散射成像主能量分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于解决地质问题的复杂化程度和精细程度的进一步提高,常规反射波地震勘探技术不能很好地应用在山前断裂带、盆地边缘破碎带、岩浆侵入型的勘探问题,且难以取得精确的成像效果;因此,针对构造或岩性复杂区油气勘探、隐伏金属矿等复杂勘探问题,提出了散射波地震方法。它是基于地震波散射理论,并且是使用更广义的散射波描述多种尺度非均匀地质体形成的复杂地震波场的勘探方法。散射波成像是依赖地震散射波理论,属于叠前时间偏移的一种成像方法,为地震成像以及速度分析提供了独特的研究思路。
     在前人工作的基础上,详细理解了地震散射波场理论,了解散射波场与反射波场的本质区别,明确了散射波的运动学特征,即散射波时距曲面是一个Choeps金字塔;散射波成像的核心是等效偏移距理论,依据等效偏移距原理形成共散射点(CSP)道集,其本质是按照等效偏移距的大小重新选排地震道信息的过程;此道集具有更大的偏移距覆盖范围和更高的信噪比,提高了速度分析的精度,为后续的改善成像奠定了基础。
     本文的基本目的是在地震散射波主能量理论基础上,探索能否利用散射波场主能量信息改善散射成像效果,这也是论文的价值所在。当地下散射体与背景介质满足不同的尺度关系时,产生不同机制类型的散射;系统分析了纵波入射到地质体时,形成前向散射和背向散射的图样,在一些假设和忽略一些因素的前提下,寻找到散射波主能量方向与地质体倾角的规律,而后依据主能量方向的权系数为一、其他方向的权系数按照散射衰减图样逐渐减小的原则进行加权成像,以突出主能量对成像的影响,编程实现了主能量权系数的计算和共散射点道集的形成过程。对理论模型数据及实际资料进行了处理,并将得到的结果与前人不加权成像的效果进行了比对,对比发现加权后提高了信噪比,有效压制了多次波和空间假频,散射波的同相轴更加趋于双曲线,突出了主能量信息,削弱非主能量信息;叠加剖面增强了地下地质体的连续性,改善了成像效果。该方法能有效处理低信噪比、不规则地震资料以及改善小尺度的地质体成像,尤其是浅层效果会更明显。最后总结了该方法的优势和缺陷,给出了本人对此方法的期望。
Due to the enhancement of the degree of complexity and sophistication aboutthe solution of geological problems, the conventional reflection seismic explorationtechnology can't be well applied in the exploration, include the piedmont fault zone、the basin margin fracture zone and the concealed metal ore, and it is difficult to obtainaccurate imaging effect; Therefore, the scattering wave seismic methods is proposedwith the complex exploration of the tectonic or lithology complex oil and gasexploration and the buried metal mine. It is a exploration method that is based on theseismic wave scattering theory, and uses more generalized scattering wave to describecomplex seismic wave field from variety of scale non-uniform geological. Thescattered wave imaging is a migration method that dependent on the seismicscattering wave theory, and belongs to pre-stack time migration, which provides aunique research idea for seismic imaging and velocity analysis.
     On the basis of previous work, I particularly understand the seismic scatteredwave field theory and find out the essential difference of between the scattered wavefield and the reflected wave field, have a clear about the kinematic characteristics ofthe scattered wave, that the traveltime-offset surface form scattered wave is a Choepspyramid; according to the principle of equivalent offset, forming the commonscattering point (CSP) gathers is the committed step of scattered wave imaging,which's essence is the process of re-choose seismic trace information in accordancewith the size of the equivalent offset. this gather have greater offset coverage andhigher signal to noise ratio, and improve the accuracy of velocity analysis, which isthe foundation for the improvement in imaging.
     The basic purpose of this paper is that confirm the possibility of using the mainenergy information of scattered wave to improve the scattering imaging, based on thetheory of the main energy of seismic scattered wave, which is the value of the paper.The scatterers and the background media meet different scale relations, which resultin the different types of scattered mechanisms; When the compressional wave isincident on the geological body, I systematically analysis of the pattern of forward scattering and backscattering; in the premise of some assumptions and ignore somefactors, I find the discipline between the direction of scattered wave main energy andinclination of the geological, then do the weighted imaging according to theprinciples that the weight coefficient of the main energy direction is one, the weightedcoefficient of others direction gradually reduce in accordance with scatteringattenuation pattern,which highlight the affection of main energy to imaging, andachieve the calculation of main energy weight coefficient and forming the commonscattering gathers by programming. Processing the model data and filed data, what'sresult have a comparison with the effect of the previous unweighted imaging whichimprove the signal to noise ratio, and effectively suppress the multiple reflections andspatial aliasing, meanwhile the scattered wave events become more hyperbolic,highlighted the main energy information, and weaken the non-primary energyinformation. the stacked section enhance the continuity of the subsurface geologicbody, and improve the imaging effect. This method can effectively deal with lowsignal to noise ratio and irregular seismic data and can improve the imaging ofsmall-scale geological body, especially used in shallow data. Finally I summarize theadvantages and disadvantages of this method, and give my expectation of it.
引文
A.A.杜霍夫基斯[苏]等著.夏卫华周超凡译.稀有金属矿区立体地质填图.地质出版社,1984
    Adam E,Peron G,Matthews I,Millkereit B.3D seismic data processing for mineralexploration.SEG Expanded Abstracts,1998
    Alireza Malehmir,Gilles Bellefleur,Sharon Taylor,Xstrata Zinc.3D seismicreflection imaging of VHMS deposits: Insights from re-processing of the HalfmileLake data, New Brunswick, Canada. SEG Las Vegas Annual Meeting,2008:3625-3628
    ANTHONY M.EVANS[英]著.冯钟燕译,祁思敬校.金属矿床学导论.北京大学出版社,1985
    Barry J Drummond,Bruce R Goleby et al. Seismic reflection imaging of mineral systems:Three case histories. Geophysics,2000,65(6):1852-1861
    Batchelor G K and Green J T. The Determination of the Bulk Stress in a Suspensionof Spherical Particles to Order c2[J].Fluid Mech.1972,56:401
    B Freeman,S L Klemperer,R W,Hobbs. The deep structure of northern England and theIapetus Suture zone from BIRPS deep seismic reflection profiles. Journal of theGeological Society, London,1988.145:727-740
    C C Pretorius,W F Trewick,A Fourie,C Irons. Application of3-D seismics to mineplanning at Vaal Reefs gold mine, number10shaft, Republic of South Africa.Geophysics,2000,65(6):1862-1870
    Chia-Chi Sung etc. Scattering characteristics of the chiral slab for normallyincident longitudinal elastic waves. Wave Motion,1999,30:135-142
    Christopher Bernard Harrison. Feasibility of Rock Characterization for MineralExploration Using Seismic Data. Western Australia School of Mines Departmentof Exploration Geophysics,2009July
    Christopher Harrison, Milovan Urosevic. Processing, inversion and multi attributeanalysis of the Intrepid seismic line at the St. Ives gold camp, WesternAustralia.SEG/San Antonio Annual Meeting,2007,1928-1932
    Christopher Harrison, Milovan Urosevic. Towards direct detection of gold bearingrock formations from seismic data: St. Ives gold camp, Western Australia.SEGLas Vegas Annual Meeting,2008,1860-1864
    C Julin, H palm. Experiences from shallow reflection seismics over granitic rocksin Sweden[A]. in: Eaton D W, Milkereit B, Salisbury M H, eds. Hardrock SeismicExploration[C]. USA:SEG,2003,93-109
    Deanne Duff,CA Hurich. Physical property analysis, numerical and scale modeling forplanning of seismic surveys: Voisey s Bay, Labrador, SEG/New Orleans AnnualMeeting,2006,1343-1346
    DJ White,M Malinowski,P Cary,D Secord.2D/3D Multicomponent Seismic Imaging in theFlin Flon Mining Camp, Canada. SEG Las Vegas Annual Meeting,2008:3609-3612
    Don White,Boerner D E,Wu J,Lucas,S B,Berrer E,Hannila J,Somervile R.High-Resolution Seismic and Controlled-Source EM Studies Near Thompson,Manitoba. Seismic Methods in Mineral Exploration,Explor97.1997,685-694
    Don White,David Boerner,Jianjun Wu,Steve Lucas et al. Mineral exploration in theThompson nickel belt, Manitoba, Canada,using seismic and controlled-source EMmethods. Geophysics,2000,65(6):1871-1881
    Drummond B J, Owen A J, Jackson J C, et al. Seismic-reflection imaging of theenvironment around the Mount Isa orebodies,northern Australia:A case study[A].in:Eaton D W, Milkereit B,Salisbury M H,eds. Hardrock SeismicExploration[C].USA:SEG,2003,127-137
    Eaton D W, Milkereit B, Salisbury M H. Seismic methods for deep mineral exploration:Mature technologies adapted to new targets. The Leading Edge,2003,580-585
    Eaton D W,Weak elastic wave scattering from massive sulfide orebodies[J].Geophysics,1999.64(1):289-299
    E L Heureux,B Milkereit,E Adam.3D Seismic Exploration for Mineral Deposits inHardrock Environments,2005.CSEG recorder:36-39
    E L Heureux. Scattering regimes and the influence of heterogeneity on the seismicdetection of mineral exploration targets.2006,SEG/New Orleans AnnualMeeting:1338-1442
    Erick Adam, Elizabeth Lheueux.3D Seismic imaging of Massive Sulfides: seismicmodeling, data acquisition and processing issues.SEG Las Vegas Annual Meeting,2008,3621-3624
    Ernst F And Blonk B.陈军强译.降低地震资料中的近地表散射影响[J].国外油气勘探,1999,11(2总62):223-229
    Foldy L L. The Multiple Scattering of Waves[J]. Phys Rev,1945,67:107-119
    Gary F. Margrave and John C. Bancroft.李小秋译.等效偏移距叠前偏移的理论基础,1996,1-5
    G.BEYLKIN and R.BURRIDGE. LINEARIZED INVERSE SCATTERING PROBLEMS IN ACOUST-ICS ANDELASTICITY.WAVE MOTION,1990,12:15-52
    Graham W Stuart,Stephen J Jolley,Louis G B,T polome,Avmin Ltd,Rod F Tucker.Application of3-D seismic attributes analysis to mine planning: Target golddeposit, South Africa.The Leading Edge,2000,736-742
    Green A G,Mair J A. Subhorizontal fractures in agraanite pluton:Their detection andimplication for radioactive waste disposal [J].Geophysics,1983.48(11):1428-1449
    Haddon R A W and Cleary J R. Evidence for Scattering of Seismic PKP Waves near theMantle-core Boundary[J].Phys Earth and Planet Int.1974,8:211-234
    Herrera I and Mal A K. A Perturbation Method for Elastic Wave Propagation, II-SmallInhomogeneities[J].Geophys Res.1965,70:871-873
    Hudson J A. Overall Proerties of a Cracked Solid.Math Phys,1980.88:371-384
    Hugh D. Geiger and John C. Bancroft.王炳章译.起伏地形等效偏移距叠前偏移法.1996,116-119
    Joe Wong. A Crosshole seismic survey at the McConnell Ore Body. Explor97,1997,697-700
    Joe Wong. Crosshole seismic imaging for sulfide orebody delineation near Sudbury,Ontario, Canada. Geophysics,2000,65(6):1900-1907
    John C. Bancroft etc. The equivalent offset method of prestack time migration.GEOPHYSICS,1998,63(6):2042-2053
    Keiiti Aki. Analysis of the Seismic Coda of Local Earthquakes as ScatteredWaves.Journal of Geophysical research,1969,74(2):615-631
    Leonie E A Jone. Prospect and Regional Seismic Reflection Imaging in Australian GoldProvinces. SEG Las Vegas Annual Meeting,2008:3604-3606
    Li Y,Calvert A J. Seismic Reflection Imaging of a Shallow, Fault-Controlled VMSDeposit in the Matagami Mining Camp, Qu é bec. Seismic Methods in MineralExploration,Explor97,1997,467-472
    Matthew Salisbury,Bernd Milkereit,Graham Ascough et al. Physical properties andseismic imaging of massive sulfides. Geophysics,2000.65(6):1882-1889
    Matthew Salisbury,David Snyder. Application of Seismic Methods to MineralExploration. Geological Association of Canada,Mineral Deposits Division,Special Publication,2007.5:971-982
    Miaden R Nedimovic,Gordon F West. Crooked-line2D seismic reflection imaging incrystalline terrains: Part1, data processing. Geophysics,2003,68(1):274-285
    Miaden R Nedimovic,Gordon F West. Crooked-line2D seismic reflection imaging incrystalline terrains: Part2, migration. Geophysics,2003,68(1):286-296
    Mile J W. Scattering of Elastic Waves by Small Inhomogeneities[J].Geophy,1960,15:642-648
    Milkereit B,Berrer EK,Watts A,Roberts B. Development of3-D Seismic ExplorationTechnology for Ni-Cu Deposits, Sudbury Basin. Seismic Methods in MineralExploration,Explor97,1997,439-448
    Milkereit B,E K Berrer,Alan R King,Anthony H Watts,et al. Development of3-D seismicexploration technology for deep nickel-copper deposits—A case history from theSudbury basin, Canada.Geophysics, Geophysics,2000,65(6):1890-1899
    Milkereit,Eaton,Salisbury,Adam,Bohlen.3D Seismic Imaging for Mineral Exploration.
    Milovan Urosevic,Anton Kepic,Edward Stolz. Hard rock seismic exploration of oredeposits in Australia. SEG Las Vegas Annual Meeting,2008(a):3613-3614
    Milovan Urosevic,Anton Kepic. Nickel exploration with3D seismic–Lake Lefroy,Kambalda, WA. SEG Las Vegas Annual Meeting,2008(b):3607-3608
    Muller C,Theilen F,Milkereit B. Combined vertical-incidence and wide-angle seismicstudy of deepwater bright-spot reflections. The Leading Edge,2001,854-857
    Perron Gervais,Calim Cosma. The role of3D earth models in seismic reflection methodsapplied to mineral exploration.SEG Las Vegas Annual Meeting,2008:3629-3631
    Peter M Shearer. Aspects of Observational Seismology.Lectures at the EarthquakeResearch Institute,2009,17-29
    Peterson B Varadan V K and Varadan V V. Analysis of Classical Statistical Mechanicsby Means of Collective Coordinates[J].Phys Rev,1983,110:1
    Pretorius C C,Jamison A,Irons C,et al. Seismic exploration in the Wit-watersrandBasin,Republic of South Africa[J].Proceedings of Exploration87,1989.241-253
    Roberts B, Zaleski E, Perron G, et al. Seismic exploration of the MantitouwadgeGreenstone Belt, Ontario:A case history[A]. in: Eaton D W, Milkereit B,Salisbury M H, eds. Hardrock Seismic Exploration[C]. USA:SEG,2003,110-126
    R.Wu and K.Aki. Elastic Wave Scattering by a Random Medium and the Small ScaleInhomogeneities in the Lithosphere.JOURNAL OF GEOPHYSICAL RESEARCH,1985,B12(90):10261-10273
    R.Wu and K.Aki. Scattering characteristics of elastic waves by an elasticheterogeneity.GEOPHYSICS,1985,50(4):582-595
    Sato H.孙福梁译,吴建春刘洪校.研究随机非均匀岩石层中尾波激发和振幅衰减的统一方法.地震波的散射衰减,地震出版社,1993.95-118
    Smart G,Jolley S,Polome L,Avmin,Grey N. Structural and stratigraphic analysis of3D seismic attributes applied to mine planning: Target gold deposit, SouthAfrica. SEG Expanded Abstracts,1999
    Stewart A,Greenhalgh,Lain M Mason,Cvetan Sinadiovski. In-mine seismic delineationof mineralization and rock structure. Geophysics,2000,65(6):1908-1919
    Teck Chair in Exploration Geophysics Department of Physics University of Toronto.2008/2009,Annual Activity Report:1-25
    Varadan V K,Varadan V V and Ma Y. Multiple Scattering of Elastic(SH) Waves byPiezolectric Cylinders in Rubberlike Materials[J].Wave-Material Interaction,1986a,1:291
    Varadan V K,Ma Y and Varadan V V. Multiple Scattering of Compressional and ShearWaves by Fiber Reinforced Composite Materials[J]. Acoust. Soc. Am,1986b.80:333
    常建梅,冯文杰.吸收边界条件下弹性波散射的数值模拟.石家庄铁道学院学报,2002,15(4):1-5
    刁顺,杨慧珠,许云.裂缝及介质非均匀散射.石油物探,1994,33(4):49-55
    刁顺,杨慧珠,许云. TI介质裂纹散射研究.石油地球物理勘探,1994,29(5):545-551
    高景华.金属矿勘查中的地震理论模型研究.物探与化探,2002,26(5):350-356
    勾丽敏,刘学伟,雷鹏等.金属矿地震勘探技术方法研究综述——金属矿地震勘探技术及其现状[J].勘探地球物理进展,2007,30(1):16-24
    勾丽敏.散射波成像处理技术研究:[D博士学位论文].北京:中国地质大学(北京),2007
    黄雪继.地震波散射场相位移法波动方程正演模拟:[博士学位论文].北京:中国地质大学(北京),2003
    贾烈明,田鹏,李劲.散射场数值模拟方法在地震采集方法设计中的应用.河南油田,2006,20(1):25-26
    贾豫葛,李小凡,张美根,王童奎,李信富.地震波散射研究的若干重要进展.地球物理学进展,2005,4(20):934-944
    李灿苹,刘学伟,王祥春,杨丽.地震波的散射理论和散射特征及其应用.勘探地球物理进展,2005,2(28):81-89
    李灿苹.散射波特征与非均匀地质体对应关系研究:[博士学位论文].北京:中国地质大学(北京),2006
    刘宁,孙建国.起伏地表条件下的声波散射数值模拟的积分方程法.吉林大学学报(地球科学版),2007,37:61-65
    李信富,李小凡,李米田.地震波散射研究回顾与展望.物探化探计算技术,2007,29(4):286-293
    李小凡.大延伸非均匀介质中地震波全弹性散射理论Ⅱ——弹性波多次散射理论[J].力学学报,2002,34(5):743-755
    李小凡.延伸非均匀介质中地震波全弹性散射理论I--弹性波单次散射理论.力学学报,2002,4(34):559-568
    聂永安,曾健,冯德益.三维尾波散射问题的理论研究.地震学报,1995,17(1):68-71
    秦雪霏,韩立国,单刚义.关于地震波散射波场属性的基本研究.吉林大学学报(地球科学版),2006,36:40-43
    沈鸿雁.地震散射波成像技术研究:[博士学位论文].陕西:长安大学,2010
    孙建国.声波散射数值模拟的两种新方案.吉林大学学报(地球科学版),2006,3(65):863-868
    孙明,林君.金属矿地震散射波场的数值模拟研究.地质与勘探,2001,37(4):68-70
    田丽花.地震波散射波场正演数值模拟[D]:[硕士学位论文].北京:中国地质大学(北京),2007
    王伟.基于等效偏移距方法叠前时间偏移的研究[D]:[硕士学位论文].北京:中国地质大学(北京),2005
    王伟,尹军杰,刘学伟等.等效偏移距方法及应用.地球物理学报,2007,50(6):1823-1830
    王勇,朱亚平,杨慧珠.共散射点成像及其在低信噪比三维地震数据处理中的应用[J].石油地球物理勘探,2000,35(1):20-26
    王忠仁,孙建国,陈丽虹.任意散射条件下地震散射成像方法研究.中国地球物理学会2001年年刊,2001,36
    吴如山.地震波散射:理论与应用.中国科学院地球物理研究所,林邦佐译,1989,1-23
    吴如山,安艺敬一.李裕澈,卢寿德等译,吴建春,刘洪校.地震波的散射与衰减,地震出版社,1993
    熊小兵,贺振华.相位移加有限差分法波动方程正演模拟,石油物探,1998,37(3):22-28
    徐明才,高景华,柴铭涛,王广科.金属矿地震勘查的方法技术.有色金属矿产与勘查,1997,6(4):232-237
    徐明才,高景华,柴铭涛,王广科等.用于金属矿勘查的地震方法技术.物探与化探,2007,29(增刊):138-143
    徐明才,高景华,柴铭涛,王广科.寻找隐伏金属矿的地震方法技术研究.物探与化探,1997,21(6):468-474
    徐明才,高景华,荣立新,刘建勋,柴铭涛,王广科.散射波地震方法在蔡家营多金属矿区的试验研究.物探化探,2003,27(1):50-54
    许卓,韩立国,廉玉广.基于等效偏移距的偏移成像方法.吉林大学学报(地球科学版),2007,37:57-60
    许卓.基于等效偏移距的多波叠前偏移研究[D]:[硕士学位论文].吉林:吉林大学,2009
    杨旭明,周熙襄,王克斌,石生林,屠世杰.近地表地震散射噪声的正反演方法[J].石油物探,2002,41(3):312-316
    尹军杰.地震散射波场特征的数值模拟研究:[博士学位论文].北京:中国地质大学(北京),2005
    尹军杰,刘学伟,李文慧.地震波散射理论及应用研究综述.地球物理学进展,2005,1(20):123-134
    尹军杰,王伟,王赟,刘学伟,李文慧.散射成像的优势.中国地球物理2006:58
    于更新,李东平,符力耕,蒋韬.复杂地质构造的边界元-体积元波动方程数值模拟.石油地球物理勘探,2009,44(1),107-111
    曾校丰,许维进,何文能.隐伏矿床的地震波动力学信息探测.矿床地质,2002,21(4):91-96
    周红,陈晓非.二维地形问题的局域离散波数边界积分法.Bulletin of the seismologicalSociety of America,2008,98(1):265-279