船舶零航速仿生减摇鳍控制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶在风浪中不可避免地会产生各种摇荡,其中以横摇最为显著,影响也最大。船舶在系泊或低航速状态下,当涌浪周期接近船舶自然横摇周期时,船舶摇摆比航行时更为剧烈。然而,只有船舶的航速较高时,常规减摇鳍才可以有效地减摇;船舶在低航速或零航速情况下,由于流过鳍表面的水流速度为零,鳍上升力也将消失,因而此时减摇鳍几乎不能进行减摇。对于在低航速或系泊状态下仍需要减摇的船舶来说,传统的减摇鳍就不再适用了。随着船舶减摇技术的发展,人们对系泊状态时船舶的减摇能力提出了新的期望。而减摇水舱减摇能力有限,有时甚至出现增摇现象。在减摇领域,零航速减摇鳍技术开发成为人们关注的问题,于是人们提出了零航速减摇鳍的概念。
     论文来源于国家自然科学基金项目“零速下船舶仿生减摇鳍升力机理的研究(50575048)”,主要研究内容是基于仿生流体力学研究在零来流流场中,依靠减摇鳍主动摆动产生升力的机理,建立船舶零航速仿生减摇鳍的升力模型。
     论文在广泛调研国内外仿生流体研究包括昆虫、鸟类飞行和鱼类巡游推进机理的理论研究、实验研究、数值模拟和模型研制的基础上,把零航速减摇鳍升力产生模式与昆虫悬停、鸟类飞行及鱼类摆动鳍、尾推进模式作为研究对象,采用理论分析、仿真计算和数值模拟相结合的研究方法,建立了可变弦长Weis-Fogh减摇鳍升力模型和单鳍仿生翼纵摇耦合升沉零航速减摇鳍升力模型;论证了两鳍片间的间隙对Weis-Fogh减摇鳍升力特性的影响;定义了升力对间隙的敏感因子的概念;得出了间隙对减摇鳍弦长的无量纲因子不大于10时间隙对升力影响不大的结论,该结论可以做为实际设计中的参考。论文深入分析了所提出的两种零航速减摇鳍的运动特征和力学机理,结合船舶减摇控制技术,将升力控制引入船舶零航速减摇鳍控制系统中,进一步引入能量限制建立了船舶零航速减摇鳍控制系统。
     采用仿真分析和数值试验的方法,对可变弦长Weis-Fogh减摇鳍升力模型在不同运动规律下的升力特性进行了研究,结果表明鳍片在一定张开规律下,通过弦长的动态变化,可以达到根据不同海浪周期,提供给船舶不同特性的升力的目的,所建模型能够反映在零速流场中的升力特性。
     单鳍仿生翼零航速减摇鳍升力模型是基于在非定常流场中对经典叶素理论进行修正,根据库塔-儒科夫斯基假设和船舶操纵性研究中广泛应用的“缓慢移动”假说而建立的。从仿真研究结果可看出,随着各种运动参数如减摇鳍纵摇和升沉幅值、频率、相位角等的不同,升力特性也不同,但纵摇对升力的影响占主要地位,纵摇和升沉两种运动的相位角为45°时升力较大。
     近年来,升力控制一直是船舶减摇技术的热点,将其引入船舶零航速减摇系统无疑是对船舶零航速减摇的又一发展。通过升力反馈和升力限位,对原有减摇鳍随动系统进行改进,建立了升力控制的船舶零航速减摇鳍控制系统。在不同海情90°浪向下的仿真研究结果表明,零航速减摇效果达到了60%以上,较减摇水舱不足50%的减摇效果有了很大提升。这说明建立的仿生减摇鳍升力模型和控制系统能够满足船舶零航速减摇的需要。
Ships that were tossed by stormy waves are inevitable, among which roll is marked and severest. The roll is increased and severer than shipping state when the frequency of wave is similar as the natural rolling frequency of ships. Nevertheless, the traditional fin stabilizers could only anti rolling ship at higher ship speed effectively and the fin stabilizers could barely anti rolling ship at lower navigating speed or at anchor. The lift of fin would vanish at anchor. Because the speed of water flow across the surface of fin stabilizers is zero on this condition. The traditional fin stabilizers would not be applicable for the ships which still need anti rolling at lower speed or at anchor. New expectation of capability of anti roll ship is put forward with the development of ship roll stabilization. Anti roll capacity of anti rolling tank is limited, furthermore, sometimes the phenomenon of increasing rolling occurred. In ship anti roll field, the technology of ship roll stabilization at zero forward speed that becomes a focus and so the concept of anti roll ship at anchor is proposed.
     The dissertation is based on the project supported by national science foundation of China: research on lift theory of ship bionic roll stabilization at zero speed (50575048). Main research area is that based on the bionic hydrodynamics, the mechanism of lift produced by swaying the fin actively in the zero speed flow field is researched and the lift model of bionic fin stabilizers is established at anchor.
     In the dissertation, on the basis of extensive investigation and study on the bionic hydrodynamics such as theory, experiment, numerical calculation and model developed of insect and bird flight, fish cruising mechanism, the lift produced pattern of zero speed fin stabilizer, insect hovering, birds flight, the boost pattern of fish sways the pectoral fin and tail are researched, the lift model of variable chord Weis-Fogh fin stabilizers and lift model of single-bionic zero speed fin stabilizers are built with the complex method of theoretical analysis, simulation and numerical calculation, the influence of lamina clearance on characteristics of lift is demonstrated, the sensitive factor of lift on the lamina clearance is defined. The conclusion that lift is not influenced by clearance when non-dimensional factor of clearance on fin chord is less than 10 is obtained, this conclusion could be referenced in practical design. The movement characteristics and mechanical mechanism of the proposed two kinds of zero speed fin stabilizers are thoroughly analyzed and the lift control is induced into fin stabilizers control system at zero speed combined the technology of anti rolling ship, and the control system of fin stabilizers with energy restricted at anchor is established.
     By the methods of simulation analysis and numerical experiment, the lift characteristics of variable chord Wes-Fogh lift model with different motion law is researched and the results indicate that the different lift characteristics could be provided for ship according to different wave periods by dynamical changing chord length at stated fling law, the lift model proposed could be able to reflect the lift characteristic in still flow field.
     According to Kutta-Jucowski and "slowly moving" hypothesis that is extensive applied in the research of ship maneuvering, lift model of single-bionic zero speed fin stabilizers is built on the basis of revision to classical blade-element theory in unsteady flow field. The simulation results show that the characteristics of lift is different with the different motion parameters such as pitching angle and heaving amplitude, frequency and phase angle between pitch and heave. The pitching played a major role to lift of fin stabilizers. The lift is larger at 45°phase angle between pitch and heave.
     In recent years, lift control is always the point of anti roll ship, it is undoubtedly another development to introduce lift control to ship roll stabilization at zero forward speed. According to lift feedback and lift limit, the original servo system of fin stabilizers is improved and lift control system of zero speed fin stabilizers is established. The simulation results of 90°wave direction and different sea conditions indicate that effectiveness of anti rolling ship at zero speed is over 60% and much greater than anti roll tank whose effectiveness is less than 50%. It shows that the lift model of bionic fin stabilizers and control system could be able to satisfied the need of ship roll stabilization at zero forward speed.
引文
[1]金鸿章,姚绪梁.船舶控制原理.哈尔滨:哈尔滨工程大学出版社,2001:133-143页
    [2]金鸿章,李国斌.船舶特种装置控制系统.北京:国防工业出版社,1995:84-100页
    [3]陶尧森.船舶耐波性.上海:上海交通大学出版社,1995:1-16页
    [4]J.Ooms.The use of roll stabilizer fins at zero speed.Quantum Controls BV,Nuth,Holland.2002
    [5]R.P.Dallinga.Roll stabilization at anchor:Hydrodynamic aspects of the comparison of anti-roll tanks and fins.Project 2002,Amsterdam.2002.
    [6]H.M.van Wieringen.Design considerations on at anchor stabilizing system.Project 2002,Amsterdam.2002.
    [7]R.P.Dallinga.Roll stabilization of motor yachts:use of fin stabilizers in anchored conditions.Project 1999,Amsterdam.1999.
    [8]冯铁城,陶尧森.可控被动水舱研究.中国造船.1997(1):8-14页
    [9]金鸿章,赵为平,綦志刚.大型船舶综合减摇系统的研究.中国造船.2005(1):29-35页
    [10]赵为平,金鸿章,张海鹏.鳍/被动水舱联合减摇理论研究.中国造船.2004(3):84-88页
    [11]赵为平.大型水面舰艇综合平衡系统研究.哈尔滨工程大学博士学位论文.2004.
    [12]金鸿章,王科俊等编著.智能技术在船舶减摇鳍系统中的应用.第一版.北京:国防工业出版社,2003
    [13]Jin Hongzhang.Design of a robust ship fin stabiliser control system.Modelling,Measurement & Control B:Solid & Fluid Mechanics & Thermics,Mechanical Systems.1994(1):51-58P
    [14]郭晨,宁寿辉,孙建波.船舶减摇鳍智能控制器.大连海事大学学 报.2003(1):1-5页
    [15]张海鹏.鲁棒滑模反步控制法及其在减摇鳍中的应用.哈尔滨工程大学博士学位论文.2004
    [16]孙静川,刘胜.船舶减摇鳍系统H~∞控制器设计.船舶工程.2000(1):41-44页
    [17]王科俊,苏闽,金鸿章.减摇鳍单神经元控制方法研究.船舶工程.1999(3):36-37页
    [18]李晖,郭晨,李晓方.船舶减摇鳍逆模式小波神经网络自适应控制.系统仿真学报.2004(2):326-328页
    [19]Li Hui,Chert guo,Jin Hongzhang.Design of adaptive inverse mode wavelet neural network controller of fin stabilizer.Proceedings of 2005 International Conference on Neural Networks and Brain.2005(3):1745-1748P
    [20]Li Hui,Chen guo,Jin Hongzhang.Hybrid control of inverse model wavelet neural network and PID and its application to fin stabilizer.Sixth World Congress on Intelligent Control and Automation.2006(6):1-5P
    [21]Hieh-li Chen,Pey-Chung Chen,Cha'o-Kuang Chen.Analysis and Design of Fuzzy Control System.Fuzzy Sets and Systems.1993(2):125-140P
    [22]Zhiqiao Wu,Masaharu M.PID Type Fuzzy Controller and Parameters Adaptive Method.Fuzzy Sets and Systems.1996(1):23-35P
    [23]Wu Xin-yue,Chen Li-ping,Zhang Yun-qing,Cui Yu-ge.Simulating fuzzy-PID controller of fin stabilizer Acta Scientiarum Naturalium Universitatis Sunyatseni.2006(5):35-38P
    [24]许叙遥.船舶减摇技术的若干研究.哈尔滨工程大学硕士学位论文.2004
    [25]吉明.升力控制减摇鳍及其试验台架研究.哈尔滨工程大学博士学位论文.2005
    [26]张海鹏.升力反馈减摇鳍系统的研究及随动系统的改造.哈尔滨工程大 学硕士学位论文.2002
    [27]Zhang Haipeng,Yao Xuliang,Chen Fang,Jin Hongzhang.Research on dynamic coefficient of lift feedback fin stabilizer and its PIDNN controller,11th Mediterranean Conference on Control and Automation.Proceedings.2002(3):1-6P
    [28]Zhang Haipeng,Yao Xuliang,Chen Fang,Jin Hongzhang.Research on lift feedback fin stabilizer and its nonlinear controller.SICE 2003 Annual Conference.2003(2):1844-1849P
    [29]张晓宇.非线性系统鲁棒控制及其在力控鳍系统中的应用.哈尔滨工程大学博士学位论文.2002
    [30]Zhang Xiaoyu,Jin Hongzhang,Li Guobin,Ji Ming.The study of H_∞ control theory on ship lift feedback fin stabilizer.Control Applications in Marine Systems 2001(CAMS 2001) Proceedings volume from the IFAC Conference.2OO2(5):401-406P
    [31]金鸿章,陈放,许叙遥.升力鳍实验装置的升力函数发生器.船舶工程.2004(3):24-28页
    [32]贺彦峰.升力反馈减摇鳍及减摇鳍变结构控制方法研究.哈尔滨工程大学硕士学位论文.2001
    [33]吉明,金鸿章.广义扰动下升力反馈减摇鳍变结构控制器的设计.哈尔滨工程大学学报.2003(4):410-414页
    [34]Yao Xuliang,Zhang Haipeng,Chen Fang,Jin Hongzhang.Research on lift feedback fin stabilizer system and its intelligence controller.IEEE Conference on Control Applications-Proceedings.2003(2):966-971P
    [35]Zhang Haipeng,Yao Xuliang,Chen Fang,]in Hongzhang.Research on Dynamic Coefificient of Lift Feedback Fin Stabilizer and Its PIDNN Controller.MED' 03-The11~(th) Mediterranean Conference on control and Automation 2003 IEEE.2003.7
    [36]Mark Armstrong,Maria Sotoj.Quantum marine engineering introduces extendable fin stabilizers - XT~(TM) fin for superyaehts. Project 2006,Florida.2006.
    [37]Koop-Nautic and Amels ShipyardsRoll.Stabilization of motor yachts use of fin stabilizers in anchored conditions.Project 2002.2002
    [38]http://www.naiad.com.2006
    [39]Weis-Fogh,T.Quik estimates of flight fitness in hovering animals including novel mechanism for lift production.Exp Biol.1973(59):169-230P
    [40]綦志刚.减摇鳍在零航速下升力的研究及仿真.哈尔滨工程大学硕士学位论文.2005
    [41]章社生,王献孚,吴秀恒.Weis-Fogh机构流体力学.北京:国防工业出版社,2002:89-109页
    [42]王献孚.船用翼理论.北京:国防工业出版社,1998:253-322页
    [43]Jin Hongzhang,Qi Zhigang,He Jie.Research on a method to reduce ship roll at zero speed.Singapore:2006 9~(th) International conference on Control,Automation,Robotics and Vision.2006:1812-1815P
    [44]Jin Hongzbang,Wang Yu,Qi Zhigang.Study on lift generation of Weis-Fogh flapped fin stabilizer at zero speed.Korea,Busan:SICE-ICASE International Joint Conference.2006(10):1521-1524P
    [45]王宇,金鸿章,綦志刚.船舶零航速Weis-Fogh减摇鳍升力仿真研究.海军工程大学学报.2007(3):21-25页
    [46]王宇,金鸿章,綦志刚.船舶零航速减摇鳍升力测量研究.传感器与微系统.2007(1):11-14页
    [47]金鸿章,綦志刚,罗延明,巩晋.基于Weis-Fogh机构的零航速减摇鳍升力模型的研究.系统仿真学报.2007(19):4079-4081页
    [48]綦志刚.船舶零航速减摇鳍升力机理及系统模型研究.哈尔滨工程大学博士学位论文.2007
    [49]Qi Zhigang,Jin Hongzhang,Wang Yu.Research on ship roll stabilization at zero speed.SICE-ICASE International Joint Conference.2006(10):3920-3923P
    [50]罗延明.零航速减摇鳍及其电动伺服系统研究.哈尔滨工程大学博士学位论文.2007
    [51]M.J.Lighthill.On the Weis-Fogh Mechanism of Lift Generation.Fluid Mech.1973(60):1-17P
    [52]R.H.Edwards,H.K.Cheng.The separation vortex in the Weis-Fogh circulation generation mechanism.Fluid Mech.1982(120):463-473P
    [53]Bandyopadhyay P R.Low speed maneuvering hydrodynamics of fish and small underwater vehicls.Jour of Fluids Engineering.1997(1):136-144P
    [54]Ellington C P,Van der Berg,Willmott C,A P,Thomas A L R.Leading-edge vorticses in insect Night,Nature.1996(3):626-630P
    [55]Maxworthy T.Experiments on the Weis-Fogh Mechanism of Lift Generation by Insects in hovering Flight.Dynamics of the Fling,J Fluid Mech.1979(93):47-63P
    [56]Spedding G R,Maxworthy T.The generation of circulation and lift in a rigid two-dimensional fling.Journal of Fluid Mechanics.1986(165):247-272P
    [57]Dickinson M H,Lehmann F O,Sane Z Sanjay P.Wing Rotation and the Aerodynamic Basis of Insect Flight.Science.1999(284):1954-1960P
    [58]Z.Jane Wang.Dissecting Insect Flight.Annu.Rev.Fluid Mech.2005(37):183-210
    [59]Zhang Shesheng,Wang Xianfu.A numerical model of the Weis-Fogh mechanism with aseparation vortex.Jour of Hydro.1994(4):97-102P
    [60]章社生,吴秀恒,王献孚.叶栅型Weis-Fogh翼振动推进装置研究.武汉交通科技大学学报.1996(4):726-732页
    [61]章社生,吴秀恒,王献孚.叶栅复合Weis-Fogh翼推进装置及应用研究.中国造船.1998:42-54页
    [62]Tsutahara M,Kimura T,Ro k.Ship's propulsion mechanism of Two-Stage Weis-Fogh type.ASME Jour of Fluid Engi.1994(2):278-286P
    [63]Tsutahara M,Kimura T.An application of the Weis-Fogh Mchaninsm to Ship Propulsion.Journal of Fluid Engineering.1987(2):107-113P
    [64]孙茂,吴江浩.微型飞行器的仿生流体力学-昆虫前飞时的气动力和能耗.航空学报.2002(23):385-393页
    [65]Ellington C.P..Aerodynamics of hovering insect flight.Ⅲ.Kinematics.Phil.Trans.R.Soc.Lond.,1984(305):41-78P
    [66]Vogel S..Flight in drosophila.Ⅲ.aerodynamic characteristics of fly wings and wing models.J.Exp.Biol.1967(44):431-443P
    [67]Ellington C.P..Aerodynamics of Hovering Insect Flight.Ⅰ.The quasi-steady analysis.Phil.Trans.R.Soc.Lond..1984(305):1-159
    [68]Knoller R..Die gesetze des luftwiderstandes.Flugund Motortechnik(Wien).1909(3):1-79
    [69]Betz A..Ein Beitrag zur erklarung des segelfluges.Zeitschrift fur Flugtechnik und Motorluftschiffahrt.1912(3):269-272P
    [70]Katzmayr R..Effect of periodic changes of angle of attack on behavior of airfoils.NACA Report No.147,1922
    [71]BirnbaumW..Das ebene problem des schlagenden fluels.Zeitschrift fur Angewandte Mathematik und Mechanik,1924(4):277-292P
    [72]Küchenmann D.,von Holst E..Aerodynamics of animal flight.Luftwissen.1941,Translated by L.J.Baker for the Ministry of Aircraft Production,R.T.P.Translation No.1672
    [73]Pennycuick C.J.Power requirements for horizontal flight in the pigeon.J.Exp.Biol..1968(49):527-555P
    [74]Theodoresen T..General theory of aerodynamic instability and the mechanism of flutter.NACA TR 496,1935
    [75]Garrick I.E..Propulsion of a flapping and oscillating airfoil.NACA TR 567,1936.
    [76]Theodoresen T..Nonstationary flow about a wing-aileron-tab combination including aerodynamic balance.NACA TR 736
    [77]Theodoresen T.and Garrick I.E..Mechanism of flutter:A Theoretical and Experimental Investigation of the Flutter Problem.NACA TR 736
    [78]Giesing J.P..Nonlinear Two-dimensional unsteady potential flow with lift.J.Aircraft,1968(5):135-143P
    [79]Hess J.L.and Smith A.M.O..Calculation of Potential Flow about arbitrary bodies.Progress in Aeronautical Sciences,1966(8):pp1-138P
    [80]Platzer M.F.Neace K.S.and Pang C.K..Aerodynamic analysis of flapping wing propulsion.AIAA Paper 1993-0484
    [81]Platzer M.F.Jones K.D.and Lund T.G..Experimental and computational investigation of flapping wing propulsion for micro-air vehicles.Symposium of Low-Reynolds Number Vehicles,University of Notre Dame,Indiana.2000
    [82]Jones K.D.,Castro B.M.and Mahmoud O.et al.A numerical and experimental investigation of flapping wing propulsion in ground effect.AIAA Paper 2002-0866
    [83]Tuncer I.H.and Platzer M.F..Computational study of flapping airfoil aerodynamics.J.Aircraft,2000(37):514 -520P
    [84]Isogai K,Shinmoto Y.and Y.Watanabe..Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil.AIAA J..1999(37):1145-1151P
    [85]Ramamurti R.and Sandberg W..Simulation of flow about flapping airfoils using finite element incompressible flow solver.AIAA J..2001(39):253-260P
    [86]Neef M.F.and Hummel D..Euler solutions for a finite-span flapping wing.Conference on fixed,flapping and rotary wing vehicles at very low Reynolds numbers.University of Notro Dame,Indiana. 2000(6)
    [87]孙茂,吴江浩.昆虫飞行的高升力机理.力学进展.2002(32):425-434页
    [88]孙茂,吴江浩.昆虫飞行的高升力机理和能耗.北京航空航天大学学报.2003(29):970-977页
    [89]余永亮,童秉纲,马晖扬.昆虫拍翼方式的非定常流动物理再探讨.力学学报.2005(37):257-265页
    [90]童秉纲,孙茂,尹协振.飞行和游动生物流体力学的国内研究进展概述.自然杂志.2005(27):191-199页
    [91]童秉纲,陆夕云.关于飞行和游动的生物力学研究.力学进展.2004(34):1-8页
    [92]赵攀峰,刘春阳,杨基明.一种扑翼运动的模型实验及流场测量方法.实验力学.2004(19):408-414页
    [93]Sun Mao,Tang Jian.Lift and power requirements of hovering flight in Drosophila.J.Exp.Biol..2002(205):2413-2427P
    [94]Lan Shilong,Sun Mao.Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number.Acta Mechanica,2001(149):135-147P
    [95]孙茂,熊燕.微型飞行器的仿生力学-蜜蜂悬停飞行的动稳定性研究.航空学报.2005(26):385-391页
    [96]Sane S H,Dickinson M H.The control of flight force by a flapping wing:lift and drag production.J Exp.Biol..2001(204):2607-2626P
    [97]Sane S H,Dickinson M H.The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.J Exp.Biol..2002(205):1087-1096P
    [98]Luara A.Miller,Charles S.Peskin.A computational fluid dynamics of 'clap and fling' in the smallest insects.J Exp.Biol..2005(208):195-212P
    [99]Thomas L.Daniel,Stacey A.Combes.Flexible wings and fins:Bending by inertial or fluid-dynamic forces? J Comp.Biol.. 2002(42):1044-1049P
    [100] Yadykin Y, Tenetov V, Levin D. The added mass of a flexible plate oscillating in a fluid. Journal of Fluids and Structures.2003(17):115-123P
    [101] Michael S. Triantafyllou, Alexandra H. Techet, Franz S. Hover.Review of experimental working in biomimetic foils. IEEE Journal of Oceanic Engineering. 2004(29):585-594P
    [102] Rajat Mittal. Computational modeling in biohydrodynamics:trends, challenges, and recent advances. IEEE Journal of Oceanic Engineering. 2004(29):595-604P
    [103] Zelik Segal. Hydrodynamic characteristics of wings in circular motion. Journal of Ship Research. 2002(46):92-98P
    [104] Thomasl, Daniel, Stacey A. Combes. Flexible Wings and Fins:Bending by Inertial or Fluid Dynamic Forces. Integr. Comp. Biol.,2002(42): 1044-1049P
    [105] Sane S P. The Aerodynamics of Flapping Wings, University Of California[D],Berkeley, Fall, 2001:20-80P
    [106] Lehmann F O. The mechanisms of lift enhancement in insect flight.Naturwissenschaften. 2004(91):101-122P
    [107] Walker J A. Rotational lift: something different or more of the same? J Exp. Biol.. 2002(205):3783-3792P
    [108] Walker J A, Westneat M W. Mechanical performance of aquatic rowing and flying. Proc. R. Soc. Lond. B.. 2000(267): 1875-1881P
    [109] C. M. Breder. Thelocomotionofnshes. Zoologiea. 1926(4):159-256P
    [110] J. J. Videler. Fish swimming. Chapman & Hall, London. 1993
    [111] W. C. Sandberg, R. Ramamurt T. Unsteady flow computations for oscillating fins: a status report. Papers of 11~(th) International symposium on UUS technology. Autonomous Undersea Systems Institute. 1999:182-194P
    [112] Y. Doi, M. Yhomatsu. Numerical investigation on thrust and flow generated by wavy oscillating plate in highly viscous fluid.Papers of 11~(th) International symposium on UUS technology.Autonomous Undersea Systems Institute.1999:195-202P
    [113]M.Nakashima,K.Ono.A simple calculation method to analyze the dynamics of carangiform propulsion.Papers of 11th International symposium on UUS technology.Autonomous Undersea Systems Institute.1999:320-329P
    [114]童秉纲,庄礼贤,程建宇.鱼类波状摆动推进的流体力学研究.力学与实践.1991,19(3):17-26页
    [115]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用.自然杂志.1998,20(1):1-7页
    [116]程建宇,庄礼贤,童秉纲.新月形尾鳍推进的流体力学分析.力学学报.1992,24(4):458-465页
    [117]Y.Su,K.Yu.Hydrodynamic analysis and experiment of oscillating tuna-tail.International workshop on bio-robotics and teleopration.2001
    [118]苏玉民,黄胜,庞永杰等.仿鱼尾潜器推进系统的水动力分析.海洋工程.2002,20(2):54-59页
    [119]Y.Su,T.Dong,Y.Pang,S.Huang,Y.Xu.Numerical calculation of hydrodynamic characteristics of rigid and flexible oscillating tuna-tail.Proceedings of the 13th International Symposium on UUS technology.2003
    [120]H.Liu,K.Kawachi.A numerical study of undulatory swimming.J.Computational Physics.1999(155):223-247P
    [121]E.Churchill,W.Duan,P.J.Lu,D.Perkowski,R.Singhal.Simulation of piscine propulsion through parallel computational fluid dynamics.J.PGSS.87-108P
    [122]E.G.Drucker,G.V.Lauder.A hydrodynamic analysis of fish swimming speed:wake structure and locomotor force in slow and fast labriform swimmers.J.Experimental Biology. 2000(203):2379-2393P
    [123]E.G.Drucker,G.V.Lauder.Wake dynamics and fluid forces of turning maneuvers in sunfish.J.Experimental Biology.2001(204):431-442P
    [124]E.G.Drucker,G:V.Lauder.Wake dynamics and locomotor function in fishes:interpreting evolutionary patterns in pectoral fin design.From Dynamics and Energetics of Animal Swimming and Flying at the Annual meeting of the Society for Integrative and Comparative Biology.2002.Anaheim,California.
    [125]N.Kato.Hydrodynamic characteristics of a mechanical pectoral fin.J.Fluids Engineering.1999(121):605-613P
    [126]N.Kato.Control performance in the horizontal plane of a fish robot with mechanical pectoral fins.J.Oceanic Engineering.2000,25(1):121-129P
    [127]Furber S.B.& Fowcs Williams J.E..Is the Weis-Fogh principle exploitable in turbomachinery.J.Fluid Mech.1979(94):519-540
    [128]王福军.计算流体力学分析—CFD软件原理与应用.北京:清华大学出版社,2004:24-91页
    [129]FLUENT Inc.FLUENT User' s Guide.Fluent Inc.2003
    [130]Fluent Inc.GAMBIT User Defined Function Manual.Fluent Inc.2003
    [131]Bennet,A.G.,Obye,R.C.,and Jeglum,P.M..Ornithopter aerodynamic experiments.Swimming and Flying in Nature,edited by T.Y.T.Wu.c.J.Brikaw,and C.Brennen.Vol.2,Plenum,New York,1975:269-272P
    [132]Stephen Licht,Victor Polidoro,Melissa Flores et al.Design and projected performance of a flapping foil AUV.Journal of Oceanic Engineering.2004(29):786-794P
    [133]Philippe Giguere,Chris Prahacs,Gregory Dudek.Characterization and modeling of rotational responses for an oscillating foil underwater robot.International Conference on Intelligent Robots and Systems,Beijing,China.2006(10):3000-3005P
    [134]陈宏,竺长安,尹协振.机械胸鳍式仿生水下机器人的动力学特性研究.机械设计.2006(10):24-27页
    [135]D.A.Read,F.S.Hover,M.S.Triantafyllon.Forces on oscillating foils for propulsion and maneuvering.J.Fluids and Structure.2003(17):163-183P
    [136]F.S.Hover,Haugsdal,M.S.Triantafyllon.Effect of angle attack profiles in flapping foil propulsion.J.Fluids and Structure.2004(19):37-47P
    [137]L.Schouveiler,F.S.Hover,M.S.Triantafyllon.Performance of flapping foil propulsion.J.Fluids and Structure.2005(20):949-959P
    [138]P.Freymuth.Thrust generation by an airfoil in hover modes.Experiments in Fluids.1990(9):17-24P
    [139]Joseph C.S.Lai.Characteristics of a plunging airfoil at zero freestream velocity.AIAA Journal.Vol.39,2000(3):531-534P
    [140]S.Heathcote,D.Martin,and I.Gursul.Flexible flapping airfoil propulsion at zero freestream velocity.AIAA Journal.Vol.42,2004(11):2196-2204P
    [141]王献孚,韩久瑞.机翼理论.北京:人民交通出版社.1987:13-60页
    [142]吴望一.流体力学.北京:北京大学出版社.2004:61-166页
    [143]施生达.潜艇操纵性.北京:国防工业出版社.1995:150-188页
    [144]陶永华.新型PID控制及应用.北京:机械工业出版社.2005:6-20页
    [145]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社.2003:1-59页