W.K. Liu. Viscous flow with large free surface motion. J. Computer Methods in Applied Mechanics and Engineering, 1988, 69(3):277-324
    [25] F.J. Blom. Considerations on the spring analogy[J]. J. Numerical Methods in Fluids, 2000, 32(6): 647-668.
    [26] C. Farhat, K.G. Zee, P. Geuzaine. Provably second-order time-accurate loosely-coupled solution algorithms for transient non-linear computational aeroelasticity[J]. J. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17-18): 1973-2001.
    [27] D.H. Zeng, C.R. Ethier. A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains[J]. J. Finite Elements in Analysis and Design, 2005, 41: 1118-1139.
    [28] T.S. Smagorinsky. General circulation experiment with primitive equations: Part I, Basic experiments[J]. Monthly Weather Rev., 1963, 91: 99-164.
    [29] S. Murakami, A. Mochida. On turbulent vortex-shedding flow past 2D square cylinder predicted by CFD[J]. J. Wind Engineering and Industrial Aerodynamics, 1995, 54/55: 191-211.
    [30] A.N. Brooks, T.J.R. Hughes. Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1-3):199-259.
    [31] W. Dettmer, D. Peric′. A computational framework for fluid-structure interaction: Finite element formulation and applications[J]. J. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43): 5754-5779.
    [32] C.B. Jiang, M. Kawahara. A three step finite element method for unsteady incompressible flows[J]. J. Computational Mechanics, 1993, 11: 355-370.
    [33] M. Gluck, M. Breuer, F. Durst. Computation of Wind-Induced Vibration of Flexible Shells and Membranous Structures[J]. J. Fluid and Structures, 2003 ,17 :739 - 765.
    [34] A. Halfmann, E. Rank, M. Glück. Computational Engineering for Wind-Exposed Thin-Walled Structures. Lecture Notes on Computational Science and Engineering, 2002, 21: 63-70.
    [1] R. Wuchner, A. Kupzok, K.U. Bletzinger. A framework for stabilized partitioned analysis of thin membrane-wind interaction[J]. J. Numerical Methods in Fluids, 2007, 54: 945-963.
    [2] X. Lv, Y. Zhao, X.Y. Huang, et al.. A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid-structure interaction[J]. J. Computational Physics, 2007, 225: 120-144.
    [3] C. Wood, A.J. Gil, O. Hassan, et al.. A partitioned coupling approach for dynamic fluid-structure interaction with applications to biological membranes[J]. J. Numerical Methods in Fluids, 2008, 57: 555-581.
    [4] S. Rifai, Z. Johan, W.P. Wang, et al.. Grisval. Multiphysics simulation of flow induced vibrations and aeroelasticityon parallel computing platforms[J]. J. Computer Methods in Applied Mechanics and Engineering, 1999, 174: 393-417.
    [5] S. Badia, R. Codina. On some fluid-structure iterative algorithms using pressure segregation methods[J]. J. Numerical Methods in Engineering, 2007, 72: 46-71.
    [6] M. Gluck, M. Breuer, F. Durst, et al.. Computation of fluid-structure interaction on lightweight structures[J]. J. Wind Engineering and Industrial Aerodynamics, 2001, 89 (14-15): 1351-1368.
    [7] C.H.M. Jenkins, U.A. Korde. Membrane vibration experiments: an historical review and recent results[J]. J. Sound Vibration, 2006, 295: 602-613.
    [8] M. Glucka, M. Breuer, F. Durst, et al.. Computation of wind-induced vibrations of flexible shells and membranous structures[J]. J. Fluids and Structures, 2003, 17: 739-765.
    [9] J. Riener, A. Agger. Force and vibration measurement in hydraulic turbomachinery[C]. In Conference Papers - Modelling Testing and Monitoring for Hydro Powerplants - II, Lausanne, Switzerland 1996.
    [10] Q. Shi. Abnormal noise and runner cracks caused by Von Karman Vortex shedding: a case study in Dachaoshan hydroelectric project[C]. IAHR, 22nd IAHR Symposium on Hydraulic Machinery and Systems, Stockholm, Sweden, 2004.
    [11] W. Wall. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen[C]. Universit?t Stuttgart, Dissertation, Institut für Baustatik Bericht Nr. 31, Stuttgart, 1999.
    [12] L.X. Zhang, W. Zhang, Z.H. Yang. Modal analysis of Francis turbine blade based on fluid-structure interaction theorem[J]. J. Modelling, Identification and Control, 2010, 10(1-2): 101-105.
    [13] X.Q. Liu, N. Qin, H. Xia. Fast dynamic grid deformation based on Delaunay graph mapping[J]. J Computational Physics, 2006, 211: 405-423.
    [14] J. Reuther, A. Jameson, J. Farmer, L. Martinelli and D. Saunders. Aerodynamics shape optimization of complex aircraft configurations via an adjoint formulation[J]. J. AIAA, 1996.
    [15] J.T. Batina. Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraftaerodynamic analysis[J]. J. AIAA, 1991, 29 (3): 327-333.
    [16] C. Jouette, O. Laget, J.M. Gouez, et al.. A dual time stepping method for fluid-structure interaction problems[J]. J. Computers and Fluids, 2002, 31: 509-537.
    [17] A.A. Johnson, T.E. Tezduyar. Simulation of multiple spheres falling in a liquid-filled tube[J]. J. Computer Methods in Applied Mechanics and Engineering, 1996, 134 (4): 351-373.
    [18] F.H. Harlow, J.E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. J. Physics of Fluids, 1965, 8: 2182.
    [19] W.A. Wall, S. Genkinger, E. Ramm. A strong coupling partitioned approach for fluid-structure interaction with free surfaces[J]. J. Computers and Fluids, 2007, 36: 169-183.
    [20] Y. Bazilevs, V.M. Calo, Y. Zhang, et al.. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow[J]. J. Computational Mechanics, 2006, 38: 310-322.
    [21] R. Torii, M. Oshima, T. Kobayashi, et al.. Fluid-structure interaction modelling of aneurismal conditions with high and normal blood pressures[J]. J. Computational Mechanics, 2006, 38: 482-490.
    [22] J. Hart, G.W. Peters, P.J. Schreurs, et al.. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve[J]. J. Biomechanics, 2003, 36(1): 103-112.
    [23] C.A. Taylor, T.J.R. Hughes, C.K. Zarins. Finite element modeling of blood flow in arteries[J]. J. Computer Methods in Applied Mechanics and Engineering, 1998; 158: 158-196.
    [24] E. Simiu, R.H. Scanlan. Wind Effects on Structures-An Introduction to Wind Engineering[J]. The 3rd Edition, John Wiley & Sons, INC. 1995:33-99, 135-188.
    [25] H.J. Christopher. Nonlinear Dynamic Response of Membranes, State of the Art Update[J]. Applied Mechanics Reviews, 1996, 49(10): 41-48.
    [26] P. Mariangela, P. Spinelli. Dynamic Analysis Based Design of Cable Structures[C]. Bulletin of IASS. 1989, (30): 93-107.
    [27] G. Bartoli, C. Borri, F. Mirto, et al.. Some Recent Advances Developments in Wind Dynamics of Large Lightweight Engineering Facilities[C]. Proc. Int. Conf. On Lightweight Structures in Civil Engineering, Warsaw, 2002: 950-966.
    [28]沈世钊,武岳.大跨度张拉结构风致动力响应研究进展[J].同济大学学报. 2002, 30(5): 533-538.
    [29] M.S.A. Sharekh, S.K. Pathak. Turbulent Boundary Layer over Symmetric Bodies with Rigid and Flexible Surface[J]. J. Engineering Mechanics, 2000, 126(4): 422-431.
    [30]薛松涛,范存新,葛晓明.高耸结构考虑风与结构耦合作用的非线性风振响应[J].苏州大学学报(自然科学版). 2003, 19(1): 35-41.
    [31]向阳,沈世钊,李君.薄膜结构的非线性响应分析[J].建筑结构学报. 1999, 20(6): 38-46.
    [32]楼文娟,孙炳楠.风与结构的耦合作用及风振响应分析[J].工程力学. 2000, 17(5): 16-22.
    [33] Bathe. ADINA R&D, ADINA CFD&FS. Theory and Modeling Guide[M]. Watertown: ADINA R&D, Inc, 2005.
    [34]沈世钊,武岳.大跨度柔性结构考虑流固耦合效应的风振性能研究[C].三亚,第十一届全国风工程学术会议论文集, 2003:12-19.
    [35]武岳,沈世钊.膜结构风振分析中的数值风洞方法[J].空间结构. 2003, 9(2): 38-43.
    [36]姚征,陈康民. CFD通用软件综述[J].上海理工大学学报. 2002, 24(2): 138-144.
    [37] B. Hübner, E. Walhorn, D. Dinkler. Simultaneous Solution to the Interaction of Wind Flow and Lightweight Membrane Structures[C]. Proceedings of the International Symposium on Lightweight Structures in Civil Engineering, Warsaw , Poland , 2002.
    [38] M. Gluck, M. Breuer, A. Halfmann, et al.. Computation of ?uid-structure interaction on lightweight structures[J]. J. Wind Engineering and Industrial Aerodynamics, 2001, 89: 1351-1368.
    [39]邢景棠,周盛,崔尔杰.流固耦合力学概述[J],力学进展, 1997, 1: 19-31.
    [40] W.F. Noh. A time-dependent two-space-dimensional coupled Eulerian-lagrangian code[J]. J. Methods in Computational Physics, 1964.
    [41] T.J.R. Hughes, W.K. Liu, T.K. Zimmermann. Lagrangian-Eulerian finite element formulation for incompressible viscous flow[J]. J. Computer Methods in Applied Mechanics and Engineering, 1981, 29(3): 329-349.
    [42] W.K. Liu, D.C. Ma. Computer Implementation Aspects for Fluid-Structure Interaction Problems[J]. J. Computer Methods in Applied Mechanics and Engineering. 1982, 31:129-148.
    [43] A.P. Mark, C. Eloret. A Parallel Multiblock Mesh Movement Scheme For Complex Aeroelastic Applications[J]. J. AIAA, 2001.
    [44] B.A. Robinson, J.T. Batina, H.T.Y. Yang. Aeroelastic analysis of wings using the Euler equations with a deforming mesh[J]. J. Aircraft, 1991, 28(11): 781-788.
    [45]王军利,白俊强,詹浩.基于非结构动网格的非定常气动力计算[J].航空计算技术, 2005, 35(3): 12-16.
    [46]褚江.非结构动网格生成方法研究[D].南京,南京理工大学, 2006.
    [47] H.G. Matthies, R. Niekamp, J. Steindorf. Algorithms for strong coupling procedures[J]. J. Computer Methods in Applied Mechanics and Engineering, 2006, 195(17-18): 2028-2049.
    [48] J. Steindorf, H.G. Matthies. Numerical Efficiency of Different Partitioned Methods for Fluid-Structure Interaction[J]. Z. Angew. Math. Mach., 2000, 2(80): 557-558.
    [49] B. Hubner, E. Walhorn, D. Dinkler. Simultaneous Solution to the Interaction of Wind Flow and Lightweight Membrane Structures[C]. Proc. Int. Conf. On Lightweight Structures in Civil Engineering, Warsaw, 2002: 519-523.
    [50] M. Gluck, M. Breuer, F. Durst, et al.. Computation of fluid-structure interaction on lightweight structures[J]. J. Wind Engineering and Industrial Aerodynamics, 2001, 89 (14-15): 1351-1368.
    [51]李华峰.空间结构数值风洞模拟与流固耦合风致效应[D].上海交通大学硕士论文, 2008.
    [52]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构, 2008, 14(1): 3-15.
    [53]李立州,王婧超,吕震宙等.学科间载荷参数空间插值传递方法[J].航空动力学报, 2007, 22(7): 1050-1054.
    [54]苏波,钱若军,袁行飞.流固耦合界面信息传递理论和方法研究进展[J].空间结构, 2010, 16(1): 3-10.
    [55] T. Nomura, T. Hughes. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body[J]. J. Computer Methods in Applied Mechanics and Engineering, 1992, 95: 115-138.
    [56] M. Germano, U. Piomelli, P. Moin, et al.. A dynamic subgrid-scale eddy viscosity model[J]. J. Physics of Fluids, 1991, A3(7): 1760-1765.
    [57] D.K. Lilly. A proposed modification of the Germano subgrid-scale closure[J]. J. Physics of Fluids,1992, 3: 2746-2757.
    [58] A.N. Brooks, T.J.R. Hughes. Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. J. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1-3):199-259.
    [59] W. Dettmer, D. Peric′. A computational framework for fluid-structure interaction: Finite element formulation and applications[J]. J. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43): 5754-5779.
    [60] C.B. Jiang, M. Kawahara. A three step finite element method for unsteady incompressible flows[J]. J. Computational Mechanics, 1993, 11: 355-370.
    [61]王勖成.有限单元法[M].北京,清华大学出版社, 2003.
    [62]李宏男,李忠献,祁皑等.结构振动与控制[M].北京,中国建筑工业出版社, 2005.
    [63] D.H. Zeng, C.R. Ethier. A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains[J]. J. Finite Elements in Analysis and Design, 2005, 41: 1118-1139.
    [64] Y. Uematsu, M.Yamada, A. Inouea, et al.. Wind loads and wind-induced dynamic behavior of a single-layer latticed dome[J]. J. Wind Engineering and Industrial Aerodynamics, 1997, 66(3): 227-248.