银耳微波真空干燥机理及品质特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银耳是我国主要的食用菌之一,也是重要的出口创汇特色农产品之一。目前银耳干制多采用传统的热风烘干,其干燥效率低、能耗大、产品质量差。微波真空干燥技术是一种高效、节能及环保的现代干燥技术,将微波真空干燥技术应用于银耳干制将为银耳产业的发展开创一条崭新的加工途径。本项目研制开发微波真空干燥设备,解决其干燥均匀性问题,研究银耳微波真空干燥动力学过程,探究银耳的微波真空干燥品质,研究不同干燥方式对银耳主要品质的影响,优化银耳热风-微波真空联合干燥工艺,并建立银耳中米酵菌酸的测定方法以及探讨微波处理对米酵菌酸的去除作用。
     1.微波真空干燥设备的研制。针对微波真空干燥不均匀以及采用实底载料盘干燥时间较长的问题,进行微波真空干燥机干燥系统的设计研究。研究确定了干燥室型式尺寸以及谐振腔模式:90×90×100cm3矩形谐振腔,其具有242个谐振频率模式;根据生产能力计算出微波总功率为4kW;采用干燥室上、下壁面对角交叉及均匀布置的方式进行微波馈入口布局,可保证回转干燥的均匀性;以葫萝卜为测试材料,进行载料盘对干燥均匀性影响的研究,发现采用筛底载料盘比实底载料盘可有效提高干燥速度、缩短干燥时间。
     2.银耳微波真空干燥动力学的研究。试验结果表明银耳微波真空干燥过程可分为加速干燥、恒速干燥及降速干燥3个阶段。在真空条件下对银耳进行微波干燥,能明显提高干燥速率,但通过提高真空度来加快干燥速率具有一定限度,真空度过低会影响干制银耳的品质,因此应选取合适的真空度进行银耳微波真空干燥。单位质量发射功率和初始含水率对银耳的干燥速率影响很大,单位质量发射功率越大,初始含水率越小,干燥速率越快,干燥时间越短。应用Matlab软件进行多项式曲线拟合,表明二次多项式能够有效地表达各干燥条件下的银耳干燥动力学曲线。利用BP神经网络模拟技术来减少实验次数,预测干燥结果的方法是可行的。神经网络预测值与实际值拟合效果良好,预测精度高。
     3.银耳微波真空干燥品质的研究。试验表明银耳干品的收缩率随单位质量发射功率的增大及真空度的升高而降低,复水比则随单位质量发射功率的增大及真空度的升高而增大;真空度对银耳收缩率及复水比的影响比单位质量发射功率的影响要小。单位质量发射功率增大,干制银耳的多糖含量降低;真空度升高,干制银耳的多糖含量也随着增加。真空度越低,银耳干品的中心越易出现焦化现象。为避免银耳多糖的损失,应尽量选择高真空度进行微波真空干燥。综合考虑单位质量发射功率不宜过高也不宜太低,以10W/g为宜,而真空度以-90kPa为宜。
     4.不同干燥方式对银耳主要品质影响的研究。分别采用热风干燥、微波干燥、真空干燥、微波真空干燥及冷冻干燥5种干燥方式干燥鲜银耳,并对银耳干品的收缩率、复水比、色泽、感官质量、多糖含量及组织结构等品质的影响进行分析,以及比较传统热风干燥与微波真空干燥银耳的干燥时间、干燥速率以及能耗。对比结果表明:微波真空干燥的银耳除亮度值低外,其它品质均较优,且干燥能耗低。微波真空干燥是一种值得推广应用的干燥方式。
     5.银耳热风-微波真空联合干燥工艺优化的研究。选取收缩率、复水比、感官质量以及单位能耗为评价指标,研究热风温度、转换水分含量及单位质量发射功率等因素对银耳品质以及干燥能耗的影响,通过正交优化确定银耳热风-微波真空联合干燥的较佳工艺参数为:前期热风温度70℃,转换水分含量30%,后期微波强度5W/g。将较佳工艺与热风干燥以及微波真空干燥进行比较,表明热风-微波真空联合干燥较传统热风干燥银耳的品质明显提高,能耗明显降低。
     6.微波真空干燥对银耳主要安全指标影响的研究。试验建立了测定变质银耳中米酵菌酸含量的方法—紫外分光光度法,并与高压液相色谱法相比,测定结果无显著差异,精密度与准确度均较好,且紫外分光光度法仪器成本低,操作简便,适宜推广应用;比较热风干燥、微波干燥以及微波真空干燥对变质银耳中米酵菌酸含量的影响,结果表明与传统热风干燥相比,微波干燥、微波真空干燥对银耳中的米酵菌酸均有一定的去除效果,去除率分别为23.8%和9.5%,微波干燥的去毒效果更明显。
White fungus is one of main edible fungus in China, and it is also one of important characteristic agricultural products exported to earn. At present, drying method of white fungus usually adopts traditional airflow drying, which consumes high drying consumption and presents low drying efficiency and poor product quality. Microwave vacuum drying (MVD) technology is one kind of high-efficiency, energy-conservation and environmental protection drying technology. The application of MVD will start a new treating approach to white fungus drying. In this study, MVD equipment was designed to solve the problem of drying uniformity, the MVD kinetics process of white fungus was studied, MVD quality of white fungus was explored, effects of different drying methods on the quality of white fungus was studied, combined airflow and MVD technology of white fungus was optimized, testing method of Bongkrekic acid (BA) in degenerative white fungus was established and removal effect of BA by microwave treatment was investigated.
     1. MVD equipment was developed. MVD system was designed to solve drying uniformity and long-drying-time consumption with load tray of solid bottom. The type with size of drying chamber and resonator was determined as follows: rectangular resonator with the volume of 90×90×100cm3, which had 242 resonant frequencies. The total microwave power was calculated base on the productivity was 4kW. It could guarantee rotary drying uniformity by using diagonal crossover of upper and underside walled surface and uniform arrangement for designing microwave fed entrance. Using carrot as testing material, it was found that load tray of solid bottom could enhance drying rate and shorten drying time than load tray of ethmoidal bottom by studying effects of load tray on drying uniformity.
     2. MVD kinetics of white fungus was studied. The experiment results showed that the MVD process of white fungus was divided into three stages that were speed-up , constant-speed and speed-down. Vacuum condition could obviously enhance drying rate, however, which was limited. If vacuum degree was too low, the quality of dried white fungus would be influenced. Therefore, appropriate vacuum degree should be chosen to drying white fungus. Unit mass microwave power and initial moisture content had great influence on drying rate of white fungus. The higher unit mass microwave power, the less initial moisture content was, and then the quicker the drying rate was, the shorter the drying time was. Quadratic polynomial could express drying kinetics curves of every drying condition by using Matlab software for polynomial curves fitting. It was feasible to reduce experiment times and predict drying results by applying BP neural network simulation technique. Predictive value of neural network and actual value had good fitting results, and prediction precision was good.
     3. MVD quality of white fungus was studied. Shrinkage of dried white fungus decreased when unit mass microwave power and vacuum degree increased, rehydration ratio increased when microwave intensity and vacuum degree increased, and vacuum degree had less important effect on the shrinkage and rehydration ratio of white fungus than unit mass microwave power. Polysaccharide contents of white fungus increased when microwave intensity decreased and vacuum degree increased. The lower vacuum degree was, the easier the coking phenomenon occurred in the center of dried white fungus. In order to avoid the loss of polysaccharide, high vacuum degree should be chosen as possible. Comprehensively considered, unit mass microwave power was neither too high nor too low, using 10W/g, and vacuum degree used -90kPa.
     4. Effects of different drying methods on the quality of white fungus were studied. Five drying methods, viz., airflow drying(AD), vacuum drying, microwave drying(MD), MVD and freezing drying were applied to drying fresh white fungus, effects on shrinkage, rehydration ratio, sensory quality and organization structure of dried white fungus were analyzed, and the drying time, drying rate and consumption between airflow drying and MVD were compared. The comparison results showed that MVD was the most advantageous method and worthy of popularization, for it consumed lower energy and generated a better quality in spite of deficient gloss.
     5. Optimization of combined AD and MVD technology for white fungus was studied. Choosing shrinkage ratio, rehydration ratio, sensory quality of dried white fungus and unit energy consumption as evaluation indexes, effects of airflow temperature, conversed moisture content and unit mass microwave power on the quality of dried white fungus and drying energy consumption were studied. By orthogonal optimization, the optimal combined AD and MVD technology of white fungus was determined as follows: airflow temperature was 70℃, conversed moisture content was 30%, and unit mass microwave power was 5 W/g. The better technology of combined AD and MVD for white fungus was compared with single AD and single MVD. It showed that combined AD and MVD could greatly improve the quality of dried white fungus and obviously reduce the energy consumption than single AD.
     6. The effect of MVD on main safety index of white fungus was studied. Testing method of BA content in degenerative white fungus, that was uv spectrophotometry, was established by experiment. There was no significant difference in testing results between uv spectrophotometry and high pressure liquid chromatography. Precision and accuracy of uv spectrophotometry were both good, and this method was suitable to popularize due to its low equipment cost and convenient operation. Effects of AD, MD and MVD on BA content in degenerative white fungus were compared. Results showed that MD and MVD both had removal effect compared with AD, and removal rate was respectively 23.8% and 9.5%, which signified detoxification effect of MD was more obvious.
引文
[1]郑建仙.功能性食品[M].北京:轻工业出版社,1995.
    [2]吕作舟,蔡衍山.食用菌生产技术手册[M].北京:农业出版社,1997.
    [3]李佩文.银耳的食用及药用价值[J].健康博览,2007(4):43.
    [4]王世东.食用菌[M].北京:中国农业大学出版社,2005.
    [5]李燕,蔡东联.补品皇后银耳[J].药膳与食疗,2005(3):50-50.
    [6]刘素静,秋季食银耳美容又保健[J].求医问药,2006(11):58-59.
    [7]何伟珍,吴丽仙.银耳多糖的提取分离与纯化[J].海峡药学,2008,20(7):33-35.
    [8]侯建明,蓝进,高益槐.银耳多糖抗溃疡作用的试验研究[J].中国疗养医学,2008,17(5):316-318.
    [9]聂伟,张永祥,周金黄.银耳多糖的药理学研究概况[J].中国药理与临床,2000,16(4):44-46.
    [10]颜军,郭晓强,邬晓勇,等.银耳多糖的提取及其清除自由基的作用[J].成都大学学报,2006,25(1):35-38.
    [11]暴悦梅,陈仁绍.银耳多糖的保健作用及应用前景[J].食品研究与开发,2009,30(10):137-138.
    [12]银耳的贮藏方法要点[J].科技致富向导,2006(9):33-33.
    [13]丁湖广.出口银耳规范化栽培与加工新技术[J].四川农业科技,1994(5):29-31.
    [14]王传耀,杨文斌.银耳热风换向干燥技术研究[J].江西农业大学学报,2007,29(1):158-163.
    [15]张国琛,徐振方,潘澜澜.微波真空干燥技术在食品工业中的应用与展望[J].大连水产学院学报,2004,19(4):292-296.
    [16]曹崇文.微波真空干燥技术现状[J].干燥技术与设备,2004,2(3):5-9.
    [17]常虹,李远志,刘清化,等.微波真空干燥技术及其在农产品加工中的应用[J].农业工程技术:农产品加工,2007(7):52-54,59.
    [18]黄艳,黄建立,郑宝东.农产品微波真空干燥技术的现状及发展趋势[J].福建轻纺,2009(2):40-42.
    [19]崔政伟,许时婴,孙大文.微波真空干燥技术的进展[J].粮油加工与食品机械,2002(7):28-30.
    [20]汤大卫.微波真空干燥技术在食品中的应用[J].中国食品工业,1999(8):30-31.
    [21]汤大卫.微波真空干燥技术[J].中国食品工业,2001,8(11):30-31.
    [22] Gunasekaran S. Pulsed microwave-vacuum drying of food materials[J].Drying Technology,1999,17(3):395-412.
    [23] CHEN D S,SINGH R K,HAGHIGHI K,et al. Finite element analysis of temperature distribution in microwave cylindrical potato tissue[J].J of Food Engineering,1993,18:351-368.
    [24] Drouzas A H,SCHUBERT H. Microwave application in vacuum drying of fruits[J].J of Food Engineering,1996,28:203-209.
    [25]熊永森,王俊,王金双.微波干制南瓜片干燥规律及工艺优化研究[J].农业工程学报,2004,20(2):181-184.
    [26] YONGSAWATDIGUL J,GUNASEKARANN S. Pulsed microwave vacuum drying of cranberries:Ⅰ. Energy use and efficiency[J].J of Food Processing and Preservation,1996,20(2):121-143.
    [27] YONGSAWATDIGUL J,GUNASEKARANN S. Pulsed microwave vacuum drying of cranberries:Ⅱ.Quality evaluation[J].J of Food Processing and Preservation,1996,20(3):145-156.
    [28] LIAN G,HARRIS C S,EVANS R,et al. Coupled heat and moisture transfer during microwave vacuum drying[J].J of Microwave Power and Electromagnetic Energy,1997,32:34-44.
    [29] LIN Y E. Finite element analysis of microwave heating of foods[J].J of Food Engineering,1995,25(1):85-112.
    [30] KIRANOUDIS C T,MAROULIS Z B. Microwave vacuum drying kinetics of some fruits[J].Drying Technology,1997,15(10):2421-2440.
    [31]汤大卫,张天使.微波真空干燥技术的运用与前景[J].医药工程设计,2000,21(5):195-198.
    [32] Y. Soysal. Microwave Drying Characteristics of Parsley[J].Biosystems Engineering,2004,89(2):167-173.
    [33] Jaruk Srikiatden,John S.Roberts. Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying[J].J of Food Engineering,2006,74(1):143-152.
    [34] J.Wang,Y.S.Xi. Drying characteristics and drying quality of carrot using a two-stage microwave process[J].J of Food Engineering,2005,68(4):505-511.
    [35] ZHOU L,PURI V M,ANANTHESWARAN,et al. Finite element modeling of heating and mass transfer in food materials during microwave heating-model development and validation[J].J of Food Engineering,1995,25:509-529.
    [36] McMinn W A M. Thin-layer modeling of the convective,microwave,microwave-convective and microwave-vacuum drying of lactose powder[J].J of Food Engineering,2006,72:113-123.
    [37]胡庆国.毛豆热风与真空微波联合干燥过程研究[D].江苏:江南大学,2006.
    [38]汤大卫.微波真空干燥技术及其应用[J].医药工程设计,2002,23(6):3-6.
    [39] http://www.ea168.com/news/shownews.asp./2004-3-18
    [40]金钦汉.微波化学[M].北京:科学技术出版社,1999.
    [41] HUMBER TO V M. Advances in dehydration of foods[J].J of Food Engineering,2001,49:271-289.
    [42] Durance TD. Improving canned food quality with variable retort temperature processes[J].Trends in Food Science & Technology,1997,8(4):113-118.
    [43] Weerachai K , Somchai W. Combined microwave/fluidized bed drying of fresh peppercorns[J].Drying Technology,2004,22(4):779-794.
    [44] Boehm V , Kuehnert S , Rohm H , et al. Improving the nutritional quality of microwave-vacuum dried strawberries a preliminary study[J].Food Science & Technology International,2006,12(1):67-75.
    [45] Krulis M,Kuehnert S,Leiker M,et al. Influence of energy input and initial moisture on physical properties of microwave-vacuum dried strawberries[J].European Food Research & Technology,2005, 221(6):803-808.
    [46] Boehm M,Bade M,Kunz B. Quality stabilization of fresh herbs using a combined vacuum-microwave drying process[J].Advances in Food Science,2002,24(2):55-61.
    [47] Giri S K , Suresh Prasad. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air mushrooms[J].J of Food Engineering,2005,78:512-521.
    [48] Lin T M,Durance T D,Scaman C H. Characterization of vacuum microwave air and freeze dried carrot slices[J].Food Research International,1998,31(2):111-117.
    [49] Yousif A N,Scaman C H,Durance T D,et al. Flavor volatiles and physical characteristics of vacuum-microwave and air-dried sweet basil(Ocimnm basilicum L)[J].Agricultural and Food Chemistry,1999(47):4777-4781.
    [50] Yousif A N,Durance T D,Scaman C H,et al. Headspace volatiles and physical characteristics of vacuum-microwave,air and freeze-dried Oregano(Lippia berlandieri Schauer)[J].Food Science,2000,65(6):926-930.
    [51]李远志,郑素霞,罗树灿,等.真空微波加工马铃薯脆片的工艺特性[J].食品与发酵工业,2003,29(8):40-43.
    [52]王喜鹏,张进疆,徐成海,等.胡萝卜的真空微波干燥特性研究及工艺优化[J].现代农业装备,2005(10):84-88.
    [53]韩清华,李树君,马季战,等.微波真空干燥膨化苹果脆片的研究[J].农业机械学报,2006(37):156-158.
    [54]李远志,土娟,陈人人,等.微波真空干燥速溶香蕉粉的工艺研究[J].食品科学,2005(26):31-34.
    [55]李瑜,许时婴.大蒜干燥工艺的研究[J].食品与发酵工业,2004(30):54-58.
    [56]邓宇,郑先哲.蕨菜微波真空干燥特性和品质试验研究[J].农业工程学报,2008,24(5):253-257.
    [57] Suk Shin Kim,Seong Gyun Shin,Kyu Seob Chang,et al. Survival of Lactic acid Bacteria during microwave vacuum-drying of plain yoghurt[J].Lebensm.-Wiss.u.-Technol.,1997,30:537-577.
    [58] Lin T M,Timothy D,Christine H. Physical and sensory properties of vacuum microwave dehydrated shrimp[J].Food Research International,1998,31(2):111-117.
    [59]张国琛.扇贝柱微波真空干燥机理及品质研究[D].北京:中国农业大学,2004.
    [60]孙丽娟,崔政伟.微波真空干燥高粘度的灵芝浓缩液[J].干燥技术与设备,2006,4(1):36-38.
    [61] Krokida M K,Maroulis Z B. Effect of microwave drying on some quality properties of dehydrated products[J].Drying Technology,1999,17(3):449-466.
    [62] Krokida M K,Maroulis Z B. Effect of drying method on shrinkage and porosity[J].DryingTechnology,1997,10(3):2441-2458.
    [63] Krodida M K,Maroulis Z B,Saravacos G D. The effect of the method of drying on the colour of dehydrated products[J].International Journal of Food Science and Technology,2001,36:53-59.
    [64]华平,郑艺梅,刘海波.不同干燥方法对百合品质的影响[J].安徽农业科学,2004,32(2):312-313.
    [65]叶兴乾,刘东红,张贵平.不同干燥方法对栗粉的理化性质与功能特性的影响[J].农业工程学报,2001,17(4):95-98.
    [66] Okos M R,Narishman G,Singh R K,et al.Food dehydration[M].Handbook of Food Engineering,1992.
    [67] Das Gupta , Babu Rao.Histological examination of some dried and freeze dried vegetables[J].Processing of the First International Congress on Food Science and Technology,1990:55-56.
    [68]潘永康.现代干燥技术[M].北京:化学工业出版社,1998.
    [69]张慜,徐艳阳,孙金才.国内外果蔬联合干燥技术的研究进展[J].无锡轻工大学学报,2003,22(6):103-106.
    [70] Feng H.Analysis of microwave assisted fluidized-bed drying of particulate product with a simplified heat and mass transfer model[J].Int.Comm.Heat Mass Transfer,2002,29:1021-1028.
    [71] Guixing Ren.Drying of american ginseng(Panax quinque folium) roots by microwave-hot air combination[J].J of Food Engineering,1998,35:433-443.
    [72] Mankan M.Microwave/air and microwave finish drying of banana[J].J of Food Engineering,2000,44(2):71-78.
    [73] Baysal T.Effects of microwave and hot air combination drying on the quality of carrots[J].Food Science and Biotechnology,2002,11(1):19-23.
    [74] Torringa E,Esveld E,Scheewe I,et al.Osmotic dehydration as a pre-treatment before combined microwave-hot-air drying of mushrooms[J].J of Food Engineering,2001,49(2-3):185-191.
    [75]王俊,蒋生昕,金红良,等.微波远红外联合干燥黄桃的试验研究[J].浙江农业学报,1999,11(1):26-28.
    [76]杨大伟,夏延斌.微波和热风联合干燥薄层黄花菜的方法研究[J].食品科技,2003(3): 28-31.
    [77]马国远,郁永章.热泵微波联合干燥及其在农副产品干燥中的应用[J].农机与食品机械,1998(257):7-9.
    [78]彭增华,刘丽,罗萍,等.采用微波-热风干制鲜姜的工艺研究[J].昆明理工大学学报,2002(27):24-35.
    [79]张晓辛,肖鸿儒,曹曙明,等.利用微波-气流组合干燥技术干燥菊花的试验研究[J].农业工程学报,2000(16):129-131.
    [80]梁静.莲子微波真空干燥特性及干燥工艺的研究[D].福建农林大学,2007.
    [81]徐艳阳,张慜,陈亦辉,等.热风和微波真空联合干燥甘蓝试验[J].无锡轻工大学学报,2003,22(6):64-66.
    [82]张国琛,毛志怀,牟晨晓,等.微波真空与热风组合干燥扇贝柱的研究[J].农业工程学报,2005,21(6):144-147.
    [83]刘莹,金立鹏,王尊哲.米酵菌酸的研究进展[J].潍坊医学院学报,2003,25(2):153-155.
    [84]孟昭赫.酵米面中毒病因的研究—发现一种新的食物中毒菌:酵米面黄杆菌[J].中国医学科学院学报,1980,2(2):78.
    [85]胡文娟,陈晓明,王玉华.酵米面黄杆菌毒素A的提纯及鉴定[J].卫生研究,1984,13(4):34.
    [86]刘秀梅,陈晓明,胡文娟,等.变质银耳中毒的病因实验室研究[J].卫生研究,1985,14(4):25.
    [87]赵缘法,董华,王洪亚,等.霉烂变质银耳引起的食物中毒[J].中华预防医学,1987,(21):298.
    [88]李传良,梁会英,金培珍,等.变质银耳中毒八例临床分析[J].卫生研究,1987,16(3):33.
    [89] GB11675-2003银耳卫生标准—理化指标.
    [90]郝亚勤,高愿军.微波技术在食品加工中的应用及前景[J].山西食品工业,2005(1):28- 31.
    [91]王章存,康艳玲.微波技术在粮油食品中应用[J].粮食与油脂,2006(9):16- 17.
    [92]白卫东,王琴,连卫敏.微波对植物油品质的影响[J].食品科学,2002,23(2):37- 40.
    [93]王艳.浅析微波加工对食品营养成分的影响[J].江苏食品与发酵,2003(3):13- 15.
    [94]连森.古田:打造“中国食用菌之都”[J].红土地,2006(3):48-48.
    [95]郭梅.食品微波干燥、杀菌技术及其发展[J].天津农学院学报,2003,10(13):56-58.
    [96]严平,钱尚源,敖凌.真空微波低温干燥技术探讨[J].能源研究与信息,2003,19(4):242-246.
    [97]王绍林.微波食品工程[M].北京:机械工业出版社,1994.
    [98]韩清华.微波真空干燥膨化苹果片的机理及品质研究和设备设计[D].中国农业机械化科学研究院,2007.
    [99]赵超,陈建,邱兵,等.花椒微波干燥特性试验[J].农业机械学报,2007,38(3):99-101.
    [100]朱德泉,王继先,钱良存,等.猕猴桃切片微波真空干燥工艺参数的优化[J].农业工程学报,2009,25(3):248-252.
    [101] Midilli A,Kucuk H,Yapar Z. A new model for single layer drying[J].Drying Technology,2002,20:1503-1513.
    [102]陈桂琴.MATLAB用于处理曲线拟合[J].电脑知识与技术,2005(7):78-79.
    [103]罗成汉,刘小山.曲线拟合法的Matlab实现[J].现代电子技术,2003(20):16-17,20.
    [104]吴晓光,徐精彩,李树刚,等.基于MATLAB试验数据的几种处理方法[J].自动化技术与应用,2006(1):25-27.
    [105]王志新,韩力群.神经网络在催化剂配方优化中的应用[J].北京轻工业学院学报,1997,15(1):10-13.
    [106]曹卫玲,陈立军,补国苗.基于BP神经网络的服装出口预测[J].价值工程,2008,(10):96-98.
    [107] Mayor L,Sereno AM. Modelling shrinkage during convective drying of food materials:a review[J].J of Food Engineering,2004,61:373-386.
    [108] Marabi A,Thieme U,Jacobson M,et al. Influence of drying method and rehydration time on sensory evaluation of rehydrated carrot particulates[J].J of Food Engineering,2006,72:211-217.
    [109]肖丽霞,闫师杰,刘野,等.真空冷冻干燥和热风干燥绿竹笋笋干品质的比较[J].食品与发酵工业,2005,31(5):62-63.
    [110]张慜.特种脱水蔬菜加工贮藏和复水学专论[M].北京:科学出版社,1997.
    [111]吴东儒,李振华,黄德民,等.糖类的生物化学[M].北京:高等教育出版社,1987.
    [112]宋立人,洪恂,于绪亮,等.现代中药学大辞典(上册)[M].北京:人民卫生出版社,2001.
    [113] Sham P W Y,Scaman C H,Durance T D. Texture of Vacuum Microwave dehydrated apple chips as affected by calcium pretreatment,vacuum level,and apple variety[J].Food Science,2001,66(9):1341-1347.
    [114] Reza G Askari,Zahra Emam-Djomeh,Mohammad Ali Mousavi. Effect of drying method on micro structural changes of apples[J].IDS 2004 Proceedings,2004,8:1435-1441.
    [115]张惟杰.复合多糖的生化研究技术[M].浙江:浙江大学出版,1999.
    [116]宋洪波,毛志怀.干燥方法对植物产品物理特性影响的研究进展[J].农业机械学报,2005,36(6):117-121.
    [117] Papppas C,Tsami E,Marinos-Kouris D. The effect of process conditions on the drying kinetics and rehydration characteristics of some MW-vacuum dehydrated fruits[J].Drying technology,1999,17(1-2):157-174.
    [118]刘钟栋.微波技术在食品工业中的应用[M].北京:中国轻工业出版社,1998.
    [119]杨薇,欧又成,张付杰,等.蘑菇热风、微波对流和微波真空干燥的对比试验[J].农业机械学报,2008,39(6):102-104,112.
    [120]马先英,赵世明,林艾光.不同干燥方法对胡萝卜复水性及品质的影响[J].大连水产学院学报,2006,21(2):158-161.
    [121]常学东,蔡金星,高海生,等.不同干燥方法对板栗感官性状的影响[J].食品科技,2006(10):81-83.
    [122]丁筑红,杨咏鹃,刘坤,等.不同干燥方法对辣椒品质的影响[J].食品科技,2008(4):57-60.
    [123]邓红,王小娟.不同干燥方法对苹果片品质的影响[J].食品科技,2007(2):84-87.
    [124]李瑜,许时婴.不同干燥方法对干燥大蒜品质的影响[J].食品与发酵工业,2006,32(7):32-36.
    [125]曾绍校,梁静,郑宝东,等.不同干燥工艺对莲子品质的影响[J].农业工程学报,2007,23(5):227-231.
    [126]张骏,张愁,单良.真空微波工艺条件对香脆鳙鱼片品质的影响[J].食品与生物技术学报,2006,25(2):37-41,47.
    [127]王琴,白卫东,刘小芸,等.微波膨化银杏脆片的工艺研究[J].食品工业科技,2002,23(6):50-51.
    [128]郭素枝.扫描电镜技术及其应用[M].厦门:厦门大学出版社,2006.
    [129] Roos Y,Karel M. Effect of water and molecular weight on glass transition in amorphous carbohydrates and carbohydrate solutions[J].J of Food Science,1991,56:1676-1681.
    [130]陈芳,胡小松.加工用马铃薯“低温糖化”机制的研究[J].食品科学,2000,21(3):19-22.
    [131] Saklar S , Ungan S , Katnas S. Microstructural changes in hazelnuts during roasting[J].Food Research International,2003,36(1):19-23.
    [132] Lewicke PP,Witrowa-Rajchert D,Sawczuk A.Convective drying of apples and carrot assisted with microwaves[J].Zywnosc,2001,8(2):28-42.
    [133] Wilknson C,Dijksterhuis GB,Minekus M. From food structure to texture[J]. Trends in Food Science & Technology,2000,11(12):442-450.
    [134] Ho JC,Chou SK,Mujumdar AS,et al. An optimization framework for drying of heat-sensitove products[J].Applied thermal engineering,2001,21:1779-1798.
    [135]王夏,孙纪中,孟昭赫.食物中毒菌—酵米面黄杆菌的系统研究[J].卫生研究,1985,14 (5):29.
    [136]赵乃昕.酵米面中毒病原菌—椰毒假单胞菌[J].潍坊医学院学报,1992,12(1):1.
    [137] GB/T 5009.189-2003银耳中米酵菌酸的测定.
    [138]王夏.米酵菌酸中毒国外研究进展[J].国外医学卫生学分册,1987(1):1-4.
    [139]郑用熙.分析化学中的数理统计方法[M].北京:中国农业出版社,1986.
    [140]张寒琦,金钦汉.微波化学[J].大学化学,2001,16(1):32-36.
    [141]孙晓娟,苏跃增.微波化学非热效应初探[J].江苏石油化工学院学报,2000,12(3):42-45.