基于非稳态流场分析的车用液力缓速器参数优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合吉林省科技厅项目“车用智能液力缓速器关键技术研究”及企业项目“车用电控液力缓速器开发”,进行基于非稳态内流场特性分析的车用液力缓速器结构参数优化方法研究,其主要研究内容如下:
     (1)在深入分析国内外液力缓速器技术现状及发展趋势基础上,通过建立液力缓速器三维几何模型,选取全流道作为计算区域,应用滑动网格法处理液力缓速器定-转子交界面之间的参数传递,进行了车用液力缓速器全充液以及气-液两相非稳态流场的数值计算,研究了全充液和不同充液率下的流场分布特性,并对其成因作了较深入的分析。
     (2)在对液力缓速器的非稳态流场进行数值计算基础上,对缓速器参考样机进行基本性能台架试验,试验结果与数值计算结果对比分析表明,两者误差在允许范围内,从而为进行基于非稳态流场分析的液力缓速器结构参数优化奠定了基础。
     (3)对液力缓速器原样机的各主要结构参数(循环圆形状、叶片数目、叶片前倾角及叶片楔角)分别进行了缓速器流场特性和制动转矩及转矩系数影响的计算分析和液力损失分析,研究了各单参数对缓速器制动性能的影响。在此研究基础上,分析了上述各主要结构参数之间的相关性,对多参数共同作用的非稳态流场进行了数值计算与分析,使液力缓速器结构参数得到了进一步优化,在此基础上,将流场分析和有限元分析相结合,对高转速、全充液工况的工作叶片进行强度校核,进而确定了满足要求的优化方案。对基于原样机结构参数进行数值计算的性能与基于优化方案结构参数进行数值计算的性能对比表明,优化后的方案不但增大了缓速制动扭矩,同时也保证了缓速器的工作可靠性。在此基础上,进行了基于流场数值解的液力缓速器充放油时间计算方法研究,并对基于优化方案缓速器的充、放油时间进行了建模与计算。
     (4)为分析基于优化方案的液力缓速器对整车缓速制动性能的影响,以重型车为研究对象,建立了液力缓速器作用下的整车缓速制动性能仿真模型,在通过整车试验验证了仿真模型的有效性基础上,对长时间下坡缓速制动和紧急情况下快速制动两种工况进行了仿真分析,结果表明,基于优化方案结构参数的缓速器整车缓速制动性能比基于原样机参数的缓速制动性能有进一步提高。
     本文有关基于非稳态流场分析的车用液力缓速器参数优化方法、研究内容和研究结果,对车用液力缓速器的优化设计和性能预测有一定的理论与技术参考价值。
At the present time, with constant development of China’s economy, the conditions of the road transport are improved year by year, both the trucks and the buses are developed towards the direction of high-power and high-load. Much severer requirements of the vechicle’s drving safty have been proposed because of the vechicle’s heavy-duty and high-speed, which means a severer requirement has been proposed to improve the vechicle’s braking perfermance. For the longtime frequent braking, the conventional drum brake or disc brake couldn’t meet the referred need any more. In this context, an additional brake assist system is a must for the automobile. The hydraulic retarder, a brake assist parts, is well worth to be used widely, for it has the advantages of providing braking force durably, more effective, much safer and energy-conserving and environment-protective. However, there are not enough studies on the hydraulic retarder in our country at present. And there is no formed quantification theory for designing the hydraulic retarder either. For these reasons, there won’t be any breakthrough development on the technology of retarding and braking in our country. Especially for the three dimensional flow field theory which has been developed lately in the outer world, relatively there are hardly any studies and products in our country. Hencely, associating with the high-tech research project“The study of the key technology of vechicle used hydraulic retarder”, the enterprise project“The development of vechicle used electric controlled hydraulic retarder”, three-dimentional unsteady numerical caculations on the internal flow of the hydraulic retarder based on the theory of Computational Fluid Dynamics(CFD) and three-dimensional multiphase flow have been done. Based on the deep study on how the single parameter affects the retarder’s braking performances, the correlation among the structural parameters is analyzed. Finally, the optimal selection for structural parameters of the hydraulic retarder is acquired, and at the same the optimal design method for structural parameters of the hydraulic retarder is obtained, which will have important reference value on further studying and improving the hydraulic retarder’s performances.
     1. Numerical Simulation of Unsteady Flow in Hydraulic Retarder
     Depending on the variation of the amount of charging oil in working cavity, hydraulic retarder achieves the retarding capacity of different working conditions, which has internally complex three-dimensional unsteady viscous flow. For the working characteristics of the hydraulic retarder, the internal flow field using three-dimensional numerical simulation of transient flow when the oil charging rate of the internal flow field is 25%, 50%, 75%, 100% are analyzed. The specific methods of the calculation are as follows: the SIMPLEM algorithm is used in velocity-pressure coupling algorithm; the second-order upwind scheme is used in space discrete format; the sliding-mesh method is used in interface between the stator and rotor, the blade’s surface of the flow pass and the external ring surface are set as the wall conditions of the internal grid in relative boundary with non-sliding.The extracted entire flow pass is used to calculate the flow field, so that obtains its transient characteristics. The calculation methods and processes of three-dimensional flow field are based on the reference prototype product that produced in Shaanxi Fast Auto Drive Group, including the basic assumptions, geometric model, grid model, boundary conditions, calculation steps, the convergence criteria, and so on.
     When doing numerical calculations of partial charging condition, based on the full understand of the basic control equation , the computing model , the commonly used turbulence models and turbulent numerical method of gas-liquid two-phase flow , the three multi-phase flow model methods in CFD are studied deeply, including VOF model, Mixture model and Eulerian model. For the flow characteristics of hydraulic retarder, Mixture model is selected to compute the retarder transient gas-liquid two-phase flow.
     2. The Analysis of the Unsteady Flow Field of Retarder
     By defining spatial geometry of the working flow pass of the hydraulic retarder, the velocity and pressure field of the inner chord surface, wing surface and section surface of the working flow pass are analyzed. The flow field characteristics of the hydraulic retarder’s rotor and stator are deeply studied, and the comprehensive discussion of the cause of formation is conducted. At the same time, combining with the loss analysis method, the flow field analysis is more in-depth, and many valuable conclusions are obtained.
     Through the pressure distribution on the chord surface, the maximum pressure appears near the angle between the outer ring and the pressure surface. After contrasting the velocity distribution, it is found that the fluid mainly impact here. So when designing the retarder’s structure, round corners should be properly added to let the transition be evenly. The pressure on the front edge of the blade rises as the rotate speed increases. This phenomenon will threaten the strength of the blade edge. Consequently, proper blade wedge angle is important when conduct the structure design.
     From the distribution of relative velocity of the wing surface, it is not difficult to find that the main factor that influences the velocity vector’s direction is the blade’s lean angle. The smoother the velocity distributes, the steadier the brake torque outputs. So when designing the stator and the rotor, it can be based on velocity vector distribution of the flow field to select the proper blade inclination.
     From the velocity field and pressure field of the grid-interface, it is not difficult to find that the liquid inflows and outflows at the surface at the same time, which makes the interchange between the entrance and the exit where the liquid flows circularly produces a large number of vortex. The more the vortex increased and strengthed, the bigger.the brake torque becomes.
     By the analysis of the internal flow field of the hydraulic retarder, a better understanding of its working mechanism could be aquired. The analysis of the loss of hydraulic can give a direct viewing of the relationship between the internal characteristics and the external characteristics, and all of these can lay an important foundation for the hydraulic retarder’s optimization design.
     3. The Characteristics Prediction and Experimental Verification of Hydraulic Retarder
     Based on the numerical solution of the three-dimensional flow field, the external characteristic of the hydraulic retarder is calculated. At the same time, the performance test of the prototype retarder is performed on hydraulic transmission test bench. The errors between simulation and test are within the allowable engineering range, which proves the validity of the simulation method used in this paper, simultaneously proves the feasibility of calculating the performance of hydraulic retarder by using CFD numerical simulation method.
     4. Structural Parameters Optimization of Automotive Hydraulic Retarder Based on Unsteady Flow Field Analysis
     The main structure parameters of hydraulic retarder are the shape of circulation circle, blade number, blade front rake angle and blade wedge angle, etc. In this paper, based on the original prototype, the loss analysis is used to obtain how each of the structural parameters influence the braking performance of hydraulic retarder, then the correlation among the structural parameters is analyzed and the model is further optimized. At the same time, the flow field analysis results are combined with finite element analysis to check the blade strength. The three-dimensional model of the blade is imported into the ANSYS—a finite element analysis software, and the pressure datas from the fluid numerical simulation results are also imported into the ANSYS and loaded on the blades by the method of coordinate transformation and multiple linear regression. The working blade strength in the condition of high-speed and fully liquid-filled are checked, then the optimization design is obtained. The simulation results between the original prototype and optimized model show that the optimized model not only increases braking torque but also ensures a reliable work of the retarder. Based on the optimized model, a charging and draining oil mathematic model is established and the oil charging and draining time is calculated, by which the calculation method using numeirical simulation results for oil charging and draining time is also studied.
     The heavy truck braking performance simulation model is established to analyze the influence of the optimized hydraulic retarder on the whole vehicle braking performance. After experimental verification for the whole vehicle braking model, a long time downhill braking under low speed and emergency braking in high speed is analyzed. Both of the simulation results show that the optimized hydraulic retarder matches the vehicle more reasonable than before.
     The parametric design method, study content and results of the hydraulic retarder based on the unsteady flow field analysis will have some theoretical and technical reference value on the optimization design and performance prediction for the hydraulic retarder’s braking performances.
引文
[1]何仁.汽车辅助制动装置[M].北京:化学工业出版社,2005.
    [2]彭震军.液力缓速器与客车安全性能[J].商用汽车,2007(1):99.
    [3]黄榕清,李刚营,胡宏.液力缓速器和电涡流缓速器[J].机电工程技术,2005(10):82-85.
    [4]刘增岗,张炳荣,李末.汽车缓速器的发展和法规探讨[J].城市车辆,2006(2):51-53.
    [5]卢国钊。电涡流缓速器应用情况分析[J].城市公共交通,2003(6):27-28.
    [6]吴兵波.电涡流缓速器的理论研究和设计开发[D].北京:北京工业大学,2004.
    [7]孙为民.电涡流缓速器的理论研究[D].北京:北京工业大学,2005.
    [8]刘少林.电涡流缓速器性能测试系统的研究[D].浙江:浙江大学,2004.
    [9]罗治中.电涡流缓速器在城市公交车上应用效果的研究[J].城市车辆,2003(3):P45-47.
    [10] B. V. Marathe,B.Lakshminarayana,Y. Dong.Experimental and Numerical Investigation of Stator Exit Flow Field of an Automotive Torque Converter[J].ASME 94-GT-32.
    [11] B. V. Marathe,B. Lakshminarayana,D. G. Maddock.Experimental Investigation of Steady and Unsteady Flow Field Downstream of Automotive Torque Converter Turbine and Inside the Stator PartⅠ: Flow at the Exit of Turbine[J].ASME 95-GT-231.
    [12] B. V. Marathe,B. Lakshminarayana,D. G. Maddock.Experimental Investigation of Steady and Unsteady Flow Field Downstream of Automotive Torque Converter Turbine and Inside the Stator PartⅡ: Unsteady Pressure on the Stator Blade Surface[J].ASME 95-GT-232.
    [13] R. R. By,B. Lakshminarayana.Measurement and Analysis of Static Pressure Field in a Torque Converter Pump[J].ASME Journal of Fluids Engineering.1995,117:109-115.
    [14] R. R. By,R. Kunz,B. Lakshminarayana.Navier-Stokes Analysis of the Pump Flow Field of an Automotive Torque Converter[J].ASME Journal of Fluids Engineering,1995,117,116-122.
    [15] Dong Yu,Vamshi Korivi,Pradeep Attibele,et al.Torque Converter CFD Engineering PartⅠ: Torque Ratio and K Factor Improvement through Stator Modifications [C]//SAE Paper 2002-01-0883.
    [16] Dong Yu,Vamshi Korivi,Pradeep Attibele,Yiqing Yuan.Torque Converter CFD Engineering PartⅡ: Performance Improvement through Core Leakage Flow and Caviation Control[C]// SAEPaper 2002-01-0884.
    [17] Liu Yongfu. An experimental investigation on fluid dynamics and performance of an automotive torque converter[D]. Central County: Pennsylvania State University,2001.
    [18] Flack R,Brun K.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump——PartⅠ:Model and Flow in a Rotating Passage[J] .ASME Journal of Fluids Engineering,2005, 127:66-74.
    [19] Flack R,Brun K.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump——PartⅡ:Flow in a Curved Stationary Passage and Combined Flows[J].ASME Journal of Fluids Engineering,2005,127:75-82.
    [20] Kraus S O,Flack R,Habsieger A,et al.Periodic Velocity Measurements in a Wide and Large Radius Ratio Automotive Torque Converter at the Pump /Turbine Interface[J].ASME Journal of Fluids Engineering,2005,127:308-316.
    [21] Leonard D. Whitehead,Ronald D. Flack.Velocity Measurements in an Automotive Torque Converter PartⅠ—Average Pump Measurements[J].Tribology Transactions.1999,42:687-696.
    [22] Ronald D. Flack,Leonard D. Whitehead.Velocity Measurements in an Automotive Torque Converter PartⅡ—Average Turbine and Stator Measurements[J] . Tribology Transactions.1999,42:697-706.
    [23] Shieh T,Perng C,Chu D,et al.Torque Converter Analytical Program for Blade Design Process[C] //SAE Paper 2000-01-1145.
    [24] Masatoshi Yamada,Kenji Imai,Takashi Iwaki.Numerical Analysis of the Torque Converter Stator Blade by the Boudary Element Method[C]//SAE Paper 921692.
    [25] Hisashi Watanabe,Kazunori Yoshida,Masatoshi Yamada,et al.Flow Visualization and Measurement in the Stator of a Torque Converter[C]//JSAE 9541263:25-30.
    [26] Hisashi Watanabe,Tetsuo Kurahashi,Masahiro Kojima.Flow Visualization and Measurement of Torque Converter Stator Blades Using a Laser Sheet Lighting Method and a Laser Doppler Velocimeter[C]//SAE Paper 970680.
    [27]久保賢明,江尻英治.LDVトルクコンバ—タの内部流れ計測[C].日本機械学会論文集(B編)64卷626号,1998.
    [28]安部浩也,名井信雄.トルヮコンバータに於けるステータ翼列流出角修正による簡易性能予测法[C]//自動車技術会学術講演会前刷集,1995:121-124.
    [29] Yang Seunghan,Shin Sehyun,Bae Incheol,et al.A Computer-Integrated Design Strategy for Torque Converters using Virtual Modeling and Computational Flow Analysis [C]//SAE Paper 1999-01-1046.
    [30] Sehyun Shin,Hyukjae Chang,et al.Effect of Scroll Angle on Performance of Automotive Torque Conveter[C]//SAE Paper 2000-01-1158.
    [31] Sehyun Shin,Hyukjae Chang,Mahesh Athavale.Numerical Investigation of the Pump Flow in an Automotive Torque Converter[C]//SAE Paper 1999-01-1056.
    [32] Sehyun Shin,Kyung.Joon Kim,Dong.Jin Kim,et al.The Effect of Reactor Blade Geometry on the Performance of an Automotive Torque Converter[C]//SAE Paper 2002-01-0885.
    [33] H.Huitenga,N.K.Mitra.Improving Startup Behavior of Fluid Couplings Through Modification of Runner Geometry:Part I—Fluid Flow Analysis and Proposed Improvement .Journal of Fluids Engineering,2000(4):683~688.
    [34] H.Huitenga,N.K.Mitra.Improving Startup Behavior of Fluid Couplings Through Modification of Runner Geometry:Part II—Modification of Runner Geometry and Its Effects on the Operation Characteristics[J].Journal of Fluids Engineering,2000(4):689~693.
    [35]田华,葛安林,马文星,等.液力变矩器流场损失的分析[J].吉林大学学报(工学版),2004 (4):559-563.
    [36] Ma Wengxing, Liu Chunbao, Xu Rui, et al. Calculation Method of Axial Force in Hydrodynamic Torque Converter Based on Numerical Solution of Three-Dimensional Flow Field[C].Conference Proceedings of 5th International Symposium on Fluid Power Transmission and Control ,2007.
    [37] Liu Yue,Pan Yuxue,Liu Chunbao. Numerical analysis on three.dimensional flow field of turbine in torque converter[J].Chinese Journal of Mechanical Engineering (English Edition),2007,20(2).
    [38] Ma Wenxing, Liu Chunbao, Wu Kaifu. Numerical Simulation and Analysis on the Control of Flow Separation in Hydrodynamic Coupling[C]. Conference Proceedings of 5th InternationalSymposium on Fluid Power Transmission and Control ,2007.
    [39]李雪松,马文星,吴允柱.液力偶合器制动工况三维流场数值模拟及制动转矩计算.第四届全国流体传动及控制学术会议论文集.大连,2006:659—664.
    [40]马文星,何延东,刘春宝.液力传动研究现状分析及展望[J].农业机械学报,2008(07):51-55.
    [41]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1999.
    [42]刘春宝,马文星,褚亚旭.多流动区域耦合算法在液力元件中的应用[J].吉林大学学报(工学版),2008,38(6):1342-1347.
    [43]刘悦,马文星,刘春宝.综合式液力变矩器内特性的计算与分析[J].吉林大学学报(工学版),2008,38(1):70-74.
    [44]才委,马文星,褚亚旭,等.液力变矩器导轮流场数值模拟与试验[J].农业机械学报,2007,38(8):11-14.
    [45]刘伟辉,刘春宝,汪清波,等.YJ350液力变矩器性能改进研究[J].工程机械,2008,39(7):60-63.
    [46]才委,刘春宝.发动机与液力变矩器匹配软件的应用[J].工程机械,2006(11).
    [47]刘春宝.轿车扁平化液力变矩器研究[D].长春:吉林大学机械科学与工程学院,2009.
    [48]才委,马文星,刘春宝,等.基于三维流场计算的液力变矩器特性预测方法[J].哈尔滨工程大学学报,2007,28(3):316-319.
    [49]商高高,何仁,陆森林.液力变矩器性能特性的数学模型[J].江苏理工大学学报,1999(1):27~31.
    [50]商高高,何仁.发动机与液力变矩器共同工作点的加速算法[J].机械设计与制造工程,2000(5):16-20.
    [51]商高高,何仁.发动机与液力变矩器共同工作特性的分析[J].江苏理工大学学报(自然科学版),2000(6):65-68.
    [52]臧发业,商高高.车辆液力传动的特性与匹配研究[J].汽车科技,2001(5):12-14.
    [53] Wei Wei, Yan Qingdong.Study on Hydrodynamic Torque Converter Parameter Integrated Optimization Design System Based on Tri.Dimensional Flow Field Theory[C]//SAE 2008-01-1525.
    [54]彭靖,闫清东,魏巍.基于OpenGL的液力变矩器叶片可视化设计[J].机电产品开发与创新,2006(3):74-76.
    [55]闫清东,魏巍,彭静.液力变矩器宽度比敏感性数值研究[J].北京理工大学学报.2006(5),413-416.
    [56]闫清东,项昌乐.液力变矩器循环圆和叶片的计算机辅助设计[J].兵工学报.1995(1),25-34.
    [57]项昌乐,肖荣,阎清东等.牵引.制动型液力变矩器流场分析[J].工程机械,2005(5):43-46.
    [58]王峰,闫清东,王书灵.基于CFD和FEA的叶片强度分析[J].北京理工大学学报,2006(12):1052-1060.
    [59]王峰,闫清东,马越,王书灵.基于CFD技术的液力减速器性能预测研究[J].系统仿真学报,2007(3):1390-1396.
    [60]严鹏.基于CAD/CFD的轿车液力变矩器现代设计分析集成系统的研究[D].上海:同济大学汽车学院,2005.
    [61]吴晓栋,谢硕.轿车液力变矩器的改进设计方法研究[J].汽车研究与开发,2002(6):19-23.
    [62]严鹏,吴光强.液力变矩器性能分析[J].同济大学学报自然科学版,2004,32(11):1504-1507.
    [63]陆忠东,吴光强.液力变矩器流场分析与设计的研究现状及展望[J].船舶工程,2008(4):1-5.
    [64]何彦东.基于CFD的大功率调速型液力偶合器设计[D].长春:吉林大学机械科学与工程学院,2008.
    [65]吴开府.液力偶合器流场数值模拟及其分离流动控制研究[D].长春:吉林大学机械科学与工程学院,2005.
    [66] Timothy J.Cooney,Paulo Roberto Cassoli Mazzali. The MT643R-An Automatic Transmission with Retarder for the Latin American Market[R]. SAE 973127,1997.
    [67]金毅,项昌乐,马跃.车用液力减速器技术的应用于发展趋势分析[J].机床与液压,2007(10):186-195.
    [68]黄榕清,吴磊,邵建华.汽车液力缓速器的原理及应用[J].汽车电器,2006(11):9-11.
    [69] Timothy J.Cooney,Joel E Mowatt. Development of a Hydraulic Rrtarder for the Allison AT545R Transmission[R]. SAE 952606,1995.
    [70]王铁.车用电控液力缓速器三维流场分析的仿真方法研究[D].长春:吉林大学汽车学院,2007.
    [71]张玉玺.液力缓速器电控系统及控制方法研究[D].长春:吉林大学汽车学院,2008.
    [72]刘岩.电控液力缓速器进气系统的压力控制阀特性研究[D].长春:吉林大学汽车学院,2007.
    [73]王凯峰.液力缓速器的热交换系统传热性能仿真与试验方法研究[D].长春:吉林大学汽车学院,2007.
    [74]陆中华.重型汽车电控液力缓速器整车制动性能仿真与分析[D].长春:吉林大学汽车学院,2007.
    [75]高博麟.中型车与液力缓速器匹配特性的仿真研究[D].长春:吉林大学汽车学院,2009.
    [76]李雪松,程秀生,苗丽影等.液力缓速器内流场三维瞬态数值模拟及特性预测[J].汽车技术,2009(10):34-39.
    [77]严军,何仁,鲁明.液力缓速器变叶片数的三维数值模拟[J].江苏大学学报(自然科学版),009,30(1):27-31.
    [78]严军,何仁,鲁明.液力缓速器叶片变角度的缓速性能分析[J].农业机械学报,2009,40(4): 06-209,226.
    [79]何仁,严军,鲁明.液力缓速器三维数值模拟及性能预测[J].汽车工程,2009,31(3):250-252,266.
    [80]过学迅,时军.车辆液力减速制动器的设计和试验研究[J].汽车工程,2003(3):31-34.
    [81]时军,过学迅.车用液力减速制动器的现状与发展趋势[J].车辆与动力技术.2001(4):52-57.
    [82]时军.车用液力减速制动器研究[D].武汉:华中科技大学,2003.
    [83]鲁毅飞,颜和顺,项昌乐,闰清东.车用液力缓速器制动性能的计算方法[J].汽车工程.2003(vol.25)No2:182-185.
    [84]范守林.福伊特液力缓速器(下)[J].商用汽车,2004(9):75-79.
    [85]吴修义.德国福伊特液力缓速器[J].汽车与配件,2005,No12:30-33.
    [86]范守林.福伊特液力缓速器(上)[J].商用汽车,2004(8)75-77.
    [87]朱经昌,魏宸官,郑慕侨.车辆液力传动(上册)[M].北京:国防工业出版社,1982.
    [88]王峰.基于流场分析的液力缓速器制动性能分析[D].北京:北京理工大学,2007.
    [89]严军.车用液力缓速器设计理论和控制方法的研究[D].江苏:江苏大学汽车学院,2009.
    [90] Fluent Inc., Modeling Flows in Moving and Deforming Zones[M].Fluent Inc.,2003.
    [91]杨军虎、张炜、王春龙等.潜水轴流泵全流道三维湍流数值模拟及性能预估[J].排灌机械,2006,24(4).
    [92]包雨云,高正明,施力田.多相流搅拌反应器研究进展[J].化工进展,2005 ,24 (10).
    [93] F.Felten, Y.Fautrelle, Y. Du Terrail, O. Metais, Numerical modeling of electrognetically-riven turbulent flows using LES methods. Applied Mathematical Modelling, 28(1):15-27, 2004.
    [94] A.A.Feiz,M.Ould-Rouis,G.Lauriat, Large eddy simulation of turbulent flow in a rotating pipe. International Journal of Heat and Fluid Flow, 243(3):412-420, 2003.
    [95] Mary Ivan,Sagaut Pierre.Large eddy simulation of flow around an airfoil near stall. AIAA Journal,40(6):1139-1145,2002.
    [96] D.G.E.Grigoriadis, J.G.Bartzis, A.Goulas, Efficient treatment of complex geometries for large eddy simulations of turbulent flows. Computers and Fluid, 33(2):201-222,2004.
    [97] L.Shen, D.K.P.Yue, Large-eddy simulation of free-surface turbulence. Journal of Fluid Mechanics, n440:75-116,2001.
    [98] R.E.Julian, K.Smolarkiewicz, Eddy resolving simulations of turbulent solar convection. International Journal for Numerical Method in Fluids, 39(9):855-864, 2002.
    [99] J.C.Li, Large eddy simulation of complex turbulent flows: Physical aspects and research trends. Acta Mechanica Sinica, 17(4):289-301, 2001.
    [100]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [101] M.B.Abbott, D.R.Basco, Computational Fluid Dynamics-An Introduction for Engineers. Longman Scientific & Technical, Harlow, England, 1989.
    [102] Y.Lee, A study and improvement of large eddy simulation for practical applications. Ph.D dissertation, Texas A&M University, U.S.A, 1992.
    [103]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [104]周莉,席光,邱凯等.搅拌器内动/静叶相干非定常流场的数值分析[J].西安交通大学学报,2002,36(9).
    [105]唐辉,何枫.离心泵内流场数值模拟[J].水泵技术,2002(3):3-7.
    [106]田华.液力变矩器现代设计理论的研究[D].长春:吉林大学汽车学院,2004.
    [107]章梓雄,董曾南.粘性流体力学[M].北京:冶金工业出版社,1998.
    [108]庄礼贤,尹协远,马晖扬.流体力学[M].安徽:中国科学技术大学出版社,1991(1).
    [109] E.Ejiri,M.Kubo.Performance Analysis of Automotive Torque Elements.ASME Journal of Fluids Engineering, Vol.121.266-275,1999.
    [110]王瑞金,张凯,王刚.Rueni技术基础与应用实例[M].北京:清华人学出版社,2007
    [111]林宗虎.气液两相流和沸腾传热[M].西安:西安交通大学出版社,2003.
    [112]何志霞,袁建平,李德桃等.柴油机喷嘴喷孔内气液两相湍流场二维数值模拟[J].内燃机工程,2005(6):18-21.
    [113]周华,夏南.油气分离器内气液两相流的数值模拟[J].计算力学学报,2006(6):766-711.
    [114]余志毅,曹树良,王国玉.叶片式混输泵内气液两相流的数值计算[J].工程热物理学报,2007(1):46-48.
    [115]卢金铃,席光,祁大同.离心泵叶轮内气液两相三维流动数值研究[J].工程热物理学报,2003(2):237-240.
    [116]谭立新.水气二相流数值模拟研究[D].成都:四川大学,1999.
    [117] Jose A.Caridad,Frank Kenyery.Slip Factor for Centrifugal Impellers Under Single and Two-phase Flow Conditions[J].Journal of Fluids Engineering.2005(2):317-321.
    [118] Donata M.Fries, Severin Waelchli,Philipp Rudolf von Rohr.Gas-liquid two-phase flow in meandering microchannels[J].Chemical Engineering Journal.2008(1):37-39.
    [119] V.Stephane.Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flow[J].Proceedings of the ASME/JSME Joint Fluids Engineering Conference.2003:1299-1305.
    [120] Mirko Salewski, Dragan Stankovic,Laszlo Fuchs. A Comparison of Single and Multiphase Jets in a Crossflow Using Large Eddy Simulations[J].Journal of Engineering for Gas Turbines and Power.2007(1):61-68.
    [121] Ivanov Vladimir A, Sarasola Francisco J, Vasquez Sergio A. Multi-phase mixture model applied to cyclone separators and bubble columns[J].Pressure Vessels and Piping Division , 397(1): 317-3241,1999.
    [122]卢家才,李永光,林宗虎等.气液两相流体绕流方柱流动的数值模拟.工程热物理学报,2001,22(6):751-754.
    [123]岳明,徐行,杨茂林.离心式喷嘴内气液两相流动的数值模拟.工程热物理学报,2003,24(5):888-890.
    [124] J.M.Masella, Q.H.Tran, D.Ferre,C.Pauehon. Transient Simulation of Two-phase Flows in Pipes, Int.J. Multiphase Flow, 1998, 24:739-755.
    [125] Lopez M,Bertodano D,Lahey J R,Jones O C.Phase Distribution in Bubbly Two-phase Flow in Vertieal Duets,Int.J. Multiphase Flow, 1994, 20:805-818.
    [126] Ohern T J, Gore R A.Experimental techniques in multiphase flows.ASME, 1991,125(3):379-411.
    [127] Baehalo WD. Experimental methods in multiphase flows. Int.J. Multiphase Flow, 1994,20:261-295.
    [128] Reese J, Fan LS. Transient flow structure in the entrance region of a bubble column using particle image velocimetry, Chem.Engng.Sci., 1994,49(24B):5624-5636.
    [129] Keane RD, Adrian RJ. Optimization of particle image velocimeters, Part I: Double pulsed system, Meas.Sci.Techonlogy, 1990 , 11:1202-1215.
    [130] FanJ.R., MaY.L., Zha X.D., Cen K.F. Predietion of Dense Turbulent Particle Laden Riser Flow with A Eulerian and Lagrange Combined Model. Chem. Eng.Comm., Vol.179,201-218,2000.
    [131]童祖楹,刘详春.液力偶合器[M].上海:上海交通大学出版社,1988.
    [132]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].机械工业出版社,2004.
    [133]阚前华.ANSYS高级工程应用实例分析与二次开发[M].电子工业出版社,2006.
    [134]贾俊平.《统计学》(第3版)[M].中国人民出版社,2008-11.
    [135]何仁,王永涛,赵迎生.汽车联合制动系统的性能仿真分析[J].兵工学报,2007(10)vol.28No.10:1153-1158.
    [136]何仁.汽车辅助制动装置[M].化学工业出版社,2005.