散射波成像处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
散射波地震方法是针对隐伏金属矿、构造或岩性复杂区油气勘探等复杂勘探对象提出的,是基于地震波散射理论使用更广义的散射波描述多种尺度非均匀地质体形成的复杂地震波场的勘探方法,其理论与应用技术研究是目前地震勘探领域内的一项前沿课题。其中,散射波成像处理技术是关系到散射波地震方法能否由理论步入实际生产的关键应用技术之一,系统地研究这项技术具有重要的现实意义和广泛的实用价值。论文主要研究内容与结论如下:
     1.从分析散射波和反射波的区别入手,指出散射波地震资料处理中存在静校正、提高信噪比和分辨率、准确速度估计和偏移成像等处理难点,而散射波成像处理技术是目前散射波勘探最迫切的应用技术需求。
     2.根据散射波的运动学特征,提出散射波速度分析方法,并利用一系列典型地质模型的正演数值模拟数据系统地研究了散射波速度分析方法的适用条件。研究表明某一点的散射波速度就是将其上的散射波传播介质空间看作均匀介质,用双曲线来描述散射波时距关系时的速度。常速均匀介质中散射点源的散射波速度即为介质速度;当地下为水平层状地层时,散射波速度就是均方根速度,也等价于叠加速度;当地下为倾斜地层时,散射波速度就是消除倾角效应的介质速度,也是DMO处理所需要的初始速度。相对于反射波速度分析方法,散射波速度分析方法在含有突变点、陡倾角界面、小尺度地质体等复杂构造地质条件下更具优势,有利于得到更精确的散射波速度,改善偏移成像效果。
     3.提出了基于共散射点道集的偏移方法,并对Kirchhoff叠前时间偏移等生产中常用偏移方法对散射波的适用性进行研究。在使用散射波速度场的前提下,反射波叠前时间偏移成像方法可直接用于散射波成像,反射波叠后偏移方法用于散射波成像的前提条件是通过DMO或者共散射点道集叠加来获得自激自收叠加剖面。
     4.结合物理模拟和实际地震资料,对振幅补偿、静校正、噪声衰减和反褶积等常规反射波方法在散射波成像处理中的应用策略进行了研究。研究表明静校正、噪声衰减、反褶积等反射波方法可直接用于散射波资料处理。
     5.通过实际处理效果分析,讨论了利用反射波成像技术进行散射波成像处理的利弊、散射波成像处理技术的优势,并初步总结出散射波成像处理技术与流程。
Scattering seismic exploration method is brought forward for complex targets, such as buried metal mine and energy sources trapped in complex structural or lithologic area. It is a new approach which uses generalized scattered wave to describe complex seismic wavefield generated by heterogeneous bodies with a variety of sizes based on seismic wave scattering theory. The theoretical and applied technique investigations of scattering seismic exploration method are one of the leading edge problems in the field of seismic prospecting. Scattered imaging technique is one of the most important applied technique for the method to step into practice. Thus, to study such imaging technique systemically has wide and practicable value in complicated heterogeneous bodies prospecting.
     The main contents and conclusions in the article are as follows:
     First, the article has analyzed the differences between reflected wave and scattered wave in detail, and pointed out that the static correction, signal-to-noise ratio and resolution enhancement, accurate velocity inversion and imaging are the main difficulties for scattered data processing, and that associated imaging technique is the exigencies of scattering seismic exploration method.
     Second, the article has studied the scattered velocity analysis method based on kinematical features of scattered wave, and studied systematically the range of application of the method using a series of typical models and their numerical modeling data. The results have shown that scattered velocity from a scattered point source is equal to the velocity when it is assumed that the medium above is homogeneous and scattered wave travel-time curve is hyperbola. Therefore, the scattered velocity of a scattered point source in homogeneous medium with constant velocity is the medium velocity; that of the horizontal layers is root-mean-square velocity or stacking velocity, and that of the tilted layers is medium velocity with the dip effect having been removed, which is also the input velocity for dip moveout correction. Compared with reflection method, the scattered velocity analysis approach is well suited to handle complex geology in acquiring more accurate velocity to improve image, characterized by discontinuities, steep dipping beds, small scale geologic bodies.
     Third, the paper has presented a new migration method based on common scattered pointgathers, and studied other three widely used reflection imaging methods. With the scattered wave velocity field, the pre-stack time migration methods of reflection survey can be used in scattered seismic data processing directly, whereas the post-stack ones can be used on the precondition of using DMO or common scattered point gathers stack to get stacked sections.
     Fourth, the paper has studied the application strategy of common reflection processing methods in scattered data imaging processing, including amplitude correction, static correction, noise removing, and deconvolution, using physical modeling and field seismic data. The result has revealed that these methods can be used to process scattered data directly.
     Fifth, the article has also discussed the advantages and disadvantages of using reflection imaging technique to process scattered data and the advantages of scattered imaging technique. Moreover, the scattered imaging technique and processing flow have been summarized.
引文
[1]Eaton D W, Milkereit B, Salisbury M H. Seismic methods for deep mineral exploration: Mature technologies adapted to new targets[J]. The Leading Edge,2003,22(6):580~585
    [2]孙明,林君. 金属矿地震散射波场的数值模拟研究[J]. 地质与勘探,2001,37(4):68~70
    [3]Green A G, Mair J A. Subhorizontal fractures in a granite pluton: Their detection and implication for radioactive waste disposal[J]. Geophysics,1983,48:1428~1449
    [4]Pretorius C C, Jamison A A, Irons C. Seismic exploration in the Witwatersrand Basin, Republic of South Africa[J]. Proceedings of Exploration 87, Ontario Geology Survey, 1989,Special Volume 3:241~253
    [5]吴如山,安艺敬一. 地震波的散射衰减[M].李裕澈,卢寿德等译. 北京:地震出版社,1993. 1~50
    [6]Birch F. The velocity of compressional waves in rocks to 10 kilobars, 1[J]. Journal of Geophysical Research,1960,65:1083~1102
    [7]Birch F. The velocity of compressional waves in rocks to 10 kilobars, 2[J]. Journal of Geophysical Research,1961,66:2199~2224
    [8]Christensen N I. Measurement of dynamic properties of rocks at elevated temperatures and pressures[J]. American Society for testing and materials, Spec. Tech. Pub.,1985,869:93~107
    [9]Salisbury M H, Milkereit B, Ascough G, et al. Physical properties and seismic imaging of massive sulfides[J]. Geophysics,2000,65(6):1882~1889
    [10]Salisbury M H, Milkereit B, Bleeker W. Seismic Imaging of Massive Sulfide Deposits: Part I, Rock Properties[J]. Economic Geology,1996,91(5):821~828
    [11]Salisbury M H, Harvey C W, Matthews L. The acoustic properties of ores and host rocks in hardrock terranes[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 9~19
    [12]Schmitt D R, Mwenifumbo J, Pflug K A, et al. Geophisical logging for elastic properties in hard rocks: A tutorial[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 20~41
    [13]Eaton D W. Weak elastic-wave scattering from massive sulfide orebodies[J]. Geophysics,1999,64(1):289~299
    [14]Eaton D W, Clarke Greg. A Kichhoff integral method to model 3-D elastic-wave scattering[J]. Expanded Abstracts of 70th Annual Internat SEG Mtg,2000,1~4
    [15]Clarke G J, Eaton D W. Influence of morphology and surface roughness on the seismic response of massive sulfides, based on elastic-wave Kirchhoff modeling[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003.45~58
    [16]Hobbs R W. 3D modeling of seismic-wave propagation using complex elastic screens, with application to mineral exploration[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG, 2003.59~69
    [17]Bohlen T, Muller C, Milkereit B. Elastic seismic-wave scattering from massive sulfide orebodies: on the role of composition and shape[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 70~89
    [18]黄雪继.地震波散射场相位移法波动方程正演模拟[D]:[学位论文]. 北京:中国地质大学(北京),2003
    [19]尹军杰.地震散射波场特征的数值模拟研究[D]:[学位论文]. 北京:中国地质大学(北京),2005
    [20]李灿苹.散射波特征与非均匀地质体对应关系研究[D]:[学位论文]. 北京:中国地质大学(北京),2006
    [21]李灿苹,刘学伟,王祥春等.地震波的散射理论和散射特征及应用[J]. 勘探地球物理进展,2005,28(2):81~89
    [22]李灿苹,刘学伟,李敏锋等.非均匀地质体散射特征初探[J]. 石油物探,2006,45(2):134~140
    [23]徐明才,高景华,荣立新等.从金属矿地震方法的试验效果探讨其应用前景[J]. 中国地质,2004,31(1):108~112
    [24]Juhlin C,Palm H. Experiences from shallow reflection seismics over granitic rocks in Sweden[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 93~109
    [25]Roberts B, Zaleski E, Perron G, et al. Seismic exploration of the Mantitouwadge Greenstone Belt, Ontario:A case history[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 121~126
    [26]Drummond B J, Owen A J, Jackson J C, et al. Seismic-reflection imaging of the environment around the Mount Isa orebodies, northern Australia: A case study[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 127~137
    [27]Milkereit B, Eaton D, Berrer E. Towards 3-D seismic exploration technology for the crystalline crust[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg, 1996b, 638~641
    [28] Milkereit B, Eaton D, Wu J, et al. Seismic Imaging of Massive Sulfide Deposits: Part II,Reflection seismic profiling[J]. Economic Geology, 1996, 91(5):829~834
    [29]Salisbury M H, Milkereit B, Ascough G. Physical properties and seismic imaging of massive sulfides[J]. Geophysics, 2000,65(6):1882~1889
    [30]Milkereit B, Eaton D. Imaging and interpreting the shallow crystalline crust[J]. Tectonophysics, 1998,286:5~18
    [31]Milkereit B, Berrer E k, King A R, et al. Development of 3-D seismic exploration technology for deep nickel-copper deposits: A case history from the Sudbury basin, Canada[J]. Geophysics,2000,65(6):1890~1899
    [32]Evans B J, Urosevic M, and Taube A. Using surface-seismic reflection to profile a massive sulfide deposit at Mount Morgan, Australia[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG, 2003. 157~163
    [33]Calvert A J, Perron G, Li Y. A comparison of 2D seismic lines shot over the Ansil and Bell Allard Mines in the Abitibi Greenstone Belt[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 164~177
    [34]Calvert A J, Li Y. Seismic reflection imaging of a massive sulfide deposit at the Matagami mining camp, Quebec[J].Geophysics,1999,64(1):24~32
    [35]Adam E, Perron G, Arnold G, et al. 3D seismic imaging for VMS deposit exploration, Matagami, Quebec[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG, 2003. 181~193
    [36]Stevenson F R, Higgs M A, Durrheim R J. Seismic imaging of precious and base-metal deposits in southern Africa[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 141~156
    [37]Pretorius C C, Muller M R, Larrogue M, et al. A review of 16 years of hardrock seismic on the Kaapvaal Craton[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 247~268
    [38]Li Tonglin, Eaton D W. Delineating the Tuwu porphyry copper deposit at Xinjiang, China, with seismic-reflection profiling[J]. Geophysics, 2005,70(6):B53~B60
    [39]Eaton D W, Guest S, Milkereit B, et al. Seismic imaging of massive sulfide deposits:part III , Borehole seismic imaging of near-vertical structures[J]. Economic Geology,1996,91:835~840
    [40]Adam E, Bohlen T, Milkereit B. Vertical seismic profiling at the Bell Allard orebody,Matagami, Qurbec[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 181~193
    [41]Perron G, Eaton D W, Elliot B, et al. Application of downhole seismic imaging to map near-vertical structures: Normetal(Abitibi Greenstone Belt),Quebec[A].in: Eaton D W, Milkereit B, Salisbury M H,eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 194~206
    [42]Cosma C, Heikkinen P, Keskinen J. Multiazimuth VSP for rock characterization of deep nuclear waste disposal sites in Finland[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003. 207~225
    [43]Pretorius C C, Trewick W F, Fourie A, et al. Application of 3-D seismics to mine planning at Vaal Reefs gold mine, number 10 shaft, Republic of South Africa[J]. Geophysics,2000,65(6):1862~1870
    [44]Stewart A Greenhalgh, Lain M Mason, Cvetan Sinadinovski. In-mine seismic delineation of mineralization and rock structure[J]. Geophysics,2000,65(6):1908~1919
    [45]Adam E, Milkereit B, Salmon B. 3-D seismic exploration in the Val d’Or mining camp,Quebec[J]. Expanded Abstracts of 68th Annual Internat SEG Mtg,1998,638~641
    [46]曾校丰,许维进,何文能.隐伏矿床的地震波动力学信息探测[J]. 矿床地质,2002,21(1):91~96
    [47]Zhao Yonggui,Wang Chaofan, Chen Yanmin, et al. Seismic tomography and its application in mining[J].Chinese Journal of Geophysics,1996,39(4):585~592
    [48]Drummond B J, Goleby B R, Owen A J, et al. Seismic reflection imaging of mineral systems:Three case histories[J]. Geophysics,2000,65(6):1852~1861
    [49]Joe Wong. Crosshole seismic imaging for sulfide orebody delineation near Sudbury, Ontario, Canada[J]. Geophysics,2000,65(6):1900~1907
    [50]Aki, K.. Analysis of the Seismic Coda of Local Earthquakes as Scattered Waves[J]. Geophysics, 1969,74(4): 615-631
    [51]Haddon, R.A.W.. Corrugations on the CMB or transition layers between inner and outer cores? International Conference on the Core-Mantle Interface. Eos, Transactions, AmericanGeophysical Union. 1972, 53(5): 600
    [52]Hudson J A and Knopoff L. Predicting the overall properties of composites materials with small-scale inculusions or cracks[J]. Pure. Appl. Geophys, 1989,131:551~576
    [53]Hudson J A. Overall properties of a cracked solid[J]. Math.Proc.Camb.Phil.Soc., 1980,88:371~384
    [54]Waterman P C and Truell R.Multiple scattering of waves[J].Math.phys.,1961,2:512~537
    [55]Wu R S. The perturbation Method for Elastic wave scattering[J]. Pure Applied Geophys,1989,131:605~637
    [56]Miles J W. Scattering of Elastic waves by small inhomogeneities[J]. Geophys, 1960, 15: 642~648
    [57]Herrera I and Mal A K. A perturbation method for elastic wave propagation, II-small inhomogeneities[J]. Geophys.Res., 1965, 70:871~873
    [58]Haddon R A W and Cleary J R. Evidence for scattering of seismic PKP waves near the mantle-core boundary[J]. Phys.Earth and Planet.Int., 1974,8:211~234
    [59]Hudson J A. The scattering of elastic waves by granular media[J]. Qu.J.Mech.Appl.Math., 1968,21:487~502
    [60]Hudson J A. Scattering waves in the coda of p[J]. Geophys,1977,43:359~374
    [61]Gubernatis J E, Domany E and Krumhansl J A. Formal aspects of the theory of the scattering of ultrasound by flows in elastic materials[J]. Appl.Phys.,1977a,48:2804~2811
    [62]李小凡.大延伸非均匀介质中地震波全弹性散射理论 I:弹性波单次散射理论[J]. 力学学报,2002,34(4):559~568
    [63]Chatterjee A K, Mal A K and Knopoff L. Elastic moduli of two-component systems[J].Geophys,Res.,1978,83:1785
    [64]Varadan V K, Varadan V V and Ma Y. Multiple scattering of elastic waves bye piezoelectric cylinders in rubberlike materials[J].Wave-Material Interaction,1986a,1:291
    [65]Varadan V K, Varadan V V and Ma Y. Multiple scattering of compressional and shear waves by fiber reinforced composite materials[J].Acoust.Soc.Am.,1986b,80:333
    [66]李小凡.大延伸非均匀介质中地震波全弹性散射理论 II:弹性波多次散射理论[J]. 力学学报,2002,34(5):559~568
    [67]Sato H. 研究随机非均匀岩石层中尾波激发和振幅衰减的统一方法:地震波的散射衰减[M]. 孙福良译. 北京:地震出版社,1993:95~118
    [68]高龙生.我国有关尾波研究的进展[J].地球物理学报.1994
    [69]聂永安,曾健,冯德益. 三维尾波散射问题的理论研究[J].地震学报,1995,1
    [70]Levander A R. Fourth-order finite-difference P-SV seismograms[J]. Geophysics, 1988, 53:1425~1436
    [71]Wu R S and Flatte S M. Transmission fluctuations across an array and heterogeneities in the crust and upper mantle[J]. Pure and Appl. Geophys.,1990,132:174~196
    [72]Flatte S M, Wu R S and Shen Z K. Small scale structure in the lithosphere and asthenosphere deduced from arrival-time and amplitude fluctuations at NORSAR[J].Geophys.Res.,1988,93:6601~6614
    [73]刘光鼎,郝天姚.应用地球物理方法寻找隐伏矿床[J].地球物理学报,1995,38(6):850~854
    [74]高景华.金属矿勘查中的地震理论模型研究[J].物探与化探,2002,26(5):350~356
    [75]尹军杰,刘学伟,李文慧.地震波散射理论及其应用研究综述[J].地球物理学进展,2005,20(1):123~134
    [76]尹军杰,刘学伟,黄雪继等.基于散射成像数值模拟的地震采集参数论证[J].石油物探,2005,44(1):58~64
    [77]籍同冰,徐明才.俄罗斯金属矿地震勘探[J].物探化探译丛,1995,99(4):25~34
    [78]王再锋,赵利华.俄罗斯应用散射地震波特征参数分析研究基岩结构及油气藏[J].勘探地球物理进展,2004,27(6):455~459
    [79]勾丽敏,刘学伟,雷鹏等.金属矿地震勘探技术方法研究综述(一)[J].勘探地球物理进展,2007,30(1):16~24
    [80]徐明才,高景华,柴铭涛等.金属矿地震勘查方法技术[J].有色金属矿产与勘查,1997,6(4):232~237
    [81]徐明才,高景华,柴铭涛等.寻找隐伏金属矿的地震方法技术研究[J]. 物探与化探,2002,26(5):350~356
    [82]徐明才,高景华,荣立新等.散射波地震方法在蔡家营多金属矿区的试验研究[J].物探与化探,2003,27(1):49~54
    [83]徐明才,高景华,刘建勋.东秦岭地震剖面上莫霍面基本特征的研究[J].地质与勘探,2000,36(1):40~43
    [84]徐明才,高景华,柴铭涛等.内蒙古大井铜锡多金属矿区的地震方法试验研究[J].CPS/SEG国际地球物理会议论文集(详细摘要),2004:459~463
    [85]Bancroft J C,Geiger H D. The Equivalent offset CRP gathers[J]. Expanded Abstracts of 64th Annual Internat SEG Mtg,1994,672~675
    [86]Bancroft J C,Geiger H D,Margrave G F. The equivalent offset method of prestack time migration[J]. Geophysics,1998,63(6):2042~2053
    [87]Margrave G F, Bancroft J C, Geiger H D. Fourier prestack migration by equivalent wavenumber [J]. Geophysics,1999,64(1):197~207
    [88]Margrave G F, Bancroft J C. The theoretical basis for prestack migration by equivalent offset[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg,1996,443~446
    [89]Bancroft J C. Natural anti-aliasing in equivalent offset prestack migration[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg,1996,1465~1466b
    [90]Geiger H D, Bancroft J C. Equivalent offset prestack migration for rugged topography[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg,1996,447~450
    [91]Li Xinxiang, Bancroft J C. Prestack migration residual statics analysis using equivalent offset mapping[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg, 1999
    [92]Li Xinxiang, Bancroft J C. Integrated residual statics analysis with prestack time migration[J]. Expanded Abstracts of 67th Annual Internat SEG Mtg, 1997,1462~1465
    [93]Bancroft J C, Margrave G F, Geiger H D. A kinematic comparison of DMO-PSI and equivalent offset migration(EOM)[J].Expanded Abstracts of 67th Annual Internat SEG Mtg,1997,1575~1578.
    [94]Wang S, Bancroft J C , Foltinek D et al. Converted-wave(P-SV) prestack migration and velocity analysis[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg,1996,1575~1578
    [95]Li Xinxiang, Bancroft J C. Equivalent offset migration (EOM) enhancement by residual statics correction[J]. Expanded Abstracts of 67th Annual Internat CSEG Mtg, 1997
    [96]Bancroft J C, Li Xinxiang. Efficient computation of the equivalent offset traveltimes for EOM[J]. Expanded Abstracts of 68th Annual Internat SEG Mtg, 1998.
    [97]王勇,朱亚平,杨慧珠.共散射点成像及其在低信噪比三维地震数据处理中的应用[J].石油地球物理勘探,2000,35(1):20~26
    [98]王伟.基于等效偏移距方法叠前时间偏移的研究[D]:[学位论文].北京:中国地质大学(北京),2005
    [99]Erick Adam, BerndMilkereit, Bernard Salmon. 3-D seismic exploration in the Val d’Or mining camp, Quebec[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg, 2004.
    [100]勾丽敏,刘学伟,雷鹏等.金属矿地震勘探技术方法研究综述(二)[J].勘探地球物理进展,2007,30(2):85~90
    [101]J.F. 克莱鲍特. 地震成像理论及方法[M]. 许云译. 北京:石油工业出版社,1991:105~107
    [102]Flower J C. A comparative overview of prestack time migration methods[J]. Expanded Abstracts of 66th Annual Internat SEG Mtg, 1996:1571~1574
    [103]王勇等. 地震成像新方法[M]. 北京:石油工业出版社,1995
    [104]渥·伊尔马兹. 地震数据处理[M]. 黄绪德,袁明德译. 北京:石油工业出版社,1994:152~153
    [105]曾富英. 复杂地质体三维建模[D]:[学位论文].北京:中国地质大学(北京),2004
    [106]王棣,王华忠,马在田.叠前时间偏移方法综述[J].勘探地球物理进展,2004,27(5):313~320
    [107]赵政章等编. 地震资料叠前时间偏移处理技术研讨会文集[M]. 北京:石油工业出版社,2005
    [108]戴志阳,孙建国.DMO 方法综述[J].世界地质,2001,20(4):402~409
    [109]高军,凌云,周兴元等.时频域球面发散和吸收补偿[J].石油地球物理勘探,1996,31(6):856~866
    [110]凌云,高军,吴琳.时频空间域球面发散与吸收补偿[J].石油地球物理勘探,2005,40(2):172~182
    [111]舒德新,凌云.地表一致性统计振幅补偿[J]. 物探科技通报,1991,9(2):155~164
    [112]李录明,罗省贤.三维波 场延拓复 杂 表层模 型 校正方 法 及应用[J].地球物理学进展,2005,20(4):1027~1034
    [113]王红落,陈中州,常旭.波动方程基准面延拓研究进展[J].地球物理学进展,2004,19(2):230~234
    [114]崔兴福,徐凌,陈立康.复杂近地表波动方程波场延拓静校正[J].石油勘探与开发,2006,33(1):80~86
    [115]Wang Xiangchun, Liu Xuewei. 3-D acoustic wave equation forward modeling with topography[J].Applied Geophysics,2007,4(1):8~15
    [116]王祥春, 刘学伟.起伏地表三维声波方程地震波场模拟[M].2006 年全国博士生学术论坛论文集,2006,921~926
    [117]中国石油天然气股份有限公司勘探与生产分公司编.地震资料处理技术高级培训班教材.2002.
    [118]李桂元. 折射波静校正在塔里木盆地的应用[J].物探科技通报,1991,9(1):29~37
    [119]李明亮,王顺根,乐金.EGRM 折射波静校正方法及其处理效果分析[J].物探科技通报,1987,5(2):39~51
    [120]勾丽敏,蔡希玲,刘学伟等. 叠前深度偏移中噪声对层速度估计精度的影响分析[J].石油地球物理勘探,2007,42(2):156~163