跨声速轴流压气机动叶弯和掠的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压气机是航空涡轮发动机的关键部件之一,高推重比的发展方向对它提出了更高的要求。压气机部件的发展目标是以更少的级数达到更高的增压比,具有大的单位迎风面积流量、更高的效率和稳定工作裕度,同时具有更轻的重量和更少的零件数目。在压气机的设计中不断地出现新的技术难题需要研究解决,因此高负荷压气机的气动设计一直是航空发动机发展过程中所面临的挑战之一。
     弯、掠叶片技术是以全三维分析为基础的叶片设计,综合考虑弯、掠、扭的作用。采用掠形设计尤其是前掠叶片可以降低转子叶尖激波强度,通过弯曲叶片设计则可以改善端区流动,减小端壁损失,使叶片形状与流动更加适应,从而提高负荷能力和性能。弯、掠叶片技术作为控制端壁二次流和激波的重要手段,已经在压气机和风扇的提高效率和扩稳方面获得广泛应用。然而由于实验条件的限制,人们对弯掠叶片的作用机理认识不够全面,得到的结果也并不完全统一,因此对弯掠叶片在不同工况条件下的作用机理需要进一步探讨。基于这种认识,本论文对跨声速压气机动叶进行了详细的机理研究,并对非定常条件下动叶弯、掠后对尾迹输运、下游静叶静压的非定常扰动等影响进行了深入的分析。
     鉴于以往研究中前掠和正弯对压气机的失速裕度以及端壁流动的有利影响,对跨声动叶进分别行了详细的前掠和正弯的参数化研究,详细分析了弯/掠高、弯/掠角两个设计自由度对气动性能的影响。结果表明弯/掠叶片总效率都得到提高,而且较大的弯/掠高和弯/掠角更有利于叶顶性能的改善,对叶顶激波有更强的控制作用,但同时使动叶中部损失增加,尤其是弯/掠角的变化更容易加剧动叶中部性能的恶化。因此最终动叶改型设计采用大的弯/掠高和适当的弯/掠角。
     根据参数化研究结果得到利用正弯、前掠结合改善端壁流动,同时通过叶型重新设计控制中部损失的改型设计思想与原则,并据此对该跨声轴流压气机动叶进行了重新设计。设计思路是采用大的弯/掠高和适当的弯/掠角先对动叶进行弯掠结合改型,再通过减小弦长和增大转折角的方法重新设计动叶中部的三个截面叶型,从而削弱中部激波强度和分离损失。最终改型得到的弯掠动叶使得跨声压气机级的最大效率提高3%,同时失速裕度也由18%增加到了26%,小流量工况下压比也有所提高,总性能获得显著改善。在此设计中,中部叶型的优化设计是使弯掠叶片能够扬长避短,使总性能获得大幅提高的关键。
     现代叶轮机械的发展,在气动性能和可靠性方面提出了更高的要求,原先建立在相对简化的定常流动假设下的研究方法和设计手段已不能满足对叶轮机械更高性能指标的要求,因此深入的理解和研究流动的非定常效应有着非常重要的意义。鉴于目前叶片弯、掠在非定常条件下对邻近叶栅内流动状况、级效率影响的实验与数值研究还不多见,对动叶弯、掠后对级非定常流动的影响进行了数值研究。非定常计算条件下与原压气机相比,具有弯、掠动叶的压气机的效率和压比的波动规律的相位发生改变,这与弯、掠动叶出口处尾迹和势流的相位发生改变有关。在计算周期内的每个瞬时,弯、掠动叶压气机的效率仍然比原压气机大幅提高,并且波动幅值明显减小,这是因为弯、掠动叶降低了动叶出口上、下端壁的损失,从而增加了下游静叶径向进口条件的均匀性。非定常计算得到的弯、掠动叶压气机与原压气机的压比平均值变化不大,波动范围与效率相比也很小。
     由于三种弯、掠动叶出口尾迹的两端以及叶顶泄漏涡和根部分离区的脉动强度降低,而尾迹中部的脉动强度增加,这使得弯掠动叶下游的静叶前缘在两端部与原型压气机静叶相比受静压扰动的幅值明显减小,中部所受扰动则有所加剧,这使得静叶前缘非定常负荷的径向分布趋向均匀,更有利于叶片前缘强度的保证。除前缘以外的叶片表面范围内,三种弯、掠动叶下游的静叶叶片顶部静压脉动强度明显降低,而中部和根部的静压脉动没有明显变化,这是因为弯、掠动叶尾迹和根部高损失流体在下游静叶流道的传播中,与主流间的粘性掺混作用以及尾迹亏损的恢复作用使其脉动强度迅速降低,同时在静叶流道内径向压力梯度的作用下动叶尾迹内的低能流体倾向于向根部迁移,导致静叶流道中部和根部的流场在向下游的传播中迅速的趋于均匀。
     弯、掠动叶降低了对下游静叶气动负荷的非定常扰动,使静叶各气动负荷参数的波动幅值显著降低,尤其是气动力矩的波动幅值下降的最多。由于动叶弯掠后动、静叶所受到的非定常干扰都明显减轻,动、静叶频谱图中1倍频的幅值都明显减小。
As one of the essential components of an aero-turbine engine, the compressor is developed reaching higher pressure ratio with less stages, larger mass flow at unit up-wind area, higher efficiency, larger stall margin and less weight and component amount to meet the demand of larger thrust-weight ratio of the engine. New technique problems appear continually in the compressor design process, thus the aerodynamic design of high-load compressor is always a challenge in the development of aeroengine.
     On the base of 3-D analysis, blade bowing and sweeping technique is to design blade considering the combined effects of bowing, sweeping and twisting. The sweeping technique, especially forward sweeping one has been employed to weaken tip shock of rotor. And the bowing technique has been applied to improve endwall flow condition, reduce endwall flow loss, and make the blade geometry more adaptive to the flow, consequently to increase work ability and performance of the blade. As important means to control endwall secondary flow and shock wave, blade bowing and sweeping technology have been widely applied in compressors and fans to achieve higher efficiency and larger stall margin. However due to the deficiency of experiment, the knowledge of acting mechanism of bowed and swept rotor is still limited. Thus detailed parametric researches on such mechanism of bowed and swept rotor in a transonic compressor are carried out, and the effects of rotor bowing and sweeping on the wake transportation, the pressure fluctuation at downstream stator surface, the interaction of rotor and stator, and stage performance are detailedly analysed.
     Since studies have shown that forward sweep and positively bow are able to increase stall margin and improve endwall flow of compressor, parametric researches on forward sweep and positively bow applied in a transonic rotor are done, and the effects of two parameters, bow/sweep height and bow/sweep angle, on the performance are detailedly analyzed. Results show that the efficiency is improved with both design techniques. It’s also shown that larger bow/sweep height or bow/sweep angle, which is profitable to tip flow condition, is harmful to mid performance, and such adverse effect is more evident when increasing bow/sweep angle. Hence a large bow/sweep height and a moderate bow/sweep angle are adopted in the final rotor modification.
     Based on the achievement of parametric researches, a principle for rotor modification is obtained. The principle includes large bow/sweep height, moderate bow/sweep angle, and redesigning three sections at rotor central part by reducing chord length and increasing turning angle to weaken shock intensity and decrease separation loss there. The modified rotor with such principle is with increased efficiency by 3%, improved stall margin form 18% to 26%, and higher pressure ratio at small mass flow condition. Therefore, an obvious compressor compressor performance is obtained. The successful modification also proves the essential role of mid sections optimum design on applying bow/sweep technique in rotor design to improve compressor performance.
     The development of nowadays turbomachine put forward increasing requirement of high aerodynamic performance and reliability, which challenges the traditional design and research technique on the basis of simplified steady flow assumption, thus advanced technique is in developing. The advanced technique, otherwise, relates to detailed research and deep understanding of unsteady effect. In the present paper, numerical simulations on the effects of the bowed and swept rotor on the unsteady flow field in a single stage axial compressor are carried out. Compared to the baseline, the phases of the time-dependent stage efficiency and total pressure ratio fluctuation wave are shifted as a result of the phase shift of the rotor wake and the potential flow in the compressor with bowed or swept rotors. The stage efficiency is remarkably increased and the fluctuation amplitude is evidently reduced because the curved rotor lowers the endwall loss and increases the radial uniformity of the inlet boundary condition of the downstream stator.
     In comparison with the baseline, in the curved rotor stage, the amplitude of the static pressure fluctuation decreases at the two endwalls, but increases at mid-span near the leading edge of the stator. The radial distribution of the unsteady blade loading is more uniform, which is beneficial for guaranteeing the intensity of the blade leading edge. Downstream the curved rotor, except for the stator leading edge area, the amplitude of the static pressure fluctuation decreases in the tip region of stator surface, but undergoes no obvious changes in the middle and at the hub. This is ascribed to that, in the curved rotor stage, the dissipation of the rotor wake at mid-span is slower than that at the two endwalls, and the rotor wake moves towards the hub under the influence of radial pressure gradient during the downstream migration.
     Bowed and swept rotors reduce the unsteady disturbance on the aerodynamic loads of downstream stator, so as to decrease the fluctuation amplitude of aerodynamic loads parameters, especially that of aerodynamic moments. And the amplitude of 1.BPF falls obviously in the frequency spectrum of aerodynamic loads of rotor and stator, due to lightened unsteady rotor/stator interaction.
引文
1陈矛章.风扇/压气机技术发展和对今后工作的建议.航空动力学报. 2002, 17(1): 1~15
    2江义军.推重比12~15发动机技术途径分析.航空动力学报. 2001,16(2): 103~107
    3木尾昭次郎.压缩机技术の现状と将来の展望. GTST, 1995: 22~88
    4 C. C Koch, L. H. Jr. Smith. Loss Sources and Magnitudes in Axial-Flow Compressors. ASME Journal of Engineering for Power, 1976, 98(2): 411~416
    5刘宝杰,邹正平,严明,刘火星,宁方飞,张永新,徐力平,蒋浩康,陈矛章.叶轮机计算流体动力学技术现状与发展趋势.航空学报.2002, 23(5): 394-404
    6邹正平,徐力平.双重时间步方法在非定常流场模拟中的应用.航空学报. 2000, 21(4): 318-321
    7季路成,周盛.转/静干扰效应纳入设计体系的途径探索.中国工程热物理学会热机气动热力学学术会议.北京, 1998: 47~54
    8 M. E. Deich, A. B. Gubalev, G. A. Filippov, Z. Q. Wang. A New Method of Profiling the Guide Vane Cascade of Stage with Small Ratios Diameter to Length. Teplienergetika, 1962, 8: 42~46
    9 Wang Zhongqi, Lai Shengkai and Xu Wenyuan. Aerodynamic Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and Some Experimental Results. Symposium paper of 5th ISABE, India, 1981
    10王仲奇.一代新型轴流式透平机械叶片——叶片的弯扭联合气动成型理论及其实验结果.工程热物理能源利用学科气动热力学发展战略研讨会专题报告汇编. 1989: 55~65
    11邹正平,赵令德,陈矛章.叶轮机叶片的三维造型及其对叶片气动负荷的影响.航空动力学报. 1998, 13(3): 235~240
    12 P. Shan, S. Zhou. A Helical Surface Model for 3-D Shock Structure Analysis, ASME Paper 99-GT-226, 1999
    13 P. Shan. Kinematic Analysis of 3-D Swept Shock Surface in Axial Flow Compressors. Journal of Turbomachinery. 2001, 123(3): 490~500
    14 L. H. Smith, H. Yeh. Sweep and Dihedral Effects in Axial-Flow Turbomachinery. Journal of Basic Engineering, 1963, 85: 401~414
    15 T. Sasaki, F. A. E. Breugelmans. Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance. Journal of Turbomachinery. 1998, 120(2): 454~464
    16 M. E. Deich, G. A. Filippov, Wang Zhongqi. A New Method of Profiling the Guide Vane Cascade of Stages with Small Ratios of Diameter to Blade Length. Teplienergetika.1962, 8: 42~46
    17 G. A. Filippov, Wang Zhongqi. The Calculation of Axial Symmetric Flow in an Turbine Stage with Small Ratio of Diameter to Blade Length. Journal of Moscow Power Institute,1963, 47: 63~78
    18 Wang Zhongqi, Lai Shengkai and Xu Wenyuan. Aerodynamic Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and Some Experimental Results. Symposium Paper of 5th ISABE, India, 1981
    19 H. D. Weingold, R. J. Neubert, R. F. Behlke et al. Bowed Stator: An Example of CFD Applied to Improve Multistage Compressor Efficiency. Journal of Turbomachinery,1997, 119: 161~168
    20苏杰先,冯国泰,闻洁等.弯曲叶片在压气机中的应用,工程热物理学报. 1990, 11(4): 404~407
    21钟兢军.弯曲叶片控制扩压叶栅二次流动的实验研究.哈尔滨工业大学工学博士学位论文. 1995: 74~78
    22 V. Gümmer, U. Wenger, and H. P. Kau. Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors. ASME paper 2000-GT-0491, 2000
    23 N. Yamaguchi, T. Tominaga, S. Hattori et al. Secondary-Loss Reduction by Forward-Skewing of Axial Compressor Rotor Blading. Proceedings of 1991 Yokohama International Gas Turbine Congress, 1991, 2: 61~68
    24 D. C. Jr. Prince. Three-Dimensional Shock Structure For Transonic Supersonic Compressor Rotors. Journal of Aircraft, 1980, 17(1): 28~37
    25 J. D. Denton, L. Xu. The Exploitation of 3D Flow in Turbomachinery Design. Lecture Series 1999-02, Von Karman Institute for Fluid Dynamics, 1999
    26 J. D. Denton. Loss Mechanisms in Turbomachines. Trans ASME J.Turbomachinery. 1993, 115 (4): 621~656
    27 C. Hah, S. L. Puterbaugh, A. R. Wadia. Control of Shock Structure and Secondary Flow Field inside Transonic Compressor Rotors through Aerodynamic Sweep. 1998, ASME Paper 98-GT-561
    28季路成,陈江,林峰.轴流压气机设计中“掠”的另类认识.工程热物理学报. 2005, 26(4): 567~571
    29 F. A. E. Breugelmans. Influence of Incidence Angle on the secondary Flow in Compressor Cascade with Different Dihedral Distribution. ISABE paper, 85-7078, 1985
    30 E. Shang, Z. Q. Wang, and J. X. Su. The Experimental Investigations on the Compressor Cascades with Leaned and Curved Blades. ASME Paper, 93-GT-50, 1993
    31 R. Wadia, P. N. Szuce, K. L. Gundy-Burlet. Design and Guide Vanes to Reduce Stator-splitter Aerodynamic Flow Interactions. ASME Paper, 98-GT-70, 1998
    32 B. Bogod. Direct and Inverted Calculation of 2D Axisymmetric and 3D Flows in Axial Compressor Blade Rows. TsAGI, Russian, 1992
    33 H. D. Weingold, R. J. Neubert, R. F. Behlke et al. Bowed Stator: An Example of CFD Applied to Improve Multistage Compressor Efficiency. Journal of Turbomachinery, 1997, 119: 161~168
    34 T. Sasaki, F. A. E. Breugelmans. Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance. Journal of Turbomachinery. 1998, 120(2): 454~464
    35 J.D. Denton, L. Xu. The Effects of Lean and Sweep on Transonic Fan Performance. ASME paper, 2002-GT-30327, 2002
    36 B. Roy, P. A. Laxmiprasanna, B. Vishal et al. Low Speed Studies of Sweep and Dihedral Effects on Compressor Cascades. ASME paper, 2002-GT-30441, 2002
    37 A. Fischer, W. Riess, J. R. Seume. Performance of Strongly Bowed Stators in a 4-Stage High Speed Compressor. ASME Paper, 2003-GT-38392, 2003
    38 E. Benini, R. Biollo. On the Aerodynamics of Swept and Leaned Transonic Compressor Rotors. ASME Paper, 2006-GT-90547, 2006
    39蒋洪德.美国航空发动机和计算流体力学发展情况介绍.工程热物理能源利用学科,气动热力学发展战略研讨会专题报告汇编.北京, 1989
    40肖柳.系列化发展的PW4084型发动机.国际航空. 1992, (6): 21~23
    41 H. Tubbs, A. Rea. Aerodynamic Development of the High Pressure Compressor for the IAE V2500 Aeroengine. Imech EC425/023, 1991
    42 V. Gümmer, U. Wenger, and H. P. Kau. Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors. ASME paper, 2000-GT-0491, 2000
    43 S. J. Gallimore, J. J. Bolger, N. A. Cumpsty, et al. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading, Part 1: University Research and Methods Development. ASME Paper 2002-GT-30328, 2002
    44 S. J. Gallimore, J. J. Bolger, N. A. Cumpsty, et al. The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading, Part 2: Low and High Speed Designs and Test Verification. ASME Paper 2002-GT-30329, 2002
    45 A.R. Wadia, P.N. Szucs, and D.W. Crall. Inner Workings of Aerodynamic Sweep. ASME Journal of Turbomachinery. 1998, 120: 671~682
    46 A.R. Wadia, C.H. Law. Low Aspect Ratio Transonic Rotors: Part 2: Influence if Location of Maximum Thickness on Transonic Compressor Performance. ASME Journal of Turbomachinery, 1993, 115: 226~239
    47 A.R. Wadia, W.W. Copenhaver. An Investigation of the Effect of Cascade Area Ratios on Transonic Compressor Performance. ASME Journal of Turbomachinery. 1996,118: 760~770
    48 C. Blaha, S. Kablitz, D. Hennecke, U. Schmidt-Eisenlohr, K. Pirker, S. Haselhoff. Numerical Investigation of the Flow in an Aft-swept Transonic Compressor Rotor. ASME Paper 2000-GT-0490, 2000
    49 H. Watanabe, M. Zangeneh. Design of the Blade Geometry of Swept Transonic Fans by 3D Inverse Design. ASME Paper 2003-GT-38770, 2003
    50 A. Corsini, F. Rispoli. The Role of Forward Sweep in Subsonic Axial Fan Rotor Aerodynamics at Design and Off-design Operating Conditions. ASME Paper GT-2003-38671, 2003
    51 J. Bergner, S. Kablitz, D. K. Hennecke. Influence of Sweep on the 3D Shock Structure in an Axial Transonic Compressor. ASME Paper 2005-GT-68835, 2005
    52 M. Braun, J. R. Seume. Forward Sweep in a Four-stage High-speed Axial Compressor. ASME Paper 2006-GT-90218, 2006
    53赵桂杰.弯掠扩压叶栅内附面层与二次流控制的研究.哈尔滨工业大学工学博士学位论文. 2005: 165~167
    54李绍斌.跨声速压气机高负荷弯扭静叶设计及其级的气动性能研究.哈尔滨工业大学工学博士学位论文. 2007: 157~159
    55孙鹏.总压畸变对跨声速风扇流场结构影响的全流道数值模拟.哈尔滨工业大学工学博士学位论文. 2007: 131~134
    56张永军.扩压叶栅采用弯叶片控制流场结构与改善气动性能的研究.哈尔滨工业大学工学博士学位论文. 2007: 131~134
    57张华良.采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究.哈尔滨工业大学工学博士学位论文. 2007: 175~176
    58邹正平,赵令德,陈矛章等.叶轮机叶片的三维造型及其对叶片气动负荷的影响.航空动力学报. 1998. 13(3): 235~240
    59单鹏,桂幸民,周盛等.高负荷后掠风扇设计若干基本问题.工程热物理学报. 1999, 20(5): 576~579
    60单鹏,刘学英.轴流压气机掠形前缘激波动力学效应的模型分析.航空学报.2000, 21(2): 97~102
    61邢秀清,单鹏,周盛.风扇转子前缘曲线相对掠对性能的影响.航空动力学报. 2000, 15(1): 39~43
    62李秋实,李玲,陆亚钧.民用通风机气动设计中弯掠长叶片的数值模拟.北京航空航天大学学报. 2001, 27(1): 44~47
    63游斌,周拨,汪学军,吴克启.前缘弯掠(扭)斜流转子叶尖脱落涡的PIV研究.华中科技大学学报. 2004, 32(11): 7~9
    64谢军龙,周拨,杨静,吴克启.前缘弯掠影响子午加速风机内流的研究.工程热物理学报. 2006, 27(4): 574~576
    65 E. M. Greizer, C. S. Tan, D. C. Wisler, J. J. Adamczyk, A. J. Srazisr. Unsteady Flow in Turbomachines: Where’s the Breef?. AD-Vol.40, ASME CP Unsteady Flows in Aeropropulsion, 1994
    66唐狄毅.叶轮机非定常流.国防工业出版社, 1992: 1~25
    67 R. X. Meyer. The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines. Transactions of ASME. 1958, 88: 1544~1552
    68 J. L. Kerrebrock, A. A. Mikolajczak. Intra-Stator Transport of Rotor Wakes and its Effect on Compressor Performance. Journal of Engineering for Power. 1970, 92: 359~368
    69 L. H. Jr. Smith. Casing Boundary Layers in Multistage Axial-Flow Compressors. Proceeding of the Symposium on Flow Research on Blading. Switzerland, 1969: 275~304
    70 C. H. Wu. General Theroy of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed-Flow Types. NACA TN 2604. 1952
    71 L. H. Jr. Smith. Wake Dispersion in Turbomachines. Journal of Basic Engineering. ASME Transaction. 1966, 88(3): 688~690
    72 A. G. Van de Wall, J. R. Kadambi, J. J. Adamczyk. A Transport Model For The Deterministic Stresses Associated with Turbomachinery Blade Row Interactions. ASME Paper 2000-GT-0430. Munich, 2000
    73 J. J. Adamczyk. Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design. ASME Journal of Turbomachinery. 2000, 102(2): 189~217
    74 J. J. Adamczyk. Wake Mixing in Axial Flow Compressors. ASME Paper 96-GT-029. Birmingham, 1996
    75 H. E. Gallus, H. W. Grollius, J. Lambertz. The Influence of Blade Number Ratio and Blade Row Spacing on Axial-Flow Compressor Stator Blade Dynamic Load and Stage Sound Pressure Level. ASME Paper 81-GT-165. Houston, 1981
    76 T. E. Smith. A Review of Turbomachinery Blade-Row Interaction Research. NASA-CR-182211. 1988
    77 O. E. Hobbs, et al. Experimental Investigation of Compressor Cascade Wakes. ASME Paper 82-GT-299. London, 1982
    78 R. P. Dring, H. D. Joslyn, L. M. Hardin. Experimental Investigation of Compressor Rotor Wakes. AFAPL-TR-79-2107. 1980
    79 T. Adachi. Y. Murakami. Three-Dimensional Velocity Distribution Between Stator Blades and Unsteady Force on a Blade Due to Passing Wakes. JSME. 1979, 22(170): 1074~1082
    80 S. Fleeter. R. L. Jay, W. A. Bennett. Wake Induced Time-Variant Aerodynamics Including Rotor-Stator Axial Spacing Effects. Nonsteady Fluid Dynamics (Proceedings of the ASME Winter Annual Meeting). San Francisco, 1978: 147~163
    81 H. E. Gallus, J. Lambertz, T. Wallman. Blade-Row Interaction in an AxialFlow Subsonic Compressor Stage. ASME Paper 79-GT-92, 1979
    82 R. P. Dring, et al. Turbine Rotor-Stator Interaction. ASME Paper 82-GT-3. London, 1982
    83 V. R. Capece, S. Fleeter. Unsteady Aerodynamic Interactions in a Multistage Compressor. Journal of Tubomachinery. 1987, 109(3): 420-428
    84 R. L. Evans. Boundary Layer Development on Axial-flow Turbomachinery Blading. Pumps: Analysis, design and application. Volume 1. Worthington Pump, Inc. 1978: 1-15
    85 G. J. Walker. The Turbulent Boundary Layer on an Axial Compressor Blade. ASME Paper 82-GT-52. London, 1982
    86 H. Pfeil, R. Herbst, T. Schr?der. Investigation of the Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes. Journal of Engineering for Power. 1983, 105: 130-137
    87 H. P. Hodson. Boundary Layer and Loss Measurements on the Rotor on an Axial Flow Turbine. ASME Paper 83-GT-4. Phoenix, 1983
    88 H. P. Hodson, J. S. Addison. Wake-Boundary Layer Interaction in an Axial Flow Turbine Rotor at Off-Design Conditions. ASME Paper 88-GT-233. Amsterdam, 1988
    89 D. E. Halstead, D. C. Wisler, T. H. Okiishi, G. J. Walker, H. P. Hodson, H. W. Shin. Boundary Layer Development in Axial Compressors and Turbines: Part 1-4. ASME Paper 95-GT-461/462/463/464. Houston, 1995
    90 V. Schulte, H. P. Hodson. Prediction of the Becalmed Region for LP Turbine Profile Design. ASME Paper 97-GT-398. Orlando, 1997
    91 R. E. Mayle. The Role of Laminar-Turbulent Transition in Gas Turbine Engines. ASME Paper 91-GT-261. Orlando, 1991
    92 M. T. Schobeiri, K. Read, J. Lewalle. Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition: Experimental Investigation and Wavelet Analysis. ASME Paper 95-GT-437. Houston, 1995
    93 E. M. Curtis, H. P. Hodson, J. D. Banieghbal, J. D. Denton, R. J. Howell, N. W. Harvey. Development of Blade Profiles for Low Pressure Turbine Applications. ASME Journal of Turbomachinery. 1997, 119(3): 531-538
    94 V. Schulte, H. P. Hodson. Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines. ASME Paper 96-GT-486. Birmingham, 1996
    95 Y. H. Ho, B. Lakshminarayana. Computation of Unsteady Viscous Flow Through Turbomachinery Blade Row due to Upstream Rotor Wakes. ASME Paper 93-GT-321. Cincinnati, 1993
    96 H. D. Joslyn, R. P. Dring, O. P. Sharma. Unsteady Three-Dimensional Turbine Aerodynamics. ASME Paper 82-GT-161. London, 1982
    97 M. C. Williams. Inter and Intrablade Row Laser Velocimetry Studies of Gas Turbine Compressor Flows. ASME Journal of Turbomachinery. 1988, 110: 369-376
    98 C. Poensgen, H. E. Gallus. Three-Dimensional Wake Decay Inside of a Compressor Cascade and its Influence on the Downstream Unsteady Flow Field. ASME Paper 90-GT-21. Brussels, 1990
    99 N. Arndt. Blade Row Interaction in a Multistage Low-Pressure Turbine. ASME Journal of Turbomachinery, 1993, 115(1): 137-146
    100张玮,王元,徐忠.叶轮机械内部流动测量及动静相互作用的实验研究进展.流体机械. 2001, 29(8): 6-10
    101 A. Binder, W. Forster, H. Kruse, H. Rogge. An Experimental Investigation in to the Effect of Wake s on the Unsteady Turbine Rotor Flow. Journal of Engineering for Gas Turbines and Power. 1985, 107: 458-466
    102 R. C. Stauter, R. P. Dring, F. O. Carta, Temporally and Spatially Resolved Flow in a Two-Stage Axial Compressor: Part 1-Experiment. ASME Journal of Turbomachinery. 1991, 113: 219-225
    103 R. C. Stauter. Measurement of the Three-Dimensional Tip Region Flow Field in an Axial Compressor. ASME Paper 92-GT-211. Cologne, 1992
    104 H. P. Hodson. Blade Row Interaction in Low Pressure Turbines. Von Karman Institute for Fluid Dynamics, Lecture Series 1998-02. 1998
    105 X. Ottavy, I. Trebinjac, A. Voullarmet. Analysis of the Interrow Flow Field Within a Transonic Axial Compressor: Part 1 - Experimental Investigation. ASME Journal of Turbomachinery. 2001, 123: 49–56
    106 A. Zachcial, D. Nurnberger. A Numerical Study on the Influence of Vane-Blade Spacing on a Compressor Stage at Sub- and Transonic Operating Conditions. ASME Paper 2003-GT-38020. Atlanta, 2003
    107 A. Sanders, and S. Fleeter, 2000. Experimental Investigation of Rotor-Inlet Guide Vane Interactions in Transonic Axial-Flow Compressor. AIAA Journal of Propulsion and Power, 2000,16: 421–430
    108 F. Eulitz, K. Engel, and S. Pokorny. Numerical Investigation of Inviscid and Viscous Interaction in a Transonic Compressor. Propulsion and Energetics Panel 85th Symposium, CP-571, Paper 38, AGARD, 1995
    109 A. Sanders, J. Papalia, S. Fleeter.A PIV Investigation of Rotor-IGV Interactions in a Transonic Compressor. AIAA Journal of Propulsion and Power. 2002, 18(5)
    110 S. E. Gorell, W. W. Copenhaver, and R. M. Chriss.Effects of Upstream Wakes on the Performance of aTransonic Compressor Stage. 13th ISABE Conference, Sept., Paper No. 97-7070, Chattanooga, 1997
    111 R.M Chriss, W.W. Copenhaver, S.E. Gorrell.“The Effects of Blade-Row spacing on the Flow Capacity of aTransonic Rotor”, ASME Paper 99-GT-209, 1999
    112 S. E. Gorell, T. H. Okiishi, W. W. Copenhaver. Stator-Rotor Interactions in a Transonic Compressor: Part 1:Effect of Blade-Row Spacing on Performance. ASME Paper 2002-GT-30494, 2002
    113 S. E. Gorell, T. H. Okiishi, W. W. Copenhaver. Stator-Rotor Interactions in a Transonic Compressor: Part 2: Description of a Loss Producing Mechanism.. ASME Paper 2002-GT-30494, 2002
    114 S. E. Gorrell, D. Car, S. L. Puterbaugh, J. Estevadeordal, T. H. Okiishi. An Investigation of Wake-Shock Interactions in a Transonic Compressor with DPIV and Time-Accurate CFD. ASME paper 2005-GT-69107, Reno, 2005.
    115刘前智,周新海.跨声速压气机级的三维周期性非定常流动计算.应用力学学报. 1997, 14(4): 84-87
    116刘前智,周新海.轴流叶轮机械三维非定常粘性流动数值分析.工程热物理学报. 1999, 20(6): 703-706
    117刘前智,周新海.单级跨声速压气机三维非定常粘性流动计算.航空动力学报. 2000, l15(1): 12-16
    118刘前智,周新海,胡运聪.轴流叶轮机三维粘性非定常流动计算的双时间方法.工程热物理学报. 2001, 22(S1): 21-24
    119 M. Z. Chen, X. H. Wu. Vortex Simulation of Rotor/Stator Interaction in Turbomachinery. ASME Paper 98-GT-15, 1998
    120陈矛章,彭波.用可压缩流涡方法模拟叶轮机动静叶的相互作用.中国工程科学. 2000, 2(2): 15-23
    121季路成,陈江,黄海波,徐建中.关于叶轮机时均(准四维)和非定常(四维)气动设计体系的初步诠释.工程热物理学报. 2003, 24(4): 571-574
    122季路成,项林,徐建中,陈江.非定常环境下叶栅性能的数值研究.工程热物理学报. 2003, 24(2): 211-215
    123邹正平,徐力平.叶轮机三维非定常流动数值模拟的研究.航空学报. 2001, 21(1): 10-14
    124蒋康涛,黄伟光,徐燕骥.透平叶栅静叶周向布局的数值研究.工程热物理学报. 2001, 22(5): 559-562
    125陈静宜,黄伟光,张宏武,徐纲,蒋康涛.单级跨声压气机整圈三维动静叶干涉的数值模拟.中国工程热物理学会热机气动热力学学术会议.青岛, 2001: 261-266
    126祁明旭,丰镇平, S. Kang, C. Hirsch,动静干扰效应对轴流透平级气动性能的影响.工程热物理学报. 2003, 24(1): 39-42
    127王松涛,王仲奇,冯国泰,吴猛.动静叶相互干涉的三维非定常流场数值模拟.中国工程热物理学会热机气动热力学学术会议.南京, 2000: 188-192
    128 Wang Songtao, Wang Zhongqi, Feng Guotai. Numerical Simulation of 3D Flow Field Structure in Turbine Cascade with Bowed Blades. ASME Paper 2001-GT-0442. 2001
    129王松涛,王仲奇,冯国泰,孙玺淼.非定常条件下叶片弯曲对流场参数的影响.航空动力学报. 2002, 17(3): 314-318
    130 C. H. Wu. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial-, and Mixed-Flow Types. ASME Paper 50-A-79, 1950
    131 C. Hirsch, J. D.Denton. Throughflow Calculations in axial turbomachines. AGARD AR 175, 1981
    132 S. J. Gallimore. Viscous Throughflow Modeling of Axial Comperssor Blade Rows Using a Tangential Blade Force Hypothesis. ASME Paper 97-GT-415, 1997
    133 V. J. Neumann, R. D. Richtmyer. A Method for the Numerical Calculation of Hydrodynamic shocks. Journal of Applied Physics. 1950, 21: 232~257
    134 J. D. Denton. A Time Matching Method for Two- and Three-Dimensional Blade to Blade Row. ARCR&M 3775, 1974
    135 J. J. Adamczyk. Model Equation for Simulating Flows in Multistage Turbomachines. NASA TM-86869. 1985
    136 K. V. Rao, R. A. Delaney. Investigation of Unsteady Flow Through a Transonic Turbine Stage: Part I– Analysis. AIAA Paper 90-2408. Orlando, 1990
    137 M. M. Rai. Three-Dimensional Navier-Stokes Simulations of Turbine Rotor-Stator Interaction: Part I– Methodology. AIAA Journal of Propulsion and Power. 1989, 15(3): 305-319
    138 A. Jameson. Time Dependent Calculations Using Multigrid with Applications to Unsteady Flows Past Airfoils and Wings. AIAA Paper 91-1596. Honolulu, 1991
    139 M. Aube, C. Hirsch. Numerical Investigation of a 1-1/2 Axial Turbine Stage at Quasi-Steady and Fully Unsteady Conditions. ASME Paper 2001-GT-0309. New Orleans, 2001
    140 J. I. Erdos, E. Alzner. Computation of Unsteady Transonic Flows through Rotating and Stationary Cascades. NASA CR-2900. 1977
    141 G. A. Gerolymos, D. Vinteler, R. Haugeard, G. Tsanga, I. Vallet. On the Computation of Unsteady Turbomachinery Flows; Part 2– Rotor/Stator Interaction using Euler Equations. AGARD Report No. CP-571. 1996
    142 L. I. He. Method of simulating Unsteady Turbomachinery Flows with Multiple Perturbations. AIAA Journal. 1992, 30(11): 2730-2735
    143 A. B. Burgos, R. Corral. Application of Phase-Lagged Boundary Conditions to Rotor/Stator Interaction. ASME Paper 2001-GT-0586. New Orleans, 2001
    144 G. Billonnet, A. Fourmaux. C. Toussaint. Evaluation of Two Competitive Approaches for Simulating the Time-Periodic Flow in an Axial Turbine Stage. Proceedings of the 4th European Conference on Turbomachinery. Fierence, 2001
    145 M. B. Giles. Stator/Rotor Interaction in a Transonic Turbine. AIAA Journal of Propulsion and Power. 1990, 6(5): 621-627
    146 M. B. Giles. Numerical Methods for Unsteady Turbomachinery Flow. Von Karman Institute for Fluid Dynamics, Volume 2. 1989
    147 A. R. Jung, J. F. Mayer, H. Stetter. Simulation of 3-D Unsteady Stator/Rotor Interaction in Turbomachinery Stages of Arbitrary Pitch Ratio. ASME Paper 96-GT-69. Birmingham, 1996
    148 B. Laumert, H. M?rtensson, T. H. Fransson. Simulation of Rotor/Stator Interaction with a 4D Finite Volume Method. ASME Paper GT-2002-30601. Amsterdam, 2002
    149 M. M. Rai, N. K. Madavan. Multi-Airfoils Navier-Stokes Simulations of Turbine Rotor-Stator Interaction. AIAA Paper 88-0361. Boston, 1988
    150 W. N. Dawes. A Numerical Study of the Interaction of a Transonic Compressor Rotor Overtip Leakage Vortex with the Following Stator Blade Row. ASME Paper 94-GT-156. Hague, 1994
    151 J. P. Clark. G. M. Stetson. S. S. Magge, R. H. Ni, C. W. Haldemann, M. G. Dunn. The Effect of Airfoil Scaling on the Predicted Unsteady Loading on the Blade of a 1 and ? Stage Transonic Turbine and a Comparison with Experimental Results. ASME Paper 2000-GT-0446. Munich, 2000
    152 A. Arnone, R. Pacciani. Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method. ASME Paper 95-GT-177.Houston, 1995
    153 Adam, O. Leonard. A Quasi-One-Dimensional Model for Axial Compressor. ISABE-2005-1011,2005.
    154 Reid L., Moore R.D. Design and Overall Performance of Four Highly Loaded, High-Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor. NASA-TP-1337, 1978
    155宋彦萍,李娜,王松涛,王仲奇.弯曲动叶对跨声轴流压气机性能的影响.工程热物理学报. 2004, 25(4): 582~584