非均质储层双变网格正演模拟和弹性逆时偏移方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
社会工业的需求和油气勘探开发技术的不断发展,使得油气工业面临着越来越复杂的勘探开发任务。简单构造、大型构造和浅中层构造的油气田开发已远远不能满足社会工业对油气资源的需求,勘探开发的重点逐渐向复杂的非均质储层倾斜,这就对现代油气勘探技术提出了更高的要求。常规的基于均匀介质的地震波正演模拟和偏移成像技术在解决复杂的非均质储层的问题时会出现理论或应用等各方面的局限性,因此需要寻求其它的方法对复杂的非均匀介质进行深入研究。
     本文考虑包含碳酸盐岩裂缝型储层在内的,各种不同尺度(可同地震波场相比拟、小于地震波长或远小于地震波长的尺度)的非均质储层,对面向非均匀介质的地震波正演模拟方法和逆时偏移算法进行了深入研究。
     速度场离散是地震波正演和逆时偏移的第一步,速度模型网格划分的优劣与计算效率和计算精度密切相关。为了更方便的模拟非均匀介质,本文对速度模型网格剖分进行了改进,采用了空间网格步长可变的剖分方式。相对于传统的规则交错网格,步长可变的有限差分网格对非均质储层地质模型的离散化更为合理。基于交错变步长网格,本文推导了任意精度变网格空间离散公式,应用到波场正演计算和逆时偏移中。在交错变步长网格的基础上,本文发展了局部变时间采样来配合变步长网格技术。在全局时间层内,对精细划分的空间区域进行局部时间层加密计算。局部变时间采样使模型不同区域得以满足不同的稳定性条件,从而使时间计算变得宽松,从根本上提高了计算效率。
     面向非均匀介质提出时空双变网格有限差分算法(即:空间变步长交错网格和局部变时间采样),本文应用流体薄层理论对碳酸盐岩微裂缝型储层进行了正演模拟。总结了裂缝延伸、裂缝缝间距(裂缝密度)、裂缝缝宽等裂缝特征参数与地震波场响应之间的规律和认识。并根据碳酸盐岩裂缝型储层的特点,结合胜利探区实际地质情况,以胜利油区的富台潜山油藏为主要研究对象,应用流体薄层模型对含裂缝实际模型进行了正演模拟。
     地震偏移成像技术作为反射地震的关键性技术在地震勘探中占有重要地位,传统的基于射线理论的偏移算法和基于波动理论的单程波偏移算法,在处理非均匀介质的问题时,对陡倾角、纵横向速度的剧烈变化等现象存在算法的局限性。本文对基于弹性矢量波的多分量联合逆时偏移技术进行了研究。为了解决复杂的高角度微裂缝介质的偏移成像,本文将时空双变有限差分算子嵌入到弹性波逆时外推过程中,实现了对碳酸盐岩裂缝型储层的弹性矢量波逆时偏移。并从算法角度解决了逆时偏移计算量大、效率低下的问题。
The demands of social industrial and development of oil exploration and development technology, makes the oil and gas industry facing more and more complex exploration and development tasks. Oil and gas development of simple structure, large-scale structure and shallow structure can not meet the demands. The exploration center is gradually inclineing to or inclined to complicated heterogeneous reservoirs, which raise higer request to moden oil and gas exploration technology. Conventional seismic forward modeling and migration technology are based on isotropic homogeneous media model, they more or less has some limitations on either theory or application when solving complex heterogeneous reservoir. So it is necessory to seek other methods for researching complex heterogeneous media.
     The paper considered a variety different scales heterogeneous reservoir (the scale of hetergeous body that larger than seismic wavelength, and smaller than seismic wavelength, and that can compared to seismic wavelength), fractured carbonate reservoir is also included, and carrying out thorough research on seismic forward modeling and migration methods orient to heterogeneous media problems.
     Discrete of seismic velocity model discrete is the first step of forward modeling, also is an essential step, and it is closely related to computational efficiency and accuracy. In order to facilitate the simulation of inhomogeneous medium, the paper improved velicity model FD mesh generation mode using variable spacing FD grid. Compared to the traditional staggered with fixed spacing, variable grid spacing is discrete heterogeneous geological model more reasonable. Based on variable spacing grid, the paper deduced variable grid discretization formula with arbitrary precision, applied to wave field forward modeling and reverse time migration. Based on variable grid method, the paper developed locally variable timestep scheme to match with variable grid method, which can be called as dual-variable grid method. In a global timestep the fine mesh regions are encrypt calculated by refined with fine time sampling, hence the differenct regions generateed with different grid size can satisfy different stability conditions. The time sampling in wavefield extrapolation can be relax, and improved calculation efficient basicly.
     Based on dual-variable grid scheme orient to heterogeneous media, the paper applied the thin fluid layer model theory simulated micro-fractured carbonate reservoir. The paper summed up the relationship and knowledge between fracture extension, fracutre density, fracture opening and so on facture characteristic parameters and seismic wave response. And according to the characteristics of fractured carbonate reservoirs, combined with the actual geological conditions of Shengli oilfield, use Fu Tai buried hill reservoir as the main research object, applied the thin fluid layer model to simulate seismic wave propogation of field fracture velocity model.
     Seismic migration technology as a key technology of reflection seismic plays an important role in seismic exploration. The traditional migration algorithms based on ray tracing theory and one-way wave migration algorithms based on wave equation theory get limitations on solving heterogeneous media, such as Steep glutenite、strong velocity contrast. The paper carried study on elastic reverse time migration based on full wave equation. In order to solve complex vertical micro-fractured media, the paper introduced the dual-variable FD grid into elastic vector reverse time migration extrapolation process, and realized elastic vector reverse time migration of micro-fractured media in carbonate reservoir. This soluted low efficiency and large computational capacity shortcuts of reverse time migration algorithm.
引文
[1]杜世通.地震波动力学[M].东营:石油大学出版社,1999:238.
    [2] Alterman Z, Karal F C.Propagation of elastic waves in layered media by finite difference methods[J]. Bulletin of the Seismological Society of America, 1968, v58 (1):367-398
    [3] Claerbout, J. F.. Imaging the Earth’s interior[M]. Blackwell Scientific Publications, Inc., 1985.
    [4] Alford R M, Kelly K R, Boore D M. Accuracy of finite-difference modeling of the acoustic wave equation[J]. Geophysics, 1974, v39:838-842.
    [5] Kelly, k. R. et al.. Synthetic seismograms:A finite-difference approach[J]. Geophysics,1976, v41:2-27.
    [6] Madariaga, R. Dynamics of an expanding circular fault[J]. Bull. Seismol. Soc. Am., 1976, v66:639-666.
    [7] Virieux, J. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method[J]. Geophysics, 1986, v51: 88-901.
    [8] Dablain M A. The application of high-order differencing to scalar wave equation[J]. Geophysics, 1986, v51(1):54-66.
    [9] Levander A R. Fourth-order finite-difference P-SV seismograms [J]. Geophysics, 1988, v53(11):1425-1436.
    [10] Crase E. High-order (space and time) finite-difference modeling of the elastic equation[C]. SEG’60th Annual Meeting, 1990.
    [11] Graves R W. Simulating seismic wave propagation in 3d elastic media using staggered-grid finite difference [J]. Bulletin of the Seismological Society of America, 1996, v86:1091-1106.
    [12]董良国,马在田,曹景忠.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,v43(3):411-419.
    [13]牟永光,裴正林.三维复杂介质地震数值模拟[M].北京:石油工业出版社,2004.
    [14] Jastram, C., and Behle, A. Acoustic modeling on a vertically varying grid[J]. Geophysical Prospecting, 1992, v40:157-169.
    [15] Jastram C, Tessmer E.Elastic modeling on a grid with vertically varying spacing[J]. Geophysical Prospecting, 1994, v42 (4):357-370.
    [16] Falk J., E. Tessmer, and D. Gajewski. Tube wave modeling by the finite-difference method with varying grid spacing[J]. Prospecting, 1996, v148:77-93.
    [17] Falk, J.. E. Tessmer. and D. Gajewski. Efficient finite-difference modelling of seismic waves using locally adjustable time steps[J]. Geophysical Journal International, 1998, v46:603-616.
    [18] Pitarka A. 3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing[J]. Bulletin of the Seismological Society of America, 1999, v89(1): 54-68.
    [19] Wang,Y., J.Xu, and G.T. Schuster.Viscoelastic wave simulation in basins by a variable-grid ?nite-difference method[J]. Bulletin of the Seismological Society of America, 2001, v91:1741-1749.
    [20] Mufti I R. Large-scale three-dimensional seismic models and their interpretive significance[J]. Geophysics, 1990, v55:1166-1182.
    [21] Ivo Oprsal and Jiri Zahradnik. Elastic finite-difference method for irregular grids[J]. Geophysics, 1999, v64:240-250.
    [22] Sergio Adriano Moura Oliveira. A fourth-order finite-difference method for the acoustic wave equation on irregular grids[J]. Geophysics,2003,v68:672-676.
    [23]张剑锋.弹性波数值模拟的非规则网格差分法[J].地球物理学报,1998,1998,V41(S1): 357-366.
    [24]孙卫涛,杨慧珠,舒继武.非均匀介质弹性波动方程的不规则网格有限差分方法[J] .计算力学学报,2004,v21(2):135-141
    [25]朱生旺,魏修成.波动方程非规则网格任意阶精度差分法正演[J].石油地球物理勘探,2005,v40(2):149-153.
    [26] Falk, J.. E. Tessmer. and D. Gajewski. Efficient finite-difference modelling of seismic waves using locally adjustable time steps[J]. Geophysical Journal International, 1998, v46:603-616.
    [27] Tessmer, E.. Seismic finite-difference modeling with spatially varying time steps[J]. Geophysics, 2000, v65:1290-1293.
    [28] Thomas, Ch., H. Igel, M. Weber, and F. Scherbaum. Acoustic simulation of P-wave propagation in a heterogeneous spherical earth: numerical method and application to precursor waves to PKPdf [J]. Geophysical Journal International, 2000, v141:307-320.
    [29] Hayashi, K., D. R. Burns, and M. N. Toksoz.. Discontinuous-grid finite difference seismic modeling including surface topography[J]. Bulletin of the Seismological Society of America, 2001, v91: 1750-1764.
    [30]李信富,李小凡,张美根.地震波数值模拟方法研究综述[J].防灾减灾工程学报,2007,v27(2):241-248.
    [31]尹军杰.地震散射波场特征的数值模拟研究[D]:[学位论文].北京:中国地质大学(北京),2005.
    [32] Knepp, D. L. Multiple phase-screen calculation of the temporal behavior of stochastic waves. Proc. IEEE, 1983, v(71):722-737.
    [33] Martin, J. M. and Flatte, S. M. Intensity images and statistics from numerical simulation of wave propagation in 3-D random media[J]. Appl. Opt., 1988, v(27):2111-2126.
    [34] Wu, R. S. and Huang, L. J. Scattered field calculation in heterogenous media using a phase-screen propagator[C]. Expanded Abstracts of the Technical Program.SEG’62nd Annual Meeting, 1992:1289-1292.
    [35] Wu, R. S., Huang, L. J. and Xie, X. B. Backscattered Wave calculation using the DE Wolf approximation and a phase-screen propagator: Expanded Abstracts of the Technical Program[C]. SEG’65th Annual Meeting, 1995:1293-1296.
    [36]符力耘,杨慧珠,牟永光.非均匀介质散射问题的体积分方程数值解法[J].力学学报,1998,v4:488-494.
    [37] David, W. Eaton. Weak elatic-wave scattering from massive sulfide orebodies[J]. Geophysics, 1998, v64:289-299.
    [38]李灿苹,刘学伟,李敏锋等.非均匀地质体散射特征初探[J].石油物探,2006,v45(2):134-140.
    [39]冯平波.缝洞型非均质体地震散射波特征正演研究[J].工程勘察,2007,v2:66-71.
    [40] L. T. Ikele, S. K. Yung, and F. Daube. 2-D random media with ellipsoidal autocorrelation functions[J]. Geophysics, 1993, V58 (9):1359-1372.
    [41]李灿萍.散射波特征与非均匀地质体对应关系研究[D]:学位论文.北京:中国地质大学(北京),2006.
    [42] Levander, A. R., Gibson, B. S. Wide-angle seismic reflections from two dimensional target zones[J]. Journal of Geophysical Research, 1991, v96:10251– 10260.
    [43] Lena Frenje and Christopher, J. Scattering of seismic waves simulated by finite difference modelling in random media[J]. Tectonophysics, 1998, v293:61-68.
    [44] Rie Kamei1 Masami Hato2 Toshifumi Matsuoka. Random heterogeneous model with bimodal velocity distribution for Methane Hydrate exploration[J]. Exploration Geophysics, 2005, v36:41-49
    [45]姚姚,唐文榜.深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究[J].石油地球物理勘探,2003,v38(6):623-629.
    [46]姚姚,奚先.区域多尺度随机介质模型及其波场分析[J].石油物探,2004,43(1):1-7.
    [47] Hudson J. A.. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophys. J. Roy. Astr. Soc., 1981, v64 :133-150.
    [48] Schoenberg, M., and C. M. Sayers. Seismic anisotropy of fractured rocks[J]. Geophysics, 1995, v60: 204–211.
    [49] Thomsen, L.. Elastic anisotropy due to aligned cracks in porous rock[J]. Geophysical Prospecting, 1995, v43:805–829.
    [50] Schubnel, A., and Y. Gueguen. Dispersion and anisotropy of elastic waves in cracked rocks[J]. Journal of Geophysical Research, 2003, 108, 2101.
    [51] Coates, R. T., and M. Schoenberg. Finite-difference modeling of faults and fractures[J]. Geophysics, 1995, v60:1514-1526.
    [52] Hsu, C.-J., and M. Schoenberg. Elastic waves through a simulated fracture medium [J]. Geophysics, 1993, v58:964-977.
    [53] Slawinski, R. A., and E. S. Krebes. Finite-difference modeling of SH-wave propagation in nonwelded contact media[J]. Geophysics, 2002, v67:1656-1663.
    [54] Vlastos, S., E. Liu, I. G. Main, and X. Y. Li. Numerical simulation of wave propagation in media with discrete distributions of fractures: Effects of fracture sizes and spatial distributions [J]. Geophysical Journal International, 2003, v152: 649-668..
    [55] Igel, H., Y. Ben-Zion, and P. C. Leary. Simulation of SH and P-SV-wave propagation in fault zones [J]. Geophysical Journal International, 1997, v128:533-546.
    [56] Van Baren, G. B., W. A. Mulder, and G. C. Herman. Finite difference modeling of scalar-wave propagation in cracked media [J]. Geophysics, 2001, v66: 267-276.
    [57] Saenger, E. H., N. Gold, and S. A. Shapiro. Modelling the propagation of elastic waves using a modi?ed ?nite difference grid[J]. Wave Motion, 2000, v31:77-92.
    [58] Saenger, E. H., O. S. Krueger, and S. A. Shapiro. Effective elastic properties of randomly fractured soils: 3D numerical experiments[J]. Geophysical Prospecting, 2004, v52:183-195.
    [59] Slawinski, R. A., and E. S. Krebes. Finite-difference modeling of SH-wave propagation in nonwelded contact media[J]. Geophysics, 2002, v67, 1656-1663
    [60] Zhu, Y., and R. Snieder. Simulation of waves in fractured media using an extrapolation scheme[J]. 73rd Annual International Meeting, SEG, Expanded Abstracts, 2003,1845-1848.
    [61] Carcione, J. M.. Elastodynamics of a non-ideal interface: Application to crack and fracture scattering [J]. Journal of Geophysical Research, 1996, v101, 28177-28188.
    [62] Fellinger, P., R. Marklein, K. J. Langenberg, and S. Klaholz. Numerical modeling of elastic wave propagation and scattering with EFIT-elastodynamic ?nite integration technique[J].WaveMotion, 1995, v21, 47-66.
    [63] Groenenboom, J., and J. Fokkema. Guided waves along hydraulic fractures[C]. 68th Annual International Meeting, SEG, Expanded Abstracts, 1996, 1632-1635.
    [64] Groenenboom, J., and J. Falk. Scattering by hydraulic fractures: Finite difference modeling and laboratory data[J]. Geophysics, 2000, v65:612-622.
    [65] Chunling Wu, Jerry. M. Harris, Kurt T. Nihei, and Seiji Nakagawa. Two-dimensional ?nite-difference seismic modeling of an open ?uid-?lled fracture: Comparison of thin-layer and linear-slip models[J]. Geophysics, 2005, v70 (4):57-62.
    [66]曹均,贺振华,黄德济,李琼.储层孔(裂)隙的物理模拟与超声波实验研究[J].地球物理学进展,2003.
    [67]杜正聪,贺振华,黄德济.缝洞储层地震波场数值模拟[J].勘探地球物理进展,2003.
    [68]杜正聪,贺振华,黄德济,王志.缝洞模型波动方程正演与偏移[J].成都理工大学学报(自然科学版),2003.
    [69]桂志先,贺振华,张小庆.基于Hudson理论的裂隙参数对纵波的影响[J].江汉石油学院学报,2004.
    [70] Loewenthal D, Mufti I. Reverse time migration in spatial frequency domain[J]. Geophysics, 1983, v48 (7):627-635.
    [71] McMechan, G A. Migration by extrapolation of time-dependent boundary values[J]. Geophysical Prospecting, 1983, v31(8):413-420
    [72] Edip Baysal, Dan D Kosloff and John W C Sherwood. Reverse time migration[J]. Geophysics, 1983, v48(11): 1514-1524
    [73] Loewenthal D, P A Stoffa, and E L Faria. Suppressing the unwanted reflections of the full wave equation[J]. Geophysics, 1987, v52:1007-1012
    [74] Gazdag J. Modeling of the acoustic wave equation with transform method[J]. Geophysics, 1981, v46(6):854-859.
    [75] Baysal E, D D Kosloff, and J W C Sherwood. A two-way nonreflecting wave equation[J]. Geophysics, 1984b, v49:132-141
    [76] Loewenthal D, P A Stoffa, and E L Faria. Suppressing the unwanted reflections of the fullwave equation[J]. Geophysics, 1987, v52:1007-1012
    [77] Raiaskaran S,McMechan G A. Prestack processing of land data with complex topography[J]. Geophysics, 1995, v60(6):1875-1886.
    [78] Zhu J, Lines L R. Comparison of Kirchhoff and reverse-time migration methods with applications to prestack depth imaging of complex structures[J]. Geophysics, 1998, v63(4):1166-1176.
    [79] Harris CE, McMechan G A. Using downward continuation to reduce memory requirements in reverse-time migration[J].Geophysics, 1992, v57(2):848-853
    [80] Wu W.-J., Lines, L. R., Burton A., Lu H.-X., Zhu J., Jamison W. and Bording R. P.. Prestack depth migration of an Alberta Foothills data set-Husky experience[J]. Geophysics, 1998, v63:392-398.
    [81] Mufti I. R., Pita J. A., and Huntley R. W.. Finite-difference depth migration of exploration-scale 3-D seismic data[J]. Geophysics, v61:776-794.
    [82] Yoon, K., Shin, C, Suh, S., Lines, L. R., and Hong S.. 3D reverse-time migration using acoustic wave equation: An experience with the SEG/EAGE data set[J]. The Leading Edge, 2003, v22: 38-41.
    [83] I.F. Jones, M.C. Goodwin, I.D. Berranger, H. Zhou, P.A. Farmer. Application of Anisotropic 3D Reverse Time Migration to Complex North Sea Imaging[J]. SEG Annual Meeting, 2007, 2140-3144.
    [84] Sun R, G A McMechan. Prestack reverse-time migration for elastic waves with application to synthetic offset vertical seismic profiles[J]. Proceedings of IEEE, 1986, 74(6):457-465.
    [85] Chang W. F., and McMechan G. A.. Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition[J]. Geophysics, 1987a, v51: 67-84.
    [86] Chang W. F., and McMechan G. A.. Elastic reverse-time migration[J]. Geophysics, 1987b, v52:1365-1375.
    [87] Teng, Y. C., and Dai, T. F. Finite-element prestack reverse-time migration for elastic wave[J]. Geophysics, 1989, v54:1204-1208.
    [88] Wen-Fong Chang and George A. McMechan. 3-D elastic prestack, reverse-time depth migration[J]. Geophysics, 1994, v59 (4):597-609.
    [89] Wu, W., Lines, L. R., and Lu, H.. Analysis of higher-order finite difference schemes in 3-D reverse-time migration[J]. Geophysics, 1996, v61:845-856.
    [90] Jia Yan and Paul Sava. Isotropic angle-domain elastic reverse-time migration[J].Geophysics, 2008, v73 (6):s229-s239.
    [91] Rongrong Lu, Peter Traynin, and John E. Comparison of elastic and acoustic reverse-time migration on the synthetic elastic Marmousi-II OBC dataset[J]. SEG International Exposition and Annual Meeting, 2009, 2799-2802.
    [92] Ekkehart Tessmer. Reverse-time migration in TTI media[J]. SEG Annual Meeting, 2010, 3193-3197.
    [93]张秉铭,董敏煜,李承楚等.各向异性介质中弹性波多分量联合逆时深度偏移[J].长春科技大学学报,2000,v30(1):67-70
    [94]张会星,宁书年.弹性波动方程叠前逆时偏移[J].中国矿业大学学报,2002,v34(5):34-38.
    [95]何兵寿,张会星.多分量波场的矢量法叠前深度偏移技术[J].石油地球物理勘探. 2006,v41(4):369-374.
    [96]熊煜,李录明,罗省贤.各向异性介质弹性波场正演及偏移[J].成都理工大学学报(自然科学版),2006,v33(3):310-316
    [97]杜启振,秦童.横向各向同性介质弹性波多分量叠前逆时偏移[J].地球物理学报,2009,v52(3):801-8.
    [98] Haney,M.M., L. C. Bartel, D. F. Aldridge, and N. P. Symons. Insight into the output of reverse-time migration:What do the amplitudes mean? [C]. 75th Annual International Meeting, SEG, Expanded Abstracts, 2005, 1950-1954.
    [99] Fletcher, R. f., Flowler, P., and Kitchenside, P.. Suppressing artificats in prestack reverse time migration[C]. 75th Ann. Internat. Mtg., Soc. of Expl. Geophys., 2005, 2048-2051.
    [100] W. A. Mulder and R-E. Plessix. A comparison between one-way and two-way wave-equation migration[J]. Geophysics, 2004, v69 (6):1491-1504.
    [101] Guitton A, Kaelin B, Biondi B. Least-squares attenuation of reverse time migration artifacts[J]. Geophysics, 2007, v72:19-23.
    [102] Bruno Kaelin and Antoine Guitton. Imaging condition for reverse time migration[J]. SEG Expanded Abstracts, 2006, 2594-2598.
    [103] Valenciano, A. A., and B. Biondi. Deconvolution imaging condition for reverse-time migration. Stanford Exploration Project, 2002, Report 112, 131-137.
    [104] Yoon K, Marfurt K J, Starr W. Challenges in reverse-time migration[C].74th Ann. Intemat Mtg,, Soc. Expi. Geophys. Expanded Abstracts, 2004, 1057-1060.
    [105] Zhang Y, Sun J, Gray S. Reverse-time migration: Amplitude and implementation issues[J]. Expanded Abstracts of 77thAnnual International SEG Meeting, 2007,2145-2149
    [106] Moczo, P. Finite-difference technique for SH waves in 2-D media using irregular grids: application to the seismic response problem[J]. Geophysical Journal International, 1989, v99, 321-329.
    [107] Moczo, P., J. Kristek, and L. Halada. 3D fourth-order staggered-grid ?nite-difference schemes: stability and grid dispersion[J]. Bulletin of the Seismological Society of America, 2000, v90:587-603.
    [108] Igel, H.. Wave propagation in three-dimensional spherical sections by the Chebyshev spectral method[J]. Geophysical Journal International, 1989, v136:559-566.
    [109] Aoi, S., and H. Fujiwara. 3D ?nite-difference method using discontinuous grids[J]. Bulletin of the Seismological Society of America, 1999, v89: 918-930.
    [110]李振春,张慧,张华.一阶弹性波方程的变网格高阶有限差分数值模拟[J].石油地球物理勘探,2008,v43(6):711-716.
    [111]张慧,李振春.基于双变网格算法的地震波正演模拟[J].地球物理学报,2011,v54(1):77-86.
    [112] Tae-Seob Kang and Chang-Eob Baag. Finite-Difference Seismic Simulation Combining Discontinuous Grids with Locally Variable Timesteps[J]. Bulletin of the Seismological Society of America, 2004, v94(1):207-219.
    [113]金抒辛,何樵登.泥岩裂隙的正演模拟方法研究[J].石油物探,2005,v44(2):119-127.
    [114] Schneider, W.. Integral formulation of migration in two and three dimension[J]. Geophysics, 1978, v43:49-76.
    [115] Hill, N. R.. Prestack Gaussian-beam depth migration[J]. Geophysics, 2001, v66:1240-1250.
    [116] Nichols, D. E.. Maximum energy traveltimes calculated in the seismic frequency band[J]. Geophysics, 1996, v61:253-263.
    [117] Bevc, D.. Imaging complex structures with semirecursive Kirchhoff migration[J]. Geophysics, 1997, v48:1514-1525.
    [118] Xu, S., chauris, H., Lambare, G., and Nobel, M.. Common angle image gather: a strategy for imaging complex media[C]. 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1998, 1538-1541.
    [119] Popovici M., and Sethian J.. Three dimensional traveltimes using the fast marching method[C]. 60th annual Conference & Exhibition, European Association ofGeoscientists and Engineers, Extended Abstracts, 1998, E666.
    [120] Gray, S. H., Etgen, J., Dellinger, J. and Whitmore, D.. Seismic migration problems and solutions[J]. Geophysics, 2001, v66:1622-1640.
    [121] Koichi Hayashi, OYO Corporation, Daniel R. Burns. Variable grid finite-difference modeling including surface topography[J]. SEG Expanded Abstracts, 1999, 528-531.
    [122] Dong Y.. Multi-wave NMO velocity fracture detection and finite element-finite difference reverse-time migration[D]: Ph.D. thesis: Tsinghua University, 2000.
    [123] Du, X., Bancroft J. C.. 2-D wave equation modeling and migration by a new finite difference scheme based on the Galerkin method[C]. 74th Mtg. Soc. Expl. Geophys., Expanded Abstracts, 2004, 1107-1110.
    [124] Du, X., Bancroft, J., C.. 2-D scalar wave extrapolator using FE-FD operator for irregular grids[C]. CSEG National Convention, 2005, 101-104.
    [125] M.H. Karazincir, C.M. Gerrard. An Efficient 3D Reverse Time Pre-Stack Depth Migration[C]. 68th EAGE Conference & Exhibition, 2006.
    [126] Denes Vigh and E. William Starr. Comparisons of shot-profile vs. plane-wave reverse time migration[J]. SEG Expanded Abstracts, 2006, 2358-2361.
    [127] Etgen, J., and M. O'Brien. Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial[J]. Geophysics, 2006, v72(5):223-230..
    [128] Matthew H. Karazincir and Clive M. Gerrard. Explicit high-order reverse time pre-stack depth migration[C]. SEG Expanded Abstracts, 2006, 2353-2357.
    [129] Alberto Villarreal and John A. Scales3D finite difference modeling via domain decomposition[C]. SEG Expanded Abstracts, 1996, 1231-1234.
    [130] Araya-Polo M., F. Rubio, R. de la Cruz, M Hanzich, J. María Cela, D. Paolo Scarpazza. 3D seismic imaging through reverse-time migration on homogeneous and heterogeneous multi-core processors[J]. Journal of Scientific Programming, 2009, v17:186–198.
    [131] Micikevicius, P.. 3D finite difference computation on GPUs using CUDA: Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units Washington, D.C., 2009, 79–84.
    [132] Darren Foltinek, Daniel Eaton, Jeff Mahovsky, Peyman Moghaddam, Ray McGarry. Industrial-Scale Reverse Time Migration on GPU Hardware[C]. SEG Expanded Abstracts, 2009, 2789-2793.
    [133] Martin K?ser, Christian Pelties, Cristobal E. Castro, Hugues Djikpesse, and Michael Prange. Wavefield modeling in exploration seismology using the discontinuous Galerkin finite-element method on HPC infrastructure[J]. The Leading Edge, 2010, 76-85.
    [134] Suh, S., and J. Cai. Reverse-time migration by fan iltering plus waveield decomposition[C]. SEG Expanded Abstracts, 2009, 28, 2804-2808.
    [135] Chunlei Chu, Paul L. Stoffa and Roustam Seif. 3D Seismic Modeling and Reverse-Time Migration with the Parallel Fourier Method Using Non-blocking Collective Communications[C]. SEG Expanded Abstracts, 2009, 2677-2681.