大气压介质阻挡放电特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压气体放电中产生的非平衡等离子体,具有较高的电子能量和较低的离子能量,且包含大量的活性粒子,这些粒子具有很高的化学活性,许多通常不能发生或者需要在苛刻条件下发生的化学反应在这种等离子体氛围下都可以发生因此,大气压气体放电在工业生产上具有广阔的应用前景,从而已成为等离子体物理学界广泛关注的热点领域。
     近年来,人们对大气压介质阻挡放电进行了广泛的实验和模拟研究,对介质阻挡放电的性质已经有了一定的了解和认知。但随着研究的不断深入,人们也深刻地认识到这种放电的复杂性,有许多放电行为还不清楚,一些放电现象还没有得到一致的、合理的解释,等离子体的性质随外部控制参数的变化、放电中的物理化学过程等还远未被掌握。均匀大气压等离子体的稳定机制和有效地控制方法还不完全清楚,有许多方面仍然处于研究之中。本文采用一维流体力学模型,对氦气以及氦氮混合气体中大气压介质阻挡放电特性进行了数值模拟研究,主要包含以下方面的内容及结果:
     1、论文的第一章,简要介绍了大气压介质阻挡放电的研究背景及意义,系统地综述了国内外在该领域的研究现状和研究方法。
     2、论文的第二章,模拟研究了单脉冲大气压氦气均匀介质阻挡放电特性。对外加电压幅值、频率、介质板厚度以及介电常数等参数对均匀大气压介质阻挡放电特性的影响作了系统的研究。给出了一种测定电流脉冲宽度的新方法,即通过计算击穿电压与熄灭电压的时间差来估计脉冲宽度。此外,研究了外加电压幅值和频率对电流脉冲宽度的影响,为实验获得均匀介质阻挡放电,抑制辉光放电向丝状放电的转化提供理论基础。
     3、论文的第三章,对氦气中多脉冲均匀介质阻挡放电进行了模拟研究。研究了外加电压幅值和频率、放电间隙、介质层厚度等参数对放电电流脉冲的数目和相邻两个电流脉冲时间间隔的影响。此外,采用线性拟合的方法来估计形成新的电流脉冲时刻的起始电压和频率,为实验研究多脉冲放电提供理论基础。
     4、论文的第四章,基于射频放电中的恒功率方法,提出用调节电压幅值的方法来保证功率恒定,并给出相应的迭代算式,从而将射频放电中的恒功率方法拓展到大气压介质阻挡放电的恒功率问题研究。研究了恒功率条件下外加电压频率和放电装置问隙对放电电流密度、电流脉冲宽度、放电空间电子密度和电荷密度等特征量的影响。研究结果将为大气压下介质阻挡放电的效率提高及放电装置的优化提供一定的理论指导。
     5、论文的第五章,对氦氮混合气体大气压介质阻挡放电特性进行了模拟研究。仿真过程中充分考虑了在以往模拟过程中有可能被忽视的粒子,其中包括氦亚稳态分子He2*,氮分子离子N4+等。研究了不同含量的氮杂质对放电特性的影响,外加电压幅值和频率的变化对氦氮混合气体放电特性、主要放电机制以及放电特征量的空间分布的影响,以期获得对混合气体放电机理的进一步了解。
For the non-equilibrium plasma produced at atmospheric pressure, its electrons are of higher energy and its ion energies are lower. Especially, it contains a lot of active particles. These particles can reduce the threshold of chemical reactions with other corresponding matters. Therefore, many chemical reactions can occur in low temperature as well as in room temperature in the non-equilibrium plasma. Due to the above, the non-equilibrium plasma is widely used in industrial applications and the plasma physics scientific community has paid much attention to the development of atmospheric pressure non-equilibrium plasma.
     In recent years, many studies on the homogeneous dielectric barrier discharge at atmospheric pressure have been made experimentally and numerically, and some preliminary insights into this discharge have been obtained. However, following these studies the complexity of this discharge, which is located in the dissipative system with strong nonlinearity, has also been understood. In addition, there is the poor knowledge for some discharge behaviors, reasonable and general explanation for some phenomenon occurred in the discharges has not been given, the dependence of the non-equilibrium plasma on the parameters governing the discharge is not well known, and the physical and chemical processes in the discharge is not clear. By reason of these, many aspects of the discharge remain the subject of great interest. In this thesis, the characteristics of the homogenous dielectric barrier discharge at atmospheric pressure in helium and in helium-nitrogen mixture are investigated numerically with the use of a one-dimensional fluid model. The main contents and results are summarized as follows:
     1. In chapter1, background and significance for the studies on the dielectric barrier discharge at atmospheric pressure are briefly introduced, and the systematic analyses on the situations concerning with this study are made.
     2. In chapter2, using helium as working gas, the characteristics of the homogeneous dielectric barrier discharge with single pulse at atmospheric pressure is studied. The effects of several parameters on the homogeneous dielectric barrier discharge at atmospheric pressure are explored. These parameters are the amplitude and frequency of the applied voltage, the thickness of dielectric plate, and the permittivity of dielectric. A method of estimating the pulse width of the discharge by calculating the time interval between the breakdown voltage and extinguishing voltage is proposed. Further, the effect of the amplitude and frequency of the applied voltage on the pulse width of the discharge is investigated, giving the principle of restraining the transition from the glow mode to filamentary mode so as to obtain the homogeneous dielectric barrier discharge.
     3. In chapter3, the homogeneous dielectric barrier discharge with multiple current pulses at atmospheric pressure in helium is investigated numerically. The influences of the parameters, i.e. the amplitude and frequency of the applied voltage, the thickness of dielectric plate, and the gap width of discharge configuration, on the discharge characteristics are analyzed systematically. The characteristics include the number of discharge current pulses and the time interval between two successive discharge current pulses. Moreover, an approach by means of linear fitting is given for estimating the starting voltage and frequency for the formation of a new discharge current pulse. This estimation could provide theoretical references for experimental study on the multiple-pulse discharge.
     4. In chapter4, based on the method used in the radio frequency discharge, a procedure of keeping the constant power in the processes of the discharge by adjusting the amplitude of the applied voltage is proposed and the corresponding iterative formula is given. These extend the constant power method used in the radio frequency discharge into the study on the constant power in the homogeneous dielectric barrier discharge at atmospheric pressure. Under the constant power, the effects of both the frequency of the applied voltage and the gap width of discharge configuration on the characteristic quantities, such as the current density, the discharge pulse width, the electron density, and the charge density, have been investigated systematically, providing theory for high efficiency and for optimization of discharge configuration in the homogeneous dielectric barrier discharge at atmospheric pressure.
     5. In chapter5, the influence of different amounts of nitrogen impurity on the barrier discharge at atmospheric pressure in He-N2admixture gas has been numerically studied. The characteristic of the current density versus N2impurity amount shows a transition point. The influence of the amplitude and frequency of the applied voltage on both N2impurity amount and the current density at the transition point has been particularly investigated. The following conclusions are given. For fixed frequency of the applied voltage, both N2impurity amount and the current density at the transition point increase with increasing amplitude of the applied voltage. Fixing the amplitude of the applied voltage, N2impurity amount at the transition point increases with increasing frequency of the applied voltage, but the minimum value of the current density is not evidently affected by the frequency. In particular, the Townsend discharge mode is observed at the transition point under the present simulation conditions.
引文
[1]B. M. Penetrante, J. N. B.and M. C. Hsiao. Kinetic analysis of nonthermal plasmas used for pollution control [J]. J. Appl. Phys.,1997,36(1):5007-5017.
    [2]白希尧,白敏冬,张芝涛.非平衡等离子体化学研究进展[J].中国基础科学,2003(6):30-37.
    [3]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [4]菅井秀郎.等离子体电子工程学[M].科学出版社,2002.
    [5]T. C. Motie, K. Kelly-Wintenberg and J. R. Roth. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials [J]. IEEE Trans. Plasma Sci.,2000,28(1): 41-50.
    [6]冯允平.高电压技术中的气体放电及应用[M].水利电力出版社,1989.
    [7]B. Eliasson and U. Kogelschatz. Modeling and applications of silent discharge plasmas [J]. IEEE Trans. Plasma Sci.,1991,19(2):309-323.
    [8]U. Kogelschatz. Filamentary, patterned, and diffuse barrier discharges [J]. IEEE Trans. Plasma Sci.,2002,30(4):1400-1408.
    [9]U. Kogelschatz. Dielectric-barrier discharges:their history, discharge physics and industrial applicaiton [J]. Plasma Chemistry and Plasma Processing.,2003, 23(1):41-46.
    [10]S. Okazaki, M. Kogoma, M. Uehara, et al. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source [J]. J. Phys. D:Appl. Phys.,1993,26(5):889-892.
    [11]M. Kogoma, S. Okazaki. Rasing of ozone formatin efficiency in a homogeneous glow discharge plasma at atmospheric pressure [J]. J. Phys. D: Appl. Phys.,1994,27(9):1985-1987.
    [12]Y. Sawada, S. Okazaki and M. Kogoma. Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge [J]. J. Phys. D:Appl. Phys.,1995,28(8):1661-1669.
    [13]R. B. Gadri, J. R. Roth, T. C. Montie. Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma [J]. Surf. Coatings Technol.,2000,131:528-524.
    [14]T. C. Montie, K. K. Wintenberg and J. R. Roth. An overview of research using the one atmosphere uniform glow discharge plasma for sterilization of surfaces and materials [J]. IEEE Trans. Plasma Sci.,2000,28(1):41-50.
    [15]J. R. Roth, D. M. Sherman, R. B. Gadri, et al. A remote exposure reactor for plasma processing and sterilization by plasma active species at one atmosphere [J]. IEEE Trans. Plasma Sci.,2000,28(1):56-63.
    [16]K. K. Wintenberg, D. M. Sherman and J. R. Roth. Air filter sterilization using a one atmosphere uniform glow discharge plasma [J]. IEEE Trans. Plasma Sci., 2000,28(1):64-71.
    [17]P. P. Tsai, L. C. Wadsworth and J. R. Roth. Surface modification of fabrics using a one-atmosphere glow discharge plasma to improve fabric wettability [J]. Textile Res. J.,1997,67(5):359-369.
    [18]N. Danish, M. K. Garg, R. S. Rane, et al. Surface modification of Angora rabbit fibers using dielectric barrier discharge [J]. Applied Surface Sci.,2007, 253 (16):6915-6921.
    [19]S. Trigwell, D. Boucher, I. Carlos. Electrostatic properties of PE and PTFE subjected to atmospheric pressure plasma treatment, correlation of experimental results with atomistic modeling [J]. Journal of Electrostatics., 2007,65 (7):401-407.
    [20]J. K. Kim, J. Sohn, J. H. Cho, et al. Surface Modification of nafion membranes using atmospheric pressure low temperature plasmas for electrochemical app lications [J]. Plasma Processes and Polymers.,2008,5 (4):377-385.
    [21]C. Borcia, G. Borcia, N. Dumitrascu. Relating plasma surface modification to polymer characteristics [J]. Applied Physics A:Materials Science and Processing.,2008,90 (3):507-515.
    [22]D. Pappas, A. Bujanda, J. Demaree, et al. Surface modification of polyamide fibers and films using atmospheric plasmas [J]. Surface and Coatings Technology.,2006,201 (7):4384-4388.
    [23]S. Guimond, I. Rodu, G. Czeremuszkin, et al. Biaxially Oriented Polypropylene (BOPP) surface modification by Nitrogen atmospheric pressure glow discharge (APGD) and by air corona [J]. Plasmas and Polymers.,2002,7 (1):71-88..
    [24]张燕,顾彪,王文春,王德真.常压辉光放电等离子体研究进展及聚合物表面改性[J].合成纤维工业,2006,29(3):42-45.
    [25]毛婷,关志成,王黎明,梁卓,罗海云.丝网电极放电对涤纶纤维表面改性的效果分析[J].高电压技术,2008,34(7):1410-1415.
    [26]方志,王辉,邱毓昌.低温等离子体对聚酯薄膜表面改性的研究[J].印染,2005,31(19):14-17.
    [27]T. Shao, K. Long, C. Zhang, et al. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,2008,41(21):1-8.
    [28]王新新.介质阻挡放电及其应用[J].高电压技术,2009,1(35):1-11.
    [29]J. P. Boeuf. Plasma display panel:physics, recent developments and key issues [J]. J. Phys. D:Appl. Phys.,2003,36(6):53-79.
    [30]A.Von Engel, R. Seeliger, M. Steenbeck. On the glow discharge at high pressure [J]. Zeit. fur Physik.,1933,85:144-160.
    [31]S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki. Stable glow plasma at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,1988,21(5):838-840.
    [32]J. R. Roth, M. Laroussi, C. Liu. One atmospheric uniform glow discharge plasma [P]. U. S. patent 5,414.304.
    [33]F. Massines and G. Gouda. A comparison of polypropylene-surface treatment by filamentary homogenous and glow discharges in helium at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,1998,31(24):3411-3420.
    [34]王新新,卢明泽,蒲以康.空气中大气压下均匀辉光放电的可能性[J].物理学报,2002,51(12):2278-2285.
    [35]Y. S. Akishev, M. Grushin, A. Napartovich and N. Trushkin. Novel AC and DC non-thermal plasma sources for cold surface treatment of polymer films and fabrics at atmospheric pressure [J]. Plasma and Polymers,2002,7(3):261-289.
    [36]王辉,方志,邱毓昌.多针-平板电极介质阻挡放电特性研究[J].高压电器,2004,40(5):321-323.
    [37]J. Tepper, M. Lindmayer, J. Salge. Pulsed uniform barrier discharges at atmospheric pressure [R]. HAKONE VI International Synposium on high pressure, low temperature plasma chemistry. Cork, Ireland, Aug.1998.
    [38]Z. Fang, Y. Qiu, Y. Luo. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air [J]. J. Phys. D:Appl. Phys.,2003,36(23):2980-2985.
    [39]王辉,孙岩洲,方志,曾正中,邱毓昌.不同电极结构下介质阻挡放电的特性研究[J].高压电器,2006,42(1):25-27.
    [40]杨芸,张冠军,杨国清,张源斌,张文元.空气条件下介质阻挡放电影响因素的研究[J].高电压技术,2007,33(2):37-41.
    [41]罗海云,王新新,毛婷,梁卓,吕博,关志成,王黎明.用PET薄膜覆盖金属丝网电极实现大气压空气中均匀放电[J].物理学报,2008,57(7):4298-4303.
    [42]E. E. Kunhardt, K. Becker, L. Amorer. Suppression of the glow-to-arc transition in glow discharges [C]. A. Proc.12th Int. Conf. on gas discharges and their applications. Greifswald, Germany,1997.
    [43]E. E. Kunhardt, K. Becker, L. Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas [J]. IEEE Trans. Plasma Sci., 2000,28(1):189-200.
    [44]S. J. MacGregor, O. Farish, R. Fouracre, et al. Inactivation of pathogenic and spoilage microorganisms in a test liquid using pulsed electric fields [J]. IEEE Trans on Plasma Sci.,2000,28(1):144-149.
    [45]M. Laroussi, I. Alexeff, J. P. Richardson et al. The resistive barrier discharge [J]. IEEE Trans. Plasma Sci.,2002,30(1):158-159.
    [46]王新新,李成榕.用50 Hz工频电压产生大气压下辉光放电[J].高电压技术,2002,28(增刊):39-40.
    [47]F. Massines, A. Rabehi, P. Decomps, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier [J]. J. Appl. Phys.,1998,83(6):2950-2957.
    [48]F. Massines, R. Messaoudi, C. Mayous. Comparison between air filamentary and helium glow dielectric barrer discharges for the polypropylene surface treatment [J]. Plasmas and Polymers.,1998,3(1):43-59.
    [49]F. Massines, G. Gouda, N. Gherardi, et al. The role of dielectric barrier discharge atmosphere and physics on polypropylene [J]. Surface Treatment Plasmas and Polymers Issue.,2001,6(1-2):35-49.
    [50]F. Massines, R. B. Gadri, P. Decomps, et al. Atmospheric pressure dielectric controlled glow discharges:Diagnostics and modeling [C]. Proc.22rd Int. Conf. Phenomena in Ionized Gases, Hoboken, NJ,1996.
    [51]F. Massines, P. Segur, N. Gherardi, et al. Physics and chemistry of a glow dielectric barrier discharge at atmospheric pressure:diagnostics and modeling [J]. Surf. Coat. Technol.,2003,174-175:8-14.
    [52]A. Rabehi, R. B. Gadri, P. Segur, et al. Numberical modeling of high-pressure glow discharge controlled by dielectric barrier [C]. Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, Arlington, Texas.,1994.
    [53]N. Naude, J. P. Cambronne, N. Gherardi et al. Electrical model and analysis of the transition from anatmospheric pressure Townsend discharge to a filamentary discharge [J]. J. Phys. D:Appl. Phys.,2005,38(4):530-538.
    [54]N. Gherardi, G. Gouda, E. Gat, et al. Transition from glow silent discharge to micro-discharges in nitrogen gas [J]. Plasma Sources Sci. Technol.,2000,9(3): 340-346.
    [55]N. Gherardi and F. Massines. Mechanisms controlling the transition from glow silent discharge to streamer discharge in Nitrogen [J]. IEEE Trans. Plasma Sci., 2001,29(3):536-544.
    [56]R. B. Gadri. One atmosphere glow discharges structure revealed by computer modeling [J]. IEEE Trans. Plasma Sci.,1999,27(1):36-37.
    [57]詹花茂,丁立健,李成榕,王新新,李明,姚继莎.火花放电预电离对空气中介质阻挡放电的影响[J].电工电能新技术,2005,24(1):49-51.
    [58]詹花茂,李明,李成榕.介质阻挡放电中的紫外线预电离[J].高电压技术,2005,31(2):62-66.
    [59]郝艳捧,关志成,王黎明,王新新,李成榕.大气压空气辉光放电[J].电工电能新技术,2005,24(2):69-72.
    [60]张锐,刘鹏,詹如娟.大气压辉光放电研究现状及应用前景[J].物理,2004,33(6):430-434.
    [61]C. H. Su and H. L. Lam. Continuum theory of spherical electrostatic probes [J]. Phys. Fluids,1963,6(10):1479-1491.
    [62]I. M. Cohen. Asymptotic theory of spherical electrostatic probes in a slightly ionized, collision-dominated gas [J]. Phys. Fluids,1963,6:1492.
    [63]M. R. Talukder, D. Korzec and M. Kando. Probe diagnostics of high pressure microwave discharge in helium [J]. J. Appl. Phys.,2002,91(12):9529-9538.
    [64]A. Scheeline and M. J. Zoellner. Thomson scattering as a diagnostic of atmospheric pressure discharge [J]. Appl. Spec.,1984,38(2):245-248
    [65]J. Torres, J. Jonkers, M. J. Van de Sande, et al. An easy way to determine simultaneously the electron density and temperature in high-pressure plasmas by using stark broadening [J]. J. Phys. D:Appl. Phys.,2003,36(13):55-59.
    [66]Z. Fang, Y. Qiu and E. Kuffel. Study on the discharge characteristics of atmospheric pressure glow discharge in air [C]. XVI Int. Conf. on gas discharges ane their appliacations., Xi'an, September,2006,11-15.
    [67]K. Takaki, M. Hosokawa, S. Sasaki, et al. Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode [J]. Appl. Phys. Lett., 2005,86(15):151501
    [68]R. Zhang, R. J. Zhan, X. H Wen, et al. Investigation of the characteristics of atmospheric pressure surface barrier discharges [J]. Plasma Sources Sci & Technol.,2003,12(4):590-596.
    [69]Y. B. Golubovskii, V. A. Maiorov, J. Behnke, et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier-discharge in nitrogen [J]. J. Phys. D:Appl. Phys.,2002,35(8):751-761.
    [70]Y. B. Golubovskii, V. A. Maiorov, J. Behnke, et al. Influence of elementary processes over a homogeneous barrier discharge in helium [C]. Proc. of Ⅷ Int. Symp. on high pressure low temperature plasma chemistry., Puhajarve, Estonia,21-25, July,2002,1:48-52.
    [71]Y. B. Golubovskii, V. A. Maiorov, J. Behnke, et al. Some aspects of modeling of a uniform barrier discharge in nitrogen [C]. Proc. of 16th Escampig. Grenoble, France,14-18, July,2002,1:233-234.
    [72]Y. B. Golubovskii, V. A. Maiorov, J. Behnke, et al. Modeling of the homogeneous barrier discharge in helium at atmospheric pressure [J]. J. Phys. D:Appl. Phys.,2003,36(1):39-49.
    [73]Y. B. Golubovskii, V. A. Maiorov, J. Behnke, et al. On the stability of a homogeneous barrier discharge in nitrogen relative to radial perturbations [J]. J. Phys. D:Appl. Phys.,2003,36(8):975-981.
    [74]I. Radu, R. Bartnikas, M. R. Wertheimer. Dielectric barrier discharge in helium at atmospheric pressure:experiments and model in the needle-plane geometry [J]. J Phys D:Appl. Phys.,2003,36:1284-1291.
    [75]I. Radu, R. Bartnikas, M. R. Wertheimer. Dielectric barrier discharge in atmospheric pressure helium in cylinder-plane geometry:experiments and model [J]. J Phys D:Appl. Phys.,2004,37:449-462.
    [76]王艳辉,王德真.介质阻挡均匀大气压辉光放电数值模拟研究[J].物理学报,2003,52(7):1694-1699.
    [77]王艳辉,王德真.大气压下多脉冲均匀介质阻挡放电的研究[J].物理学报,2005,54(3):1295-1299.
    [78]王艳辉,王德真.介质阻挡均匀大气压氮气放电特性研究[J].物理学报,2006,55(11):5923-5929.
    [79]张远涛,王德真,王艳辉.大气压介质阻挡丝状放电时空演化数值模拟[J]. 物理学报,2002,54(10):4808-4815.
    [80]Y. T. Zhang, D. Z. Wang and Y. H. Wang. Two-dimensional numerical simulation of splitting and uniting of current-carrying zones in a dielectric barrier discharge [J]. Physics of Plasma.,2005,12:103508.
    [81]D. S. Lee, J. M. Park, S. H. Hong, et al. Number simulation on mode transition of atmospheric dielectric barrier discharge in helium-oxygen mixture [J]. IEEE Trans. Plasma Sci.,2005,33(2):949-957.
    [82]B. Eliasson, M. Hirch and U. Kogelschatz. Ozone synthesis from oxygen in dielectric barrier discharges [J]. J. Phys. D:Appl. Phys.,1987,20(11): 1421-1437.
    [83]D. Braun, U. Kuchler and G. J. Pietsch. Microdischarges in air-fed ozonizers [J]. J. Phys. D:Appl. Phys.,1991,24(4):564-572.
    [84]U. Kogelschatz, Eliasson B, and Egli W. From ozone generators to flat screen: history and future potential of dielectric-barrier discharges [J]. Pure Appl. Chem.,1999,71(10):1819-1828.
    [85]J. Meunier, P. Belenguner and J. P. Boeuf. Numberical model of an ac plasma display panel cell in xenon mixture [J]. J. Appl. Phys.,1995,78(2):731-745.
    [86]J. P. Boeuf, L. C. Pitchford. Caculated characteristics of an ac plasma display panel cell [J]. IEEE Trans. Plasma Sci.,1996,24(1):95-96.
    [87]X. P. Xu and M. J. Kushner. Multiple ion composition of expanding microdischarges in dielectric barrier discharges [J]. J. Appl. Phys.,1998, 83(12):7522-7532.
    [88]Z. Falkenstein and J. J. Coogan. Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures [J]. J. Phys. D:Appl. Phys.,1997,30(5):817-825.
    [89]N. Y. Babaeva and G. V. Naidis. Two-dimensiongal modeling of positive streamer dynamics in non-uniform electric fields in air [J]. J. Phys. D:Appl. Phys.,1996,29(9):2423-2431.
    [90]J. Li and S. K. Dhali. Simulation of microdischarges in a dielectric-barrier discharge [J]. J. Appl. Phys.,1997,82(9):4205-4210.
    [91]G. Steinle, D. Neundorf, W. Hiller, et al. Two-dimensional simulation of filaments in barrier discharges [J]. J. Phys. D:Appl. Phys.,1999,32(12): 1350-1356.
    [92]G. E. Georghiou, R. Morrow and A. C. Metaxas. The two-dimensional simulation of streamers using the FE-FCT method [J]. J. Phys. D:Appl. Phys., 2000,33(3):27-32.
    [93]K. Kozlov, O. S. Shepelyuk and V. G. Samoilovich. Spatio-temporal evolution of dielectric barrier discharge channels at atmospheric pressure [J]. Proc.12th Ind. Conf. Gas discharges and their applications,1995, Tokyo, Japan, 2:142-145.
    [94]A. A. Kulikovsky. Positive streamer between parallel plate electrodes in atmospheric air [J]. J. Phys. D:Appl. Phys.,1997,30(3):441-450.
    [95]G. E. Georghiou, A. P. Papadakis, R. Morrow, et al. Numerical modeling of atmospheric pressure gas discharge leading to plasma production [J]. J. Phys. D:Appl. Phys.,2005,38:303-328.
    [96]I. Brauer, C. Punset, H. G. Purwins, et al. Simulation of self-organized filaments in a dielectric barrier glow discharge plasma [J]. J. Phys. D:Appl. Phys.,1999,85(11):7569-7572.
    [97]C. Wu and E. E. Kunhardt. Formation and propagation of streamers in N2 and N2-SF6 mixtures [J]. Phys. Rev. A.,1988,37(11):4396-4406.
    [98]J. M. Guo, et al. Two-dimensional nonequilibrium fluid models for streamers [J]. IEEE Trans. Plasma Sci.,1993,21(6):684-685.
    [99]A. Bogaerts and R. Gijbels. Numerical modeling of gas discharge plasmas for various applications [J]. Vacuum,2003,69:37-52.
    [100]X. Yuan and L. L. Raja. Computational Study of Capacitively Coupled High-Pressure Glow Discharges in Helium [J]. IEEE Trans. Plasma Sci.,2003, 31(4):495-503.
    [101]A. L. Ward. Calculations of Cathode-Fall Characteristics [J]. J. Appl. Phys., 1962,33(9):2789-2794.
    [102]R. Deloche, P. Monchicourt, M. Chere, et al. High-pressure helium afterglow at room temperature [J]. Phys. Rev. A.,1976,13(3):1140-1176.
    [103]A. A. Kulikovsky. The structure of streamers in N2 I:fast method of space-charge dominated plasma simulation [J]. J. Phys. D:Appl. Phys.,1994, 27(12):2556-2563.
    [104]R. Morrow and P. F. Williams. Two-dimensional studies of streamers in gas [J]. J. Appl. Phys.,1999,32(5):20-22.
    [105]D. L. Scharfetter and H. K. Gumuuel. Large-signal analysis of a silicon read diode oscillator [J]. IEEE Trans. Electron Devices.,1969,16(64):64-67.
    [106]J. P. Boeuf, L. C. Pitchford. Pseudospark discharge via computer simulation [J]. IEEE Trans. Plasma Sci.,1991,19(2):286-296.
    [107]A. Fiala, L.C. Pitchford and J. P. Boeuf. Two-dimensional, hybrid model of low-pressure glow discharges [J]. Phys. Rev. E.,1994,49:5607-5633.
    [108]A. A. Kulikovsky. A more accurate scharfetter-gummel algorithm of electron transport for semiconductor [J]. J. Comp. Phys.,1995,119(1):149-155.
    [109]I. Radu, R.Bartnikas and M.R.Wertheimer. Frequency and voltage dependence of glow and pseudoglow discharges in helium under atomospheric pressure [J]. IEEE Trans. Plasma Sci.,2003,31(6):1363-1378.
    [110]L. Mangolini, K. Orlov, U. Kortshagen J. Heberlein and U.Kogelschatz. Radical structure of a low-frequency atmospheric-pressure glow discharge in helium [J]. Appl. Phys. Lett.,2002,80(10):1722-1724.
    [111]李雪辰,贾鹏英,刘志辉,李立春,董丽芳.介质阻挡放电丝模式和均匀模式转化的特性[J].物理学报,2008,57(2):1001-1007.
    [112]H. Y. Luo, Z. Liang, B. Lv, X. X. Wang et al. Observation of the transition from a Townsend discharge to a glow discharge in helium at atmospheric pressure [J]. Appl. Phys. Lett.,2007,91:221504.
    [113]B. Lv, X. X. Wang, H. Y. Luo, et al. Characterizing uniform discharge in atmospheric helium by numerical modeling [J]. Chin. Phys. B.,2009,18(2): 646-651.
    [114]Y. S. Akishev, A. V. Demyanov, V. B. Karalnik, et al. Pulsed regime of the diffusive mode of a barrier discharge in helium [J]. Plasma Phys. Rep.,2001, 27(2):164-171.
    [115]I. Radu. Diagnostics of dielectric barrier discharge in noble gases:atmospheric pressure glow and pseudoglow discharges and spatio-temporal patterns [J]. IEEE Trans. Plasma Sci.,2003,31(3):411-421.
    [116]Y. T. Zhang, D. Z. Wang, Y. H. Wang, et al. Radial evolution of the atmospheric pressure glow discharge in helium controlled by dielectric barrier [J]. Chin. Phys. Lett.,2005,22(1):171-174.
    [117]D. Z. Wang, Y. H. Wang and C. S. Liu. Multipeak behavior mode transition of a homogeneous barrier discharge in atmospheric pressure helium [J].Thin. Solid. Films.,2006,506-507:384-388.
    [118]张燕,顾彪,王文春,彭许文,王德真.常压He气和N2气均匀介质阻挡放电的伏安特性[J].物理学报,2009,58(8):5532-5538.
    [119]J. W. Shon and M. J. Kushner. Excitation mechanisms and gain modeling of the high-pressure atomic Ar laser in He/Ar mixtures [J]. J. Appl. Phys.,1994, 75:1883-1890.
    [120]J. Stevefelt, J. M. Pouvesle and A. Bouchoule. Reaction kinetics of a high pressure helium fast discharge afterglow [J]. J. Chem. Phys.,1982,76(8): 4006-4015.
    [121]S. Rauf and M. J. Kushner. Dynamics of a coplanar-electrode plasma display panel cell [J]. J. Appl. Phys.,1999,185(7):3460-3469.
    [122]J. M. Pouvesle, A. Bouchoule and J. Stevefelt. Modeling of the charge transfer after glow excited by intense electrical discharge in high pressure helium nitrogen mixtures [J]. J. Chem. Phys.,1982,77(2):817-825.
    [123]Y. P. Raizer. Gas discharge physics [M]. Berlinn, Germany:Springer-Verlag, 1991.
    [124]H. W. Ellis, R. Y. Pai, E. W. Mcdaniel, et al. Transport properties of gaseous ions over a wide energy range [J]. Atomic data nuclear data tables.,1984, 31(3):113-151.
    [125]郝艳捧,王晓蕾,阳林.大气压氦气介质阻挡多脉冲辉光放电的形成条件[J].电工技术学报,2009,24(9):28-32.
    [126]Y. T. Zhang, D. Z. Wang and M. G. Kong. Complex dynamic behaviors of nonequilibrium atmospheric dielectric-barrier discharges [J]. J. Appl. Phys., 2006,100:063304.
    [127]Y. T. Zhang, Q. Q. Li, J. Lou, et al. The characteristics of atmospheric radio frequency discharges with frequency increasing at a constant power density [J]. Appl. Phys. Lett.,2010,97:141504.
    [128]Y. T. Zhang and S. Y. Cui. Frequency effects on the electron density and α-γ mode transition in atmospheric radio frequency discharges [J]. Phys. Plasmas., 2011,18:083509.
    [129]F. Massines, N. Gherardi, and F. Sommer. Silane-based coatings on polypropylene deposited by atmospheric pressure glow discharge plasmas [J]. Plasmas Polym.,2000,5:151-172.
    [130]R. B. Gadri. One atmosphere glow discharge structure revealed by computer modeling [J]. IEEE Trans. Plasma Sci.,1999,27(1):36-37.
    [131]L. Mangolini, C. Anderson, J. Heberlein, et al. Effects of current limitation through the dielectric in atmospheric pressure glows in helium [J]. J. Phys. D:Appl. Phys.,2004,37:1021-1030.
    [132]S. F. Miralai, E. Monette, R. Barnkas, et al. Electrical and optical diagnostics of dielectric barrier discharge (DBD) in He and N2 for polymer treatment [J]. Plasmas Polym.,2000,5:63-77.
    [133]D. Lee, J. M. Park, S. H. Hong, et al. Numberical simulation on mode trasition of atmospheric dielectric barrier discharge in Helium-Oxygen mixture [J]. IEEE Trans. Plasma Sci.,2005,33(2):49-957.
    [134]V. A. Maiorov and Y. B. Golubovskii. Modelling of atmospheric pressure dielectric barrier discharges with emphasis on stability issues [J]. Plasmas Sources Sci. Technol.,2007,16:67-75.
    [135]T. Martens and A. Bogaerts. The dominant role of impurities in the composition of high pressure noble gas plasmas [J]. Appl. Phys. Lett.,2008,92: 041504.
    [136]T. Martens, A. Bogaerts, W. J. M. Brok, et al. The influence of impurities on the performance of the dielectric barrier discharge [J]. Appl. Phys. Lett.,2010, 96:091501.