对旋轴流风机流固耦合特性研究及其基于非线性动力学的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶轮机械的各种故障,如喘振、失速、叶片断裂等,与叶轮机械内各种流固耦合现象尤其是流体和叶轮叶片耦合有着直接的关系。因此对于叶轮机械内的非定常流场和叶片动力特性研究是流固耦合问题最重要的研究课题,对指导相关设备的设计和运行具有重要的意义。
     本文从实验研究、数值分析两个方面着手,以矿用对旋轴流风机为例全面分析了基于流固耦合考虑的三维流场特性与叶片动力特性,有针对性的给出了改善流场流动状况及叶片振动的方法。并在此基础上,根据对旋风机的流固耦合特性,进行了基于非线性理论的叶片振动非接触测量方法可行性研究、风机运行状态预测及故障判别等研究。
     本文首先通过流场试验与基于单传感器的叶片振动非接触测试试验获得了气体压力脉动信号、叶片振动信号,通过这些信号的频谱分析,揭示了对旋风机存在流场与叶片的耦合现象。
     其次进行了采用动力LES模型的风机全通道三维非定常流固耦合数值模拟。
     通过流场的实验与数值研究,得出了对旋风机耦合流场的一些非定常特征:前级转子的尾迹干扰及后级转子的势作用干扰;信号频率滑差;叶顶处压力脉动比叶跟、叶中的强烈;利用希尔伯特—黄变换对低频区域的压力脉动进行分析,发现了旋转失速、气流激振、喘振等非定常气动因素。数值模拟中揭示了叶片前缘二次流、叶片尾涡、通道涡、绕流、叶顶间隙流及间隙涡等流场固有非定常现象。针对试验与数值发现的流场叶顶区域流动复杂性,设计了叶片分离器改善叶顶部位的非定常流动,发现其对抑制对旋风机的波谷有一定作用。
     通过数值模拟得到了叶片表面压力分布及变形、应力等动力特性:叶片表面产生了较大的压力梯度,压力面的叶片前缘正压区域向叶片中部和后缘移动;叶片最大应力集中在根部且偏向叶片前缘,叶片根部应力受到流体质量和流动状态的双重影响;叶片的变形量变化与叶片应力变化趋势一致,随着流量的减少,变形位置由叶片顶端前缘向中部和后缘移动。为获得二级叶片更多的动力特性信息,本文首次同时将耦合流场与旋转预应力因素考虑到叶轮机械叶片的动力特性分析中。发现模态频率约10Hz的上升,模态振型发生了最大位移位置点转移、振动方向改变的状况;在叶片瞬态动力学分析中发现叶片的根部应力在较大的范围内波动。针对叶片动力特性的试验及数值模拟结果,提出了基于模态试验的叶片结构动力修改的方法,但这种方法的实际可操作性较差,同时指出在叶片设计过程中对风机叶片模态频率采用有限元分析,以避开叶片通过频率是改善叶片振动切实可行的方法。
     最后将级间流场的脉动时间序列信号首先进行了小波降噪处理,对叶片振动信号和降噪后的脉动信号进行相空间重构,获得了关联维、近似熵、L—Z复杂度的量化数据。发现叶片振动信号与气流脉动信号量化数据在不同工况下整体结构变化的趋势是一致的。根据对旋风机的流固耦合特性,提出了利用气动信号对风机叶片进行非接触测量与监测,并验证了这种方法的可行性;发现关联维数对失速信号是敏感的,可以用作判断风机旋转失速的特征量。同时根据量化数据与特征参数计算的结果与支持向量机结合建立了风机流场非线性系统的预测模型,进行了支持向量机的风机状态预测与诊断研究。
This paper experimentally and numerically analyze the three dimensional flow field characteristics and the blade’s dynamic characteristics based on the consideration of fluid-solid coupling by using the counter rotating axial flow fan in mine as the example,then pointed a method to improve the flow condition and blade vibration. On the basis, according to the characteristic of the fluid-solid interaction in counter rotating axial flow fan, vibrated non-contact measuring technique was used to feasibility study, fan operation forecast and fault distinction based on the nonlinear theory.
     Firstly, taking the blade vibrated non-contact test based on the single sensor and the flow field test to obtain the gas pressure fluctuation and the blade vibration signal. Through spectrum analyzing, promulgated the phenomenon that the flow field coupled with blade in counter rotating axial flow fan.
     Then, the fan full channel three dimensional unsteady fluid-solid interaction numerical simulation was carried by using the dynamic LES model.
     Through the experiment and numerical research on the flow field, unsteady characteristics about the counter rotating axial flow fan’s coupling flow field and some dynamic characteristics including blade surface pressure distribution and distortion and stress were obtained in this paper.
     Finally the pulsating time sequence signal inter-stage flow field has first carried on wavelet de-noising processing, taking phase space reconstruction to the blade vibration signal and the de-noising pulsation signal, simultaneously obtained the quantitative data of correlation dimension, the approximate entropy, the L-Z complexity quantification data. Discovered the structure change tendency of the blade vibration signal and the air pulsation signal quantitative data is consistent under the different operation. Based on this, according to the fluid-solid interaction characteristic, proposed the method of blade non-contact measurement and monitor, and has confirmed this method feasibility; The correlation dimension to stall signal is sensitive which served as characteristic quantity to judge the rotating stall. Meanwhile has established the fan flow field nonlinear system forecast model according to combine the quantification data and the computation result of characteristic parameter and the support vector machines, has carried on the preliminary study of fan operation condition forecast and diagnosis.
引文
[1]唐一科,柯研,谢志江.叶轮机械叶片状态监测与故障诊断的现状与发展[J].噪声与振动控制, 2003, 23(6):5-8.
    [2]刘瑞韬,徐忠.离心叶轮机械内部流动的研究进展[J].力学进展,2003,33(4):518-532
    [3]黄典贵.理想流场中流固耦合作用下叶片的动态特性分析[J].气轮机技术,1998,40(4): 235-238,241 .
    [4]邢景棠等.流固耦合力学概述[J].力学进展,1997, 27(1):19-38.
    [5]李秋实,陆亚钧,于清.对旋轴流压缩系统的增压扩稳途径实验分析[J].北京航空航天大学学报, 2000,26(6):669-672.
    [6] Sharma P B,Adekoya A.A review of recent research on contra rotating axial flow compressor stage[R]. ASME,1996,96-GT-254.
    [7] MillerDAJ,ChappelMS.The co-turbo shaft a novel gas turbine power plant for heavy equipment[R] 1979, ASME,79-GT-132.
    [8]党小建,梁武科,陈千文.水轮机流固耦合振动研究的发展趋势[J].西北水力发电,2004,20(1):15-18.
    [9] Ashley H, Haviland G. Bending vibrations of apipeline containing flowing fluid[J].Journal of Applied Mechanics, 1950,17:229-232.
    [10]赵国桥.管道系统流固耦合振动分析[J].炼油设计,1995,25(3):49-53.
    [11]王征等.流固耦合力学的数值研究方法的发展及软件应用概述[J].机床与液压,2008,36(4):192-195.
    [12] N Akkas, HU Akay, C Yilmaz.Applicability of general purpose finite element programs in solid fluid interaction problems[J]. Computer Structures, 1979 ,10:773-783.
    [13] BM Irons. Role of part-inversion in fluid-structure problems with mixed variables[J]. American Institute of Aeronautics and Astronautics,1970,8(3):568.
    [14]邢京堂.考虑自由面线性波的流固耦合动力分析的两个变分公式[J].航空学报,1988,11:568-571.
    [15] JT Xing, WG Price.A mixed finite element method for the dynamic analysis of coupled fluid-solid interaction problems[J]. Pro.R.Soc.Lond,1991,433:233-255.
    [16] JT Xing, WG Price, QH Du. Mixed finite element substructure-subdomain methods for the dynamical analysis of coupled fluid-solid interaction problems[J]. Trans.R.Soc.Lond,1996, 354:259-295.
    [17]邢京堂.线性流固耦合动力分析程序FSIAP92简介[J].航空学报,1992,13 (9):548-551.
    [18]邢景棠编著.流固耦合振动分析程序--FSIAP92理论手册用户手册[M].北京航空航天大学固体力学研究所,1991.
    [19]邢京堂,郑兆昌.基于弹性动力学变分原理的模态综合法研究[J].固体力学学报,1983,2:248-257.
    [20] HJP Morand, R Ohayon. Fluid-structure interaction[M]. John Wiley and Sons, Chichester,1995.
    [21] CW Hirt, AA Amsden, JL Cook. An arbitrary Lagrangian-Eulerian computing method for all flowspeeds[J]. Journal of Computational Physics,1997,135(2):203-216.
    [22] Liao Chung-Li, Sun Yee-Win.Flutter analysis of stiffened laminated composite plates and shells in supersonic flow[J]. American Institute of Aeronautics and Astronautics Journal,1993,31 (10):1897-1905.
    [23] JF Abbas, RA Ibrahim, RF Gibson. Nonlinear flutter of autotrophic composite panel under aerodynamic heating[J]. American Institute of Aeronautics and Astronautics Journal,1993,31 (8):1478-1488.
    [24] M Shimura, A Sekine. Interaction analysis between structure and fluid flow for wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics,1993,46(47):595-604.
    [25] A Luongo, FD Fabio. Multi modal galloping of dense spectrastructures[J]. Journal of Wind Engineering and Industrial Aerodynamics,1993,48(23):163-174.
    [26] TJR Hughes, K Jansen. Finite element methods in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics,1993,46(47):297-313.
    [27] MP Paidoussis, NS Namachchivaya.eds. Stability and Control of Pipes Conveying Fluid-Proceedings[C],ASME Winter Annual Meeting,Nov.1992,Anaheim, CA.,ASME, NewYork,1992.
    [28] VI Arnold. Mathematical Methods of Classical Mechanics[M]. Springer-Verlag, NewYork,1978.
    [29]钟万勰,黄文虎.一般力学(动力学?振动与控制)最新进展[G].北京科学出版社,1994:75-90.
    [30] Chiba M. Non-linear hydroelastic vibration of a cantilever cylindrical tank-I. Experiment (empty case)[J] Int. J. Non-linear Mech.,1993,28 (5):591-599.
    [31] Chiba M. Non-linear hydro elastic vibration of a cantilever cylindrical tank-II:Experiment–liguid–fille dcase[J].Int.V.Non-linearMech.,1993,28 (5):601-602.
    [32] YW Kwon, PK Fox. Underwater shook response of a cylinder subjected to aside on explosion[J]. Computers & structures,1993,48(4):637-646.
    [33] ECG Sudarshan, N Mukunda.Classical dynamics: a modern perspective[M]. John Wiley and Sons,Chi Chester,1974.
    [34] R Abraham, JE Marsden.Foundations of mechanics[M].The Benjamin Cummings Publishing Company.INC.USA,1978.
    [35] J Guckenheimer, P Holmes. Nonlinear oscillations,dynamical systems, and bifurcations of vector fields[M]. New York :Springer-Verlag,1983.
    [36] T NOMURA .ALE finite element computations of fluid-structure interaction problems[J]. Computer methods in applied mechanics and engineering,1994,112(1):291-308
    [37] S Ahamad,K Kumar. Interference efects on wind loads on low-rise hip roofbuildings[J].Engineering Structures,2001,23:1577-1589.
    [38]顾明,杨伟等.上海铁路南站屋盖结构平均风荷载的数值模拟[J].同济大学学报:自然科学版,2004,32 (2): 141-146
    [39] J Armitt. Wind loading on cooling towers[J].Journal of the Structural Division,1980,106(3): 623- 641.
    [40]杨伟.基于RANS的结构风荷载和响应的数值模拟研究[D].上海:同济大学土木工程防灾国家重点实验室博士学位论文,2004.
    [41] J.S.Bagget.On the feasibility of merging LES with RANS for the near-wall region of atached turbulent flows[J], Center for Turbulence Research ,Annual Research Briefs,Standford University,1998,267-277.
    [42] T.J.Baker. Three dimensional mesh generation by triangulation of arbitrary points sets[J], American Institute of Aeronautics and Astronautics,1987,8:255-271
    [43] V Carstens,R Kemme,S Schmitt.Coupled simulation of flow structure interaction in turbomachinery [J].Aerospace Science and Technology,2003,7:298-306
    [44] C.Micheler,etal.A monolithic approach to fluid-structure interaction[J].Computers& Fluids,2004, 33 (5-6): 839-848.
    [45] M Heil.An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems[J].Computer Methods In Applied Mechanics And Engineering,2003,193(1-2):1-23
    [46] M Vesenjak,Z Ren,M Hribersek.Weakly coupled analysis of a blade in multiphase mixing vesse[J]. 2004, 4(1):378-379.
    [47] Q Zhang,T Hisada.Studies of the strong coupling and weak coupling methods in FSI analysis[J]. International Journal for Numerical Methods in Engineering,2004,60 (12):2013-2029.
    [48]管德.流固耦合试验[M].北京航空学院出版社,1986.
    [49]周盛.叶轮机流固耦合力学引论[M].国防工业出版,1988.
    [50] He Lidong,Yuan Xin.An experimental investigation on sealing characteristics of honeycomb seals[J]. Chinese Journal of Aeronautics,2001,14(1):13-17.
    [51]何立东,袁新.离心压气机扩容改造中的转子动平衡[J].热能动力工程,2001,16(2):202-204.
    [52] A Jameson, W Schmidt, E Turkel.Numerical solution of the Euler equations by finite volume methods us- ing Runge-Kutta time stepping schemes[C]. American Institute of Aeronautics and Astronautics 81-1259.
    [53]刘正先,曹淑珍.离心叶轮内三维湍流流场的LDV测量[J].航空动力学报,2002,17(3):287-291.
    [54]李秋实,李志平,陆亚钧.对旋轴流风扇级间非定常速度场实验研究[J].自然科学进展,2001,11(9) : 971-975.
    [55] I. H Hunter. Endwall Boundary Layer Flows and Losses in an Axial Turbine Stage[J]. ASME Journal of Engineering for Power,1982,104(2):184-193.
    [56] H.D Joslyn, R.P Dring. ,O.P Sharma. Unsteady three-dimensional turbine aerodynamics[J]. ASME Journal of Engineering for Power,1983,105(2):322-331.
    [57] H.D Joslyn, R.P Dring..Three-dimensional flow in an axial turbine[J].Partl:Aerodynamic Mechanisms;Part2:Profile Attenuation. ASME Journal of Turbomachinery,1992,114 (1):61-78.
    [58] V. Donato.etc.Measuring blade vibration of large low pressure steam turbine[J]. Journal of Power Engineering,1981,85(3):68-71.
    [59]王仲博,张永宁,袁平等.660毫米叶片振动特性测试与分析[J].热力发电,1994,6:36-40.
    [60]韩中和,祝晓燕,丁常富.汽轮机叶片动态测量技术的研究与发展[J].汽轮技术,2002,44(3):130-131.
    [61]吴士祥,郑叔琛.涡轮机叶片振动的非接触测量[M].北京:国防工业出版社,1987.
    [62] P.F.Rozelle.Development and application of a turbine vibration monitor[C]. Latest Advances in Steam Turbine Design, Blading Repair, Condition Assessment and Condenser Interaction,1989.
    [63]王宇华,段发阶,叶声华等.涡轮机叶片振动的非接触测量[J].宇航计测技术,2002,22(2):20-24.
    [64]郑君里.信号与系统[M].高等教育出版社,1983.
    [65] J.S.贝达特等著,凌福根译.随机数据分析方法[M].国防工业出版社,1976.
    [66] J.S.贝达特等著,凌福根译.相关分析与谱分析的工程应用[M].国防工业出版社,1983.
    [67] N.E.Huang,Z.Shen.The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. the Royal of Society, 1998,454:903-995.
    [68] E Norden. Huang.A new view of nonlinear water waves:The Hilbert Spectrum[J]. Annual Review of Fluid Mechanics,1999,31:417-457.
    [69] Zhaohua Wu, Norden E. Huang.A study of the characteristics of white noise using the empirical mode decomposition method[J].the Royal of Society. London,2004,460:1594-1611.
    [70] Norden E. Huang, Man-Li C.A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. the Royal of Society,2003,459:2317-2345.
    [71]吕金虎.混沌时间序列分析及其应用[M].武汉大学出版社,2001.
    [72]贺太钢,郑崇勋.混沌序列的非线性预测[J].自然杂志,2001,19(1):10-13.
    [73]辛厚文.分形理论及其应用[M].中国科技大学出版社,1993.
    [74]李意民.离心叶轮内流的动力学特征和分析[M].中国矿业大学出版社,2002.
    [75] Nello Cristianini, John Shawe-Taylor.支持向量机导论[M].电子工业出版社,2004.
    [76]冼广淋.统计学习理论与支持向量机[J].中国科技信息,2005,12:178.
    [77] VN Vapnik. The nature of statistical learning Theory[M].New York:springer-Verlag,1995.
    [78]孙月明,唐任仲.机械振动学测试与分析[M].浙江大学出版社,1999.
    [79]徐守时.信号与系统理论?方法和应用[M].中国科学技术大学出版社,1999.
    [80]谢志江,刘军,唐一科.叶轮机械叶片故障的叶间动态间距诊断法[J].机械工程学报,2004,40(8):96-99.
    [81] S.V.Patanker,D.B.Spalding. A calculation procedure for heat, mass, and momentum transfer in three-dimensional parabolic flows[J]. International J. Heat Mass Transfer,1972,15:1787-1806.
    [82]黄克智,薛明德,陆明万.张量分析[M].北京:清华大学出版社,2003.
    [83]闫小康,王利军.Fluent软件在通风工程中的应用[J].煤矿机械.2005,11:153-155.
    [84]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998.
    [85] P. Moin. Advances in large eddy simulation methodology for complex flows[J].Int. J. Heat Fluid Flow, 2002,23:710-720.
    [86] T.-H. Shih, W. W. Liou, A. Shabbir. A new k-εeddy-viscosity model for high reynolds number turbulent flows - model[J]. Development and Validation Computers Fluids, 1995,24(3),227-238.
    [87] Zhenyin Li. Parallel computations of 3D unsteady compressible euler equations with structuralcoupin[D].Indiana university Purdue University Indianapolis, 2002.
    [88] Huang Huaxiong,Prosperetti A. Effect of grid orthorgonality on the solution accuracy of the two-dimensional convection-diffusion equation[G].Numer Heat Transfer,Part B,1994. 26:1-20?
    [89]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,
    [90]谷勇霞.基于非线性理论的叶轮机械转子系统流固耦合研究[D].徐州:中国矿业大学,2007.
    [91]应怀樵.现代振动与噪声技术[M].北京:航空工业出版社,1997.
    [92] Dean, R.C. .On the necessity of unsteady flow in fluid machines[J].ASME Journal of Basic Engineering, 1959,8: 24-28.
    [93] Greitzer E.M. An introduction to unsteady flow in turbomachines [C]. Thermodynamics and Fluid Mechanics of Turbomachinery,volumeII, 1997:967-1024.
    [94]王仲奇,秦仁.透平机械原理[M].北京:机械工业出版社,1981.
    [95]舒士甄,朱力,何玄龄等.叶轮机械原理[M].北京:清华大学出版社,1991.
    [96]谭春青.透平叶栅中叶片的弯曲对流场性能影响的实验研究[D].哈尔滨工业大学,1993.
    [97] D.G. Ainley. The performance of axial flow turbines[J]. Proc. Institution of Mechanical Engineers,1948, 159: 230-237.
    [98] D. G. Ainley., G. C. R. Mathieson. A method of performance estimation for axial flow turbines[C]. British ARC R&M,1951, 2974.
    [99] Squire H B, Winter K G. The secondary flow in cascade of airfoils in a non-uniform stream[J].Journal of Aero. Sc., 1951,8(4): 271-287.
    [100] Tan C S, Hawthorne W R, Wang C, et al. Theory of the blade design for large deflections. Part II: Annular cascades [J]. Journal of Engineer for Gas Turbines and Power, 1984, 106(2): 354-365.
    [101] Wang H P,Olson S J, Goldstein R J, et al. Flow visualization in a linear turbincascade of high performance turbine blades[C].ASME paper 95-GT-7.
    [102] Langston L S. Cross flows in a turbine cascade passage[J]. Journal of Engineering for Power, 1980,102(4): 866-874.
    [103] Sharma O P, Butler T L. Predictions of endwall losses and secondary flows in axial flow turbine cascades[J]. ASME Journal of Turbomachinery, 1987,109:229-236.
    [104] Tallman J A. Simulation of tip leakage flows in turbine rotor using computational fluid dynamics [C].Mechanical Pennsylvania State University, 1999.
    [105]王仲奇,冯国泰,王松涛等.透平叶片中的二次流漩涡结构的研究[C].中国土程热物理学会第10届热机气动热力学学术会议文集.青岛:2001.
    [106] Yamamto A..Interaction mechanisms between tip leakage flow and the passage vortex in a linear turbine rotor cascade[J]. ASME Journal of Turbomachinery, 1988,110(4): 329-338.
    [107] Kang S., HIRSCH C. Numerical investigation of the three-dimensional flow in nasa low-speed centrifugal compressor impeller[C]. Fourth international symposium on experimental and computationalaerothermodynamics of internal flows ,1999,31(8):301,336.
    [108] Greitzer E.M..Flow instabilities in turbomachines[C].Thermodynamics and Fluid Mechanics of Turbomachinery,Volume II, 1985: 1025-1079.
    [109]陆亚钧.叶轮机械非定常流动[M].北京航空航天大学出版社,1991.
    [110] Hodson, H. P. An inviscid blade-to-blade prediction of a wake-generated unsteady flow[C].ASME paper 84-GT-43.
    [111] Stieger, R. D. , Hodson, H. P. The unsteady development of a turbulent wake through a downstream low-pressure turbine blade passage[C]. ASME paper GT2004-53061.
    [112] Lighthill M.J.. Attachment and separation in three dimension flow[J]. Section 2-6 of Laminar Boundary Layers,1963:72-82.
    [113] Wang K.C.. Separation of three-dimensional flow[J]. Reviews in Viscous Flow, Lg77ER00 44:341-414.
    [114] Tobak M.,and Peake D.J..Topology of three-dimensional separation flows[J].Ann.Rev. Fluid Mech,1982,14:61-85.
    [115] Zhang H. The behavior of separation line and singular points on theseparation line[J].Acta Aerodynamic Sinica, 1987,5(1):1-10.
    [116] Hunt I. H., and Cumpsty N.A..Casing wall boundary layer development through and isolated rotation blade row[J].ASME Journal of Engineering For Gas Turbines and Power, 1987,106: 179-200.
    [117] Kang Shun, Wang Zhong-qi. An application three-dimensional flow in cascade of topological analysis to studying [J].Applied Mathematics and Mechanics, 1990,11(12):1119-1127.
    [118] Henderson G,. Fleeter S. Forcing function effection un-steady aerodynamic gust response[J]. Part1: Forcing Functions.Journal of Turbomachinery. 1993(115):741-750.
    [119]周正贵,胡骏.轴流压气机动静叶片排非定常气动力分析[J].航空动力学报2003,18(1):46-50.
    [120] Mailach,R.,Sauer,H., Vogeler,K..The periodical interaction of the tip clearance flow in the blade rows of axial compressor[C].ASME 2001-GT-0299.
    [121] Marz,J.,Hah,C., Neise,W.An experimental and numerical investigation into the mechanisms of rotating instability[C].2001,ASME Paper 2001-GT-0536.
    [122]李意民.离心叶轮内部流动非线性动力学理论和应用的研究[D].中国矿业大学,1998.
    [123]蒋康涛.低速轴流压气机旋转失速的数值模拟研究[D].中国科学院工程热物理研究所,2004.
    [124]楚武利.轴流压气机叶顶间隙流动研究[D].西北工业大学,2004.
    [125]丁鹭飞.雷达原理[M].西安:西安电子科技大学出版社,2002.
    [126]张志涌.精通MATLAB 6. 5[M].北京:北京航空航天大学出版社,2003.
    [127]钟佑明.希尔伯特一黄变换局瞬信号分析理论的研究[D].重庆大学,2002.
    [128]朱宏磊.轴流风机压力脉动与振动分析[D].中国矿业大学,20003.
    [129]侯军虎.基于多参数的风机状态监测与故障诊断的研究[D].华北电力大学, 2004.
    [130] Kangs. Three dimensional flow within a compressor caseade with and without tip clearanee [D]. VrijeUniversity Brussel,1993.
    [131]陈海生.弯曲叶片透平叶栅和单级轴流风机气动特性的实验和数值模拟研究[D].中国科学院研究生院工程热物理研究所,2002.
    [132]张涵信.分离流和涡运动横截面流态的拓扑[J].空气动力学学报,1997,15(1):1-12.
    [133]王晓东.矿用轴流风机小流量工况内部流动理论与实验研究[D].中国矿业大学,2003.
    [134]李志平,李秋实.从非定常效应看对旋风扇/压气机的工程实现[J].热物理学报,2002,23(2):183-186.
    [135]李秋实.对旋轴流压缩系统的数值模拟与实验研究[D].北京航空航天大学,2000.
    [136] Dey, D., Camci, C.. Aerodynamic tip desensitization of an axial turbine rotor using tip platform extensions[C].2001, ASME Paper 2001-GT-0484.
    [137] Tallman, J., Lakshminarayana, B..Method for desensitizing tip clearance effects in turbines[C].2001, ASME Paper 2001-GT-0486.
    [138] Camci, C., Dey, D., Kavurmacioglu, L..Tip leakage flows near partial squealer rims in an axial flow turbine stage[C].2003, ASME Paper 2003-GT-38979.
    [139] Nikhil, M., Rao, and Camci, C.. Axial turbine tip desensitization by injection from a tip trench.Part 1: Effect of Injection Mass Flow Rate[C].2003, ASME Paper 2003-GT -53256.
    [140] Nikhil, M., Rao, and Camci, C..Axial turbine tip desensitization by injection from a tip trench.Part 2: Leakage Flow Sensitivity to Injection Location[C].2003, ASME Paper 2003-GT -53258.
    [141] Yamamoto, A., Tominaga, J., Matsunuma, T..Detailed measurements of three-dimensional flows and losses inside an axial flow turbine rotor[C].1994, ASME Paper 94-GT-348.
    [142] Luo, J., Iakshminarayana, B.. Three-dimensional navier-stokes analysis of turbine rotor and tip-leakage flowfield[C].1997, ASME Paper 97-GT -421.
    [143] Kaiser, L, Bindon, J P..The effect of tip clearance on the development of loss behind a rotor and a subsequent nozzle[C].1997, ASME Paper 97-GT-53.
    [144] Xinwen, X., McCarter, A. A., Lakshminarayana, B. Tip clearance effects in a turbine rotor. Part I: Pressure Field and Loss[C]. 2000, ASME Paper 2000-GT-0476.
    [145] Xinwen, X., McCarter, A. A., Lakshminarayana, B.. Tip clearance effects in a turbine rotor.Part II: Velocity Field and Flow Physics[C].2000, ASME Paper 2000-GT-0477.
    [146]袁宁,张振家,王松涛.考虑动叶顶部间隙影响的跨音涡轮级的数值模拟[J].航空动力学报,2000, 15(3):241-245.
    [147] Yamamoto,A.,Tominaga,J.,Matsunuma,T..Unsteady endwall/tip-clearance flows and losses due to turbine rotor-stator interaction[C]. 1994, ASME Paper 94-GT-461.
    [148] Zeschky, J., Gallus, H. E..Effects of stator wakes and spanwise nonuniform inlet conditions on the rotor-flow[J]. Journal of Turbomachinery, 1993, 115: 128-136.
    [149] Stephan, B., Gallus, H. E., Niehuis, R..Experimental investigation of tip clearance flow and its influence on secondary flows in an 1-1/2 stage axial turbine[C]. 2000, ASME Paper 2000-GT-613.
    [150] Mohsen, H., Songtao, W., Zhongqi, W.. Unsteady simulation and investigation of tip leakage flow based on dissipation function[C]. 2004, ASME Paper 2004-GT -54283.
    [151] McDougall,N.M, Hynes,T.P. Stall inception in axial compressors[J]. ASME J. Turbomachinery, 1990, 112:124-125.
    [152]孙晓峰,胡宗安,周盛.压气机旋转失速的一个气动声学模型[J].航空学报,1991, 12,( 9):62-65.
    [153] Day,I.J.. Active suppression of rotating stall and surge in axial compressors[J]. ASME J. Turbomachinery, 1993,115:40-47.
    [154] Hoying, D. A.. Role of blade passage flow structures in axial compressor rotating stall inception[C]. ASME Paper 98-GT-588.
    [155]蒋康涛.低速轴流压气机旋转失速的数值模拟研究[D].中国科学院工程热物理研究所,2004.
    [156] Epstein. A. H., Ffowcs Willianms. J.E., Greitzer .E. M..Active suppression of aerodynamic instabilities in turomachines[J]. Journal of Propulsion and Power,1989,5(2):204-211.
    [157] Moore, F. K. A theory of post-stall transients in axial compressor systems: Part I, II[J]. ASME J. of Eng. for Gas Turbine and Power, 1986 (108):68-76.
    [158] Moore, F. K. , Greitzer, E. M..A theory of post-stall transients of multi-stage axial compressor systems: Part I, II[J]. ASME J. of Eng. for Gas Turbine and Power, 1984(106):313-336.
    [159] Epstein,A.H., J.E.Ffowcs Williams, Greitzer,E.M..Active auppression of aerodynamic instabilities in turbomachines[J]. ASME Journal of Turbomachinery, 1989,113(2):290-302.
    [160] J. E. Ffowcs Williams.Review lecture: anti-sound[J]. Proc. Roy. Soc. LondA, 1984 ,395: 63-88.
    [161] Serovy,G .K. , Kavanagh,P.. Considerations in the design of variable-geometry blading for axial-flow compressor stages [C]. AGARD CP NO.34,1988.
    [162] T.H.Qkiishi , G.H.Junkhan.Experimental performance in annular cascade of variable trailing-edge flap,axial-flow compressor inlet guide vanes[C]. ASME 70-GT-106,1970.
    [163]楚武利,朱俊强.变几何叶片对压气机特性影响的实验研究及分析[J].应用力学学报,2003, 20(1): 78-80.
    [164]钟兢军,王会社.吸力面翼刀控制压气机叶栅二次流的试验研究[J].航空动力学报, 2002, 17(2), 188-191.
    [165]苗润田,王连贵.压气机叶片刻花纹试验研究[J].航空动力学报,1993(2):155-157.
    [166]王掩刚,刘波.尾缘对开缝喷气对栅后二次流发展的影响[J].流体机械,2002,30(9):14-16.
    [167].Yutaka MINYAKE, Ikutaroh NOJI. The performance characteristic of an air-separator of axial flow fan[J].Bulletin of JSME,1984, 28 (242):1659-1666.
    [168].Yutaka MIYAKE,Takehiko INABA. A study on flow within the flow passage of an axial flow fan equipped with air-separator[J].Bulletin of JSME,1986,29 (256):3394-3401.
    [169] Y.Miyake,T.Inaba,T.Kato.Improvement of unstable characteristics of an axial flow fan by air separator equipment[J].ASME,1987,109(3):36-40.
    [170]张景松.轴流风机稳流器设计的若干问题[J].煤矿机械,1996(3):1-3.
    [171] LI Yi-Min,ZHOU Zhong-Ning. Investigation and numerical simulation of inner-flow of an axial mine flow fan under low flow rate conditions[J]. Journal of China University of Mining & Technology , 2008,18(1):107-111.
    [172]谢军龙,游斌,吴克启.前缘弯掠子午加速叶轮尾缘脱落涡的研究[J].工程热物理学报,2007, 28(1):58-60.
    [173]郑小波,罗兴琦,邬海军.轴流式叶片的流固耦合振动特性分析[J].西安理工大学学报, 2005, 21(4): 342-346.
    [174]袁振.机械设备流固耦合动力分析的有效方法[J].机械强度,2000(1):16-17.
    [175]王少波.混流式水轮机转轮动力特性分析及综合优化设计[D].郑州机械研究所,2003.
    [176]李林凌,黄其柏.风机叶片气固耦合特性研究[J].流体机械,2006, 34(4): 23-27.
    [177]肖若富,王正伟,罗永要.涡带工况下混流式水轮机转轮动应力特性分析[J].水力发电学报,2007,8: 130-135.
    [178]刘德民,刘小兵,李娟.基于流固耦合的水轮机振动分析[J].流体传动与控制,2008,1:21-26.
    [179]弓三伟,任丽芸,刘火星.汽轮机末级转子叶片流固耦合计算[J].热力透平,2007,3:153-159.
    [180]李林凌,黄其柏.风机叶片气固耦合特性研究[J].流体机械,2006,34(4):23-27.
    [181]陈香林,张立翔,闫华.应力刚化及流体压缩性对混流式水轮机叶片动力特性的影响分析[J].昆明理工大学学报,2005,12:34-40.
    [182]谷朝红.水轮机部件流固耦合振动特性研究[J].大电机技术,2006,6:47-52.
    [183]罗永要,王正伟,梁权伟.混流式水轮机转轮动载荷作用下的应力特性[J].清华大学学报(自然科学版),2005,2: 235-238.
    [184]瞿伦富,周凌九.轴流转桨机组桨叶液固耦合振动特性仿真计算[J].清华大学学报(自然科学版),1998,1:45 -49.
    [185] Li Yi-min,ZHou Zhong-ning.Investigation and Numerical Simulation of Inner-Flow of an Axial MineFlow Fan Under Low Flow Rate Conditions[J]. Journal of China University of Mining & Technology ,2008,18(1):107-111.
    [186] Narciso F. Macia, George J. Thaler.动态系统建模与控制[M].北京:清华大学出版社,2006.
    [187]姜太文,陈丙珍,何小荣.基于子波分析的过程数据多分辨率分析处理[J].化工学报, 2000,51(3):372-377.
    [188]周小勇,叶银忠.小波分析技术在故障诊断中的应用[J].上海海运学院学报,2001,22(3):136-141.
    [189]马晓国,张展霞.用小波变换方法消除ICP-AES分析信号中的噪声[J].光谱学与光谱分析,2000,20 (4):510-513.
    [190]王志刚,李友荣,李方.基于谐波小波分析的故障诊断方法研究[J].振动与冲击,2006,25(2):125-128.
    [191] Mallat S.Singularity detection and prodessing with wavelets[J].IEEE Trans Information Theiry,1992,38 (2):617-643.
    [192]刘贵忠,邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,1992.
    [193] Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81: 425-455.
    [194] Donoho D L.De-noising by soft-thresholding[J].IEEE Trans Inform Theory,1995,41(3):613-627?
    [195] Hibiki T,Ishii M.Effect of flow-induced vibration on local flowparameters of two-phase flow[J].Nuclear Engineering and Design,1998,185:113-125?
    [196]王秉仁,杨艳霞,蔡伟.小波阈值降噪技术在振动信号处理中的应用[J].噪声与振动控制,2008,12(6): 9-11.
    [197]孙斌.基于小波和非线性动力学的气液两相流流型智能识别方法[D].华北电力大学,2005.
    [198]蔡国林,李永树,刘国祥.小波—维纳组合滤波算法及其在InSAR干涉图去噪中的应用[J].遥感学报, 2009,13(1):129-132.
    [199]谷勇霞,周忠宁,李意民.通风机压力脉动与流固耦合噪声研究[J].噪声与振动控制,2007,3:116-118.
    [200]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004.
    [201]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [202]黎少辉.风机叶轮系统流固耦合振动信号分析研究[D].中国矿业大学,2006.
    [203]闻邦椿,武新华.故障旋转机械非线性动力学的理论与试验[M].北京:科学出版社,2004.
    [204]高普云.非线性动力学分叉?混沌与孤立子.国防科技大学出版,2005.
    [205]李娜,方彦军.利用关联维数分析机械系统故障信号[J].振动与冲击,2007,26(4):136-139.
    [206]尉询楷,李应红,张朴,路建明.基于支持向量机的时间序列预测模型分析与应用[J].系统工程与电子技术,2005,27(3):529-532.
    [207]吴云,李应红,尉询楷.基于相空间重构和神经网络的压气机机匣静压预测[J].航空动力学报, 2005, 20(3):508-510.
    [208]吕金虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2005.
    [209]徐玉秀,原培新,杨文平.基于氏熵的汽车发动机状态预测的可行性研究[J].振动与冲击, 2004,23(3):101-102.
    [210] Huang, H.P.,Liu, Y.H. .Fuzzy support vector machines [J].IEEE.Transaction On Neural Network. 2002,13 (2): 464-471.
    [211] Han-Pang Huang ,Yi-Hung Liu.Fuzzy suppor vector machines for pattern recognition and data mining[J]. International Journal of Fuzzy Systems. 2002,4(3): 826-835
    [212]王国鹏,翟永杰,封官兵.模糊支持向量机在汽轮机故障诊断中的应用[J].华北电力大学学报,2003, 30(4):47-50.
    [213]卢山,王海燕.多变量时间序列最大李雅普诺夫指数的计算[J].物理学报,2006,56(2):572-576.