微波强化处理二甲亚砜生产废水工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二甲亚砜(DMSO)作为溶剂或中间体在医药、化工、电子等领域应用广泛,但二甲亚砜生产废水中残留的二甲亚砜在自然水体中易产生硫化氢、硫醚等有毒物质,而且难以用生物法处理;另一方面,二甲亚砜生产中氧化工艺段产生的高浓度亚硝酸盐废水毒性很强,采用生物法或常规物化方法均难以有效处理。针对二甲亚砜生产废水处理中存在的以上技术难题,本文将微波技术分别与催化湿式氧化工艺、Fenton氧化工艺和化学还原工艺相结合,利用微波高效、快速等技术特点,建立了三种微波强化水处理工艺并用于对二甲亚砜和亚硝酸盐的处理,均取得理想效果。
     首先以硝酸活化后的颗粒活性炭(GAC)作为载体,以铜作为活性组分,稀土元素铈作为助剂组分,采用分层浸渍焙烧法制备了CuOx-CeOy/GAC催化剂。结构分析结果表明,活性组分铜在催化剂表面主要是以Cu2O和单质的形式存在,变价的过渡金属元素和单质对微波能具有更好的吸收作用,可以强化催化湿式氧化反应。在催化剂表面,铈以CeO2、Ce2O3和CeO的形态共存,而且铈的加入无论在体相中和表面上均提高了铜元素的含量,其中铈在催化剂中的含量为0.56%,铜的含量为10.81%,助剂铈的加入还明显提高了催化剂表面活性组分的分散性,使晶粒粒径减小,增加了催化剂表面的活性点位,并使催化剂表面活性组分与载体结合的程度增强,使其稳定性和使用寿命得到显著提高。采用制备的CuOx-CeOy/GAC催化剂,建立了微波强化催化湿式氧化工艺对二甲亚砜进行处理。该工艺用于处理初始浓度为1000mg/L的二甲亚砜配水,可在pH值3~9范围内,反应3min后达到85%以上的二甲亚砜去除率,TOC去除率为24.4%。
     对微波强化催化湿式氧化处理二甲亚砜的作用机制进行了探索研究,采用分子荧光光谱法测定了反应体系中羟基自由基(·OH)的生成量,通过对比证明CuOx-CeOy/GAC催化剂的加入对对体系中·OH自由基的生成量有明显促进作用;微波辐照、催化剂和氧化剂三者间存在协同效应,可大大提高H2O2氧化体系内·OH的生成量,从而增强对废水中二甲亚砜的去除效率。
     研究开发了微波强化Fenton氧化处理二甲亚砜工艺。针对100mL初始浓度为1000mg/L的二甲亚砜配水,获得最佳工艺参数为:H2O2投加浓度450mg/L,H2O2与Fe2+摩尔比2,在微波功率100W条件下辐照5min,pH值在2~7范围时,对二甲亚砜的去除率可达95%以上,10min内TOC去除率为46.3%。基于静态实验结果,设计了微波强化Fenton氧化动态工艺系统,实现了含二甲亚砜废水在连续流条件下的高效处理。对于2L初始浓度为1000mg/L的二甲亚砜配水,最佳处理条件为:H2O2投加浓度为350~400mg/L,循环系统温度50~60℃、循环完成时间为8~10min和曝气速率5~20L/h,二甲亚砜的去除率可达99%以上。
     表观动力学研究结果证明,微波的“非热效应”使其对Fenton氧化体系的强化作用要明显优于传统水浴加热方式。根据二甲亚砜主要降解产物的浓度变化和TOC测定结果,在相同Fenton试剂投加量条件下,相比于传统常温搅拌条件下的Fenton氧化工艺,微波强化Fenton氧化工艺不仅可以大大缩短二甲亚砜的降解反应时间,而且对其中难降解的中间产物具有更高的氧化效率,从而获得更高的矿化度。
     针对二甲亚砜生产中氧化工艺段产生的高浓度亚硝酸盐废水,本文采用氨基磺酸作为还原药剂,建立了微波强化化学还原处理工艺。设计了微波强化化学还原连续流工艺系统,针对实际废水进行工程调试,在最佳工艺参数条件下亚硝酸盐去除率可达90%以上。研究表明,微波强化化学还原连续流工艺可节省药剂25%,系统水力停留时间由3h缩短至0.5h,吨水处理成本可节省近45%。原废水经处理后,绝大部分亚硝酸盐被还原生成无毒无害的N2而得到去除,同时其它反应产物均为一些无毒的无机化合物,废水中亚硝酸盐经处理控制在较低浓度后,毒性大大降低,可进一步采用生物法进行脱氮处理。
     本文将微波技术分别与催化湿式氧化工艺、Fenton氧化工艺和化学还原工艺相结合,对传统的高级氧化工艺和化学还原技术进行了改进,建立了三种新型的微波强化水处理工艺。与传统工艺相比,微波强化水处理工艺具有处理效率高,废水pH值适用范围宽、反应速度快、出水温度适宜,设备占地面积少,工艺操作简单等优点,易于实现自动化管理和工业化推广。本文的研究结果不仅为二甲亚砜生产废水中残存的二甲亚砜和高浓度亚硝酸盐的处理提供了有效的解决途径,而且为其它含有难降解有机物或高浓度亚硝酸盐的废水开辟了一类具有广阔应用潜力的新型水处理技术。
Dimethyl sulphoxide (DMSO) is an organic solvent or intermediate, which has been widely used in the manufacture of products such as acridine, electronics, chemical industry and etc.. However, the residual DMSO in wastewaster of DMSO production will produce volatile and noxious compounds in natural water body, such as (CH3)2S or hydrogen sulfide (H2S). Furthermore the biological treatment of wastewater containing DMSO is known to be difficult. On the other hand, the effluents of oxidation section in DMSO production process contain high-concentration nitrite, which can’t be effectively removed by biological and physicochemical processes. To resolve the above technical problems with the treatment of wastewater in DMSO production process, catatlytic wet oxidation process, Fenton process and chemical reduction process were employed to combine with microwave technology. Based on the advantage of high efficiency and quickness under microwave irradiation, three efficient microwave enhanced process on wastewater treatment were established to treat with DMSO and nitrite. As a result, optimal removals were achieved after the treatment of the above microwave enhanced processes.
     In the first part of the paper, CuOx-CeOy/GAC catalyst was prepared by using impregnation-deposition method, in which GAC activated by HNO3 was used as carrier, Cu was used as activated composition and Ce was used as assistant composition. According to the results of structure analysis, Cu element existed in the form of Cu (elementary substance) and Cu2O and Ce element existed in the form of CeO2, Ce2O3 and CeO on the surface of CuOx-CeOy/GAC catalyst. It is believed transition metal with different valent states could adsorb more microwave energy, that would facilitate the catatlytic wet oxidation process. By the addition of Ce, the loading percentage of Cu increased both on the surface and in the catalyst. The loading percentage of Cu was 10.81% of the catalyst while Ce was 0.56%. In light of the assistant composition Ce, better dispersity and smaller size of Cu and Cu2O crystals could be achieved, that intensified the interaction between actived composition and carrier, increased the activated sites and enhanced the stability and useful life of catalyst. Microwave enhanced catatlytic wet oxidation process was established with the prepared CuOx-CeOy/GAC catalyst. Under the optimal process conditions, 100mL synthetic wastewater containing 1000mg/L DMSO was treated in the process and over 85% of DMSO and 24.4% of total organic carbon (TOC) had be successfully removed within 3min and pH range 3~9.
     The oxidation mechanism of microwave enhanced catatlytic wet oxidation process was also studied in the paper. The fluorescence technology was employed to measure the generation of hydroxyl radicals (·OH) in different processes and the compared results demonstrated the use of CuOx-CeOy/GAC catalyst played a key role in the the generation of hydroxyl radicals. The generation of·OH in microwave enhanced catatlytic wet oxidation process was much more than in other processes, which indicated synergistic effect existed among microwave irradiation, catalyst and H2O2. As a result, the removal efficiency of DMSO was obviously enhanced.
     Microwave enhanced Fenton process for DMSO treatment was also established in this paper. Under optimal conditions of [H2O2]0=450mg/L, H2O2/Fe2+ molar ratio=2, microwave power=100W, irradiation time=5min and pH=2~7, 100mL synthetic wastewater containing 1000mg/L DMSO was treated when over 95% of DMSO and 46.3% of TOC had be successfully removed. Based on the results of batch experiments, dynamic system for practical utility was devised, which realized the efficient treatment of DMSO-containing wastewater under continuous flow. The optimized operating parameters for dynamic system were [H2O2]0=400mg/L, system temperature=60℃, circulating finished time=10min and air flow rate=20L/h, which had achieved DMSO removal of 99.1%
     Obvious kinetic experiments were conducted to study the differences between microwave enhanced Fenton process and conventional heating assisted Fenton process. Compared with heating assisted Fenton process at equal temperature, enhanced DMSO removal in microwave enhanced Fenton process might be ascribed to the non-thermal effect under microwave irradiation. According to results of major degradation intermediates variation and TOC removal, microwave enhanced Fenton process couldn’t only shorten the degradation time for DMSO but also achieve much more removal of major degradation intermediates and TOC compared with Fenton process stirring at ambient temperature.
     In the final part of the paper, using sulfaminic acid as reductive chemical, microwave enhanced chemical reduction process was established to treat the practical nitrite-containing wastewater of high-concentration in DMSO production process. Based on the results of batch experiments, microwave enhanced chemical reduction continuous-flow process for practical utility was devised and achieved over 90% nitrite removal under optimal operating conditions. Compared with chemical reduction continuous-flow process without microwave irradiation, microwave enhanced chemical reduction continuous-flow process could save 25% sulfaminic acid, shorten the hydraulic retention time (HRT) from 3h to 0.5h, and save 45% cost for the treatment of every 1m3 wastewater. After treatment by microwave enhanced chemical reduction continuous-flow process, most nitrite in wastewater was converted into nitrogen gas and other reaction products were some innocuous inorganic compound. The concentration of nitrite was falling to a low level, which made it much less nocuous and suitable for further biological denitrification.
     In this paper, catatlytic wet oxidation process, Fenton process and chemical reduction process were combined with microwave technology to enhance the treating efficiency, and thus three new microwave enhanced processes were established for the treatment of DMSO or nitrite wastewater. The microwave enhanced processes for wastewater treatment take advantages in high treating efficiency, wide operational pH, quick reaction rate and proper effluent temperature. Furthermore the microwave enhanced processes need less occupation of land, operate easily, and is in favor of industrial popularity. The research results in this paper could not only provide a valid solution for DMSO and nitrite wastewater treatment in DMSO production process but extend series of new promising processes for the treatment of refractory and high-concentration nitrite wastewater in wide fields.
引文
1中华人民共和国环境保护部. 2008年中国环境状况公报.淡水环境, 2009(6):4~16
    2 D. Glindemann, J. Novak, J. Witherspoon. Dimethyl Sulfoxide (DMSO) Waste Residues and Municipal Wastewater Odor by Dimethyl Sulphide (DMS): the North-East WPCP Plant of Philadelphia. Environmental Science & Technology. 2006, 40: 202~207
    3陈德强.高级氧化法处理难降解有机废水研究进展.环境保护科学. 2005, (31):20~23
    4 S. H. Lin, C. M. Lin. Operating Characteristics and Kinetic Studies of Surfactant Wastewater Treatment by Fenton Oxidation. Water Research. 1999, 337: 1735~1741
    5王丽波,孙志忠. Al2O3催化臭氧化去除水中有机物的研发进展.化工进展. 2007, 26(4):460~466
    6 R. Andreozzi, V. Caprio, A. Insola, et al. The Oxidation of Metol (N-methyl-p-aminophenol) in Aqueous Solution by UV/H2O2 Photolysis. Water Research. 2000, 34: 463~472
    7 W. B. Huang, C. Y. Chen. Photocatalytic Degradation of Diethyl Phthalate (DEP) in Water Using TiO2. Water, Air & Soil Pollution. 2010, 207: 349~355
    8 A. Roberto, D. Antonio, M. Raffaele. Oxidation of Aromatic Substrates in Water/goethite Slurry by Means of Hydrogen Peroxide. Water Research. 2002, 36: 4691~4698
    9 F. Luck.Wet Air Oxidation: Past, Present and Future. Catalysis Today. 1999, 53: 81~91
    10 Y. Liu, D. Sun. Development of Fe2O3-CeO2-TiO2/γ-Al2O3 as Catalyst for Catalytic Wet Air Oxidation of Methyl Orange Azo Dye under Room Condition. Applied Catalysis B: Environmental. 2007, 72: 205~211
    11 Y. Liu, D. Sun. Effect of CeO2 Doping on Catalytic Activity of Fe2O3/γ-Al2O3 Catalyst for Catalytic Wet Peroxide Oxidation of Azo Dyes. Journal of Hazardous Materials. 2007, 143: 448~454
    12姜思朋,王鹏,张国宇等.微波强化氧化法处理BF-BR染料废水.中国给水排水, 2004, 20(4):13~15
    13史书杰,王鹏,杨禹等.用于水处理的Fe2O3/La2O3/CNTs催化剂的微波附注制备与表征.材料导报. 2007, 21(11A):283~285
    14 J. L. Wang, K. Jing. The Characteristics of Anaerobic Ammonium Oxidation (ANAMMOX) by Granular Sludge from an EGSB Reactor. Process Biochemistry. 2005, 40(5): 1973~1978
    15 C. Fux, V. Marchesi, I. Brunner, et al. Anaerobic Ammonium Oxidation of Ammonium-rich Waste Streams in Fixed-bed Reactors. Water Science and Technology. 2004, 49(11-12): 77~82
    16金钦汉.微波化学.北京:科学出版社. 1999
    17王鹏.环境微波化学技术.北京:化学工业出版社. 2003
    18 R. Church. Dielectric Properties of Low Loss Minerals. USBOM Report of Investigations. No. 9194. 1993
    19 R. Gedge. Microwave Irradiation in Organic Chemistry. Tetra. Lett. 1986, (27): 279
    20龙明策,王鹏,郑彤等.高吸水性树脂的微波辐射合成工艺及性能研究.高分子材料科学与工程. 2002, 18(6):205~207
    21 K. C. Oliver. High Speed Combinatorial Synthesis Ultilizing Microwave Irradiation. Current Opinion in Chemical Biology. 2002, 6(3): 314~320
    22陈秀仁,张怀有,田锡义.二甲基亚砜的性质和应用.辽宁化工. 2000, 29(1): 31~35
    23仪志宏,任诚,胡镇华.二甲基亚砜生产技术及市场应用.精细化工中间体. 2003, 33(3): 11~18
    24王玉强.二甲基亚砜生产与应用.化工职业技术教育. 2006, (4): 30~32
    25 T. Koito, M. Tekawa, A. Toyoda. A Novel Treatment Technique for DMSO Wastewater. IEEE Transactions on Semiconductor Manufacturing. 1988, 11(1): 3~8
    26任永林,黄飞慰.虾池浑浊和亚硝酸盐的危害与处理.科学养鱼. 2009, (9): 83~84
    27 L. W. Canter. Nitrate in Groundwater. New York: CRC Press, Boca Raton, FL, 1997, 204: 39~110
    28 V. Holler, K. Radevik, I. Yuranov, et al. Reduction of Nitrite-ions in Water over Pd-supported on Structured Fibrous Materials. Applied Catalysis B: Environmental. 2001, 32 (3): 143~150
    29 R. R. Dague. Fundamentals of Odor Control. Journal of Water Pollution and Control. 1972, 44(4): 583~585
    30地表水环境质量标准GB 3838—2002[S].北京:中华人民共和国标准,2002
    31 S. J. Park, T. I. Yoon, J. H. Bae, et al. Biological Treatment of Wastewater Containing Dimethyl Sulphoxide from the Semi-conductor Industry. Process Biochemistry. 2001, 36: 579~589
    32 K. Kino, T. Murakami-nitta, M. Oishi, et al. Isolation of Dimethyl Sulfone-degrading Microorganisms and Application to Odorless Degradation of Dimethyl Sulfoxide. Journal of Bioscience and Bioengineering. 2004, 97(1): 82~84
    33 M. Isik, D.T. Sponza. Substrate Removal Kinetics in an Upflow Anaerobic Sludge Blanket Reactor Decolorising Simulated Textile Wastewater. Process Biochemistry. 2005, 40:1189~1198
    34 T. S. Delia, I. Mustafa. Reactor Performances and Fate of Aromatic Amines through Decolorization of Direct Black 38 Dye under Anaerobic/Aerobic Sequentials. Process Biochemistry. 2005, 40: 35~44
    35 D. Georgiou, J. Hatiras, A. Aivasidis. Microbial Immobilization in a Two-Stage Fixed-Bed-Reactor Pilot Plant for on-Site Anaerobic Decolorization of Textile Wastewater. Enzyme and Microbial Technology. 2005, 37: 597~605
    36崔晓君,谢俊.高COD焦化废水的吸附研究.工业安全与环保. 2007, 33(9): 27~28
    37 X. F. Qu, J. T. Zheng, Y. Z. Zhang. Catalytic Ozonation of Phenolic Wastewater with Activated Carbon Fiber in a Fluid Bed Reactor. Colloid Interface science. 2007, 309: 429~435
    38王代芝.絮凝沉降/粉煤灰吸附法处理印染废水.印染助剂. 2009, 26(4): 32~34
    39王昕,张春丽,任广军.碳纳米管吸附染料甲基橙的性能研究.当代化工. 2008, 37(4): 375~381
    40陈火林,张家泉,卢俊彩等.树脂吸附法处理二氯吡啶酸生产废水.工业水处理. 2008, 28(2): 26~29
    41 F. Villacanas, M. F. R. Pereira, J. J. M. Orfao. Adsorption of Simple Aromatic Compound on Activated Carbons. Journal of Colloid and Interface science. 2006, 293(1): 128~136
    42 Z. Li, M. H. Duan, Z. Jiao, et al. Extraction of Phenol from Wasterwater by N-octanoylpyrrolidine. Journal of Hazardous Materials. 2004, B114: 111~114
    43杨秀红,郝军,孙衍宁.溶剂萃取法处理炼油厂含酚废水.大连轻工业学院学报. 2005, 24(4): 252~254
    44王心乐,李明玉,宋琳.络合萃取对煤制气洗涤废水中酚的回收.暨南大学学报. 2009, 30(1): 75~79
    45吕继平,刘再满.有机废水的膜分离处理技术.甘肃石油和化工. 2007, (12): 6~10
    46王刚,余淦申,陆惠民.新型集成膜技术工业废水再生回用处理研究.水处理技术. 2009, 35(10): 101~103
    47刘华云,王威.膜分离技术处理丙烯腈装置含氰废水.石化技术与应用. 2010, 28(1): 37~40
    48 J. Kim, P. Park, C. Lee. Surface Modification of Nanofiltration Membranes to Improve the Removal of Organic Micropollutants (EDCs and PhACs) in Drinking Water Treatment: Graft Polymerization and Cross-linking Followed by Functional Group Substitution. Journal of Membrane Science. 2008, 321(2): 190~198
    49 N. S. S. Martínez, J. F. Fernández, X. F. Segura, et al. Pre-oxidation of an Extremely Polluted Industrial Wastewater by the Fenton’s Reagent. Journal of Hazardous Materials. 2003, 101(3): 315~322
    50 K. Swaminathan, S. Sandhya, A. C. Sophia, et al. Decolorization and Degradation of H-acid and Other Dyes Using Ferrous–hydrogen Peroxide System. Chemosphere. 2003, 50: 619~625
    51 X. J. Ma, H. L. Xia. Treatment of Water-based Printing Ink Wastewater by Fenton Process Combined with Coagulation. Journal of Hazardous Materials. 2009, 162: 386~390
    52张娴娴,尹光志,李东伟. Fenton试剂催化氧化法处理焦化废水的实验研究.矿业安全与环保. 2005, 32(2): 12~17
    53王子,梅平,王国栋.混凝-Fenton氧化处理采油废水的影响因素.水处理技术. 2006, 32(1): 76~79
    54彭军,胡勇有. Fenton试剂在印制电路板工业废水处理中的应用.工业用水与废水. 2006, 37(3): 31~34
    55刘琰.常温常压催化湿式氧化工艺处理染料废水的研究.哈尔滨工业大学博士学位论文. 2006, 22~23
    56王华,陶润先,李光明.滴流床反应器催化湿式氧化处理苯酚研究.同济大学学报(自然科学版). 2007, 35(4): 501~506
    57孔黎明,刘晓勤. CuO/γ-Al2O3催化湿式过氧化水溶液中苯酚.化工进展. 2006, 25(10): 1162~1165
    58王建兵,祝万鹏,杨少霞. ZrxCe1-xO2催化剂催化湿式氧化乙酸的活性研究.化学学报. 2006, 64(15): 1537~1542
    59 K. M. Valkaj, A. Katovic, S. Zrncevic. Investigation of the Catalytic Wet Peroxide Oxidation of Phenol over Different Types of Cu/ZSM-5 Catalyst. Journal of Hazardous Materials. 2007, 144: 663~667
    60 A. Xu, M. Yang, R. Qiao, et al. Activity and Leaching Features of Zinc-Aluminum Ferrites in Catalytic Wet Oxidation of Phenol. Journal of Hazardous Materials. 2007, 147: 449~456
    61 A. Fujishima, K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972, 37(1): 238~245
    62 N. Sano, T. Yamamoto, D. Yamamoto, et al. Degradation of Aqueous Phenol by Simultaneous Use of Ozone with Silica-gel and Zeolite. Chemical Engineering and Processing. 2007, 46: 513~519
    63冯玉杰,崔玉虹,孙丽欣等.电化学废水处理技术及高效电催化电极的研究与进展.哈尔滨工业大学学报. 2004, 36(4): 450~455
    64 C. C. Jara, D. Fino, G.. Saracco, et al. Three-compartment Electro-oxidation Reactor for Bio-refractory Organics Degradation. Chemical Engineering Science. 2007, 62: 5644~5647
    65 V. Apostolos, A. Dimitris, M. Sofia, et al. Electrochemical Detoxification of Four Phosphorothioate Obsolete Pesticides Stocks. Chemosphere. 2005, 58(4): 439~447
    66周健,陆小华,王延儒等.超临界水的分子动了学模型.物理化学学报. 1999, 15(11): 1017~1022
    67甄宝勤,葛红光,郭小华等.超临界水氧化处理偏二甲肼废水研究.化学工程师. 2005, 120(9): 4~6
    68王亮,王树众,张钦明等.含油废水的超临界水氧化反应机理及动力学特性.西安交通大学学报. 2006, 40(1): 115~119
    69张永梅,孙洁,吴茂.焚烧法处理高浓度有机农药生产废水.给水排水. 2008, 34(1): 59~61
    70赵洪滨,岳鹏秀.焚烧法处理山梨酸废水过程的能耗分析.化工装备技术. 2009, 30(3): 33~37
    71 L. Sun, Y. Liu, H. Jin. Nitrogen Removal from Polluted River by Enhanced Floating Bed Grown Canna. Ecological Engineering. 2009, 35: 135~140
    72 Y. Ma, Y. Peng, S. Wang, et al. Achieving Nitrogen Removal via Nitrite in a Pilot-scale Continuous Pre-denitrification Plant. Water Research. 2009, 43: 563~572
    73 B. Ni, F. Fang, W. Xie, et al. Growth, Maintenance and Product Formation of Autotrophs in Activated Sludge: Taking the Nitrite-oxidizing Bacteria as an Example. Water Research. 2008, 42: 4261~4270
    74 J. Hu, D. Li. Nitrite Removal Performance and Community Structure of Nitrite-oxidizing and Heterotrophic Bacteria Suffered with Organic Matter. Current Microbiology. 2008, 57: 287~293
    75 J. Wang, J. Kang. The Characteristics of Anaerobic Ammonium Oxidation (ANAMMOX) by Granular Sludge from an EGSB Reactor. Process Biochemistry. 2005, 40: 1973~1978
    76何少华,黄仕元,金必慧.沸石在水和废水处理中的应用.矿业工程. 2004, 2(1): 24~27
    77李旭东,张旭,薛玉等.沸石芦苇床除氮中试研究.环境科学. 2003, 24(3): 159~160
    78 W. Gao, J. Chen, X. Guan, et al. Catalytic Reduction of Nitrite Ions in Drinking Water over Pd–Cu/TiO2 Bimetallic Catalyst. Catalysis Today. 2004, 93: 333~339
    79 K. A. Guy, H. Xu, J. C. Yang, et al. Catalytic Nitrate and Nitrite Reduction with Pd-Cu/PVP Colloids in Water: Composition, Structure, and Reactivity Correlations. Journal of Physical Chemistry. 2009, 113: 8177~8185
    80 M. M. Yu, S. Yu, M. Sheintuch. Cloth Catalysts in Water Denitrification III. pH Inhibition of Nitrite Hydrogenation over Pd/ACC. Applied Catalysis B: Environmental. 2003, 45: 127~134
    81 Y. Migita, H. Yokoyama, A. Minami, et al. Electrocatalytic Nitrite Reduction to Nitrogen Oxide by a Synthetic Analogue of the Active Site of Cu-Containing Nitrite Reductase Incorporated in Nafion Film. Electroanalysis. 2009, 21(22): 2441~2446
    82 H. Y. Hu, N. Goto, K. Fujie. Effect of pH on the Reduction of Nitrite in Water by Metallic iron. Water Research. 2001, 35(11): 2789~2793
    83肖沃辉,黄羽飞,马倩玲.用氨磺酸处理亚硝酸盐废水的研究.矿冶. 2005, 14(1): 70~73
    84童娜,杨新宇,花绍龙等.化学法高效去除废水中硝酸盐的研究.工业水处理. 2003, 23(12): 48~50
    85刘钟栋.微波技术在食品工业中的应用.北京:中国轻工业出版社. 1999
    86 L. L. Bo, X. Quan, S. Chen, et al. Degradation of p-nitrophenol in Aqueous Solution by Microwave Assisted Oxidation Process through a Granular Activated Carbon Fixed Bed. Water Research. 2006, 40: 3061~3068
    87 L. L. Bo, X. Quan, X. C. Wang, et al. Preparation and Characteristics of Carbon-supported Platinum Catalyst and its Application in the Removal of Phenolic Pollutants in Aqueous Solution by Microwave-assisted Catalytic Oxidation. Journal of Hazardous Materials. 2008, 157: 179~186
    88卜龙利,全夑.微波辅助催化氧化高浓度含醛废水应用研究.大连理工大学学报. 2006, 46(1): 25~29
    89 Y. Sun, Y. B. Zhang, X. Quan. Treatment of Petroleum Refinery Wastewater by Microwave-assisted Catalytic Wet Air Oxidation under Low Temperature and Low Pressure. Separation and Purification Technology. 2008, 62: 565~570
    90 X. T. Liu, X. Quan, L. L. Bo, et al. Temperature Measurement of GAC and Decomposition of PCP Loaded on GAC and GAC-supported Copper Catalyst in Microwave Irradiation. Applied Catalysis A: General. 2004, 264: 53~58
    91 X. T. Liu, X. Quan, L. L. Bo, et al. Simultaneous Pentachlorophenol Decomposition and Granular Activated Carbon Regeneration Assisted by Microwave Irradiation. Carbon. 2004, 42: 415~422
    92 X. Quan, X. T. Liu, L. L. Bo, et al. Regeneration of Acid Orange 7-exhausted Granular Activated Carbons with Microwave Irradiation. Water Research. 2004, 38: 4484~4490
    93 L. Zhang, X. J. Guo, F. Fan. Study of the Degradation Behaviour of Dimethoate under Microwave Irradiation. Journal of Hazardous Materials. 2007, 149: 675~679
    94 L. Zhang, M. M. Su, X. J. Guo. Studies on the Treatment of Brillant Green Solution by Combination Microwave Induced Oxidation with CoFe2O4. Separation and Purification Technology. 2008, 62: 458~463
    95 T. L. Lai, J. Y. Liu, K. F. Yong, et al. Microwave-enhanced Catalytic Degradation of 4-chlorophenol over Nickel Oxides under Low Temperature. Journal of Hazardous Materials. 2008, 157: 496~502
    96 J. W. Li, L. Z. Zhu, W. J. Cai. Microwave Enhanced-sorption of Dyestuffs to Dual-cation Organobentonites from Water. Journal of Hazardous Materials. 2006, B136: 251~257
    97 Z. Q. Gao, S. G. Yang, C. Sun. Microwave Assisted Photocatalytic Degradation of Pentachlorophenol in Aqueous TiO2 Nanotubes Suspension. Separation and Purification Technology. 2007, 58: 24~31
    98 Z. H. Ai, P. Yang, X. H. Luo. Degradation of 4-chlorophenol by Microwave Irradiation Enhanced Advanced Oxidation Processes. Chemosphere. 2005, 60(6): 824~827
    99 Z. H. Ai, P. Yang, X. H. Luo. Degradation of 4-chlorophenol by a Microwave Assisted Photocatalysis Method. Journal of Hazardous Materials. 2005, B124: 147~153
    100 H. Takashima, L. Ren, Y. Kanno. Catalytic Decomposition of TCE under Microwave. Catalysis Communications. 2004, 5: 317~319
    101 S. Horikoshi, H. Hidaka, N. Serpone. Environmental Remediation by an Integrated Microwave/UV-illumination Technique IV. Non-thermal Effects in the Microwave-assisted Degradation of 2, 4-dichlorophenoxyacetic Acid in UV-Irradiated TiO2/H2O Dispersions. Journal of Photochemistry and Photobiology A: Chemistry. 2003, 159: 289~300
    102 S. Horikoshi, A. Saitou, H. Hidaka, et al. Environmental Remediation by an Integrated Microwave/UV-illumination Technique. Thermal and Non-thermal Effects of Microwave Radiation on the Mechanism of the Photocatalyzed Degradation of Rhodamine-B Dye under UV/VIS Irradiation. Environmental Science & Technology. 2003, 37: 5813~5822
    103 S. Horikoshi, H. Hidaka, N. Serpone. Environmental Remediation by an Integrated Microwave/UV Illumination Technique VI. A Simple Modified Domestic Microwave Oven Integrating an Electrodeless UV-VIS Lamp to Photodegrade Environmental Pollutants in Aqueous Media. Journal of Photochemistry and Photobiology A: Chemistry. 2004, 161: 221~225
    104 S. Horikoshi, A. Tokunaga, H. Hidaka, et al. Environmental Remediation by an Integrated Microwave/UV Illumination Method VII. Thermal/non-thermal Effects in the Microwave-assisted Photocatalyzed Mineralization of Bisphenol-A. Journal of Photochemistry and Photobiology A: Chemistry. 2004, 162: 33~40
    105赵景联,任国勇.微波辐射Fenton试剂氧化催化降解水中三氯乙烯.微波学报. 2003, 19(1): 85~90
    106张良林,徐晓军,兰尧中.微波辐射-均相Fenton氧化耦合混凝法处理印染废水.化学工程. 2007, 35(10): 57~60
    107李宏. Fenton高级氧化技术氧化降解多环芳烃类染料废水的研究.重庆大学博士学位论文. 2007, 49~56
    108 Y. Yang, P. Wang, S. J. Shi, et al. Microwave Enhanced Fenton-like Process for the Treatment of High Concentration Pharmaceutical Wastewater. Journal of Hazardous Materials. 2009, 168: 238~245
    109姜思朋,王鹏,张国宇等.微波强化氧化法处理BF-BR染料废水.中国给水排水. 2004, 20(4): 13~15
    110洪光,王鹏,张国宇.改性氧化铝微波诱导氧化处理BF-BR染料废水研究.环境科学学报. 2005, 25(2): 254~258
    111张国宇,王鹏,石岩.微波诱导Fe2O3/γ-A12O3催化剂催化氧化处理水中苯酚.催化学报. 2005, 26(7): 597~601
    112张威,王鹏,赵珊珊.活性炭吸附-微波诱导氧化处理有机废水.环境化学. 2007, 26(1): 27~30
    113 X. Y. Bi, P. Wang, H. Jiang, et al. Catalytic Activity of CuOn-La2O3/γ-Al2O3 for Microwave Assisted ClO2 Catalytic Oxidation of Phenol Wastewater. Journal of Harzardous Materials. 2008, 154: 543~549
    114 X. Y. Bi, P. Wang, H. Jiang, et al. Treatment of Phenol Wastewater by Microwave-induced ClO2-CuOx/Al2O3 Catalytic Oxidation Process. Journal of Environmental Sciences. 2007, 19(12): 1510~1515
    115 X. Y. Bi, P. Wang, C. Y. Jiao, et al. Degradation of Removal Golden Yellow Dye Wastewater in Microwave Enhanced ClO2 Catalytic Oxidation Process. Journal of Harzardous Materials. 2009, 168: 895~900
    116史书杰,王鹏,杨禹等.用于水处理的Fe2O3/La2O3/CNTs催化剂的微波辅助制备与表征.材料导报. 2007, 21(11A): 283~285
    117科夫涅里斯特,拉扎列娃,拉瓦耶夫.蔡德录,刘承钧译.微波吸收材料.北京:科学出版社. 1985
    118韩严和,全夑,薛大明等.活性炭改性研究进展.环境污染治理技术与设备. 2003, 4(1): 33~37
    119贾建国,李闯,朱春来等.活性炭的硝酸表面改性及其吸附性能.碳素技术. 2009, 6(28): 11~15
    120王中华,卞小琴,凌德娣.硝酸氧化改性活性炭对Cr(Ⅵ)吸附性能的研究.天津化工. 2008, 22(5): 55~57
    121钟理.废水处理新技术:非均相催化氧化过程.广东化工. 1999, 5:13~14
    122谭亚军,蒋展鹏,祝万鹏等.用于有机污染物湿式氧化的铜系催化剂活性研究.化工环保. 2000, 20(3): 6~10
    123潘履让.固体催化剂的设计与制备.天津:南开大学出版社. 1993
    124毕晓伊.微波强化ClO2催化氧化工艺及应用研究.哈尔滨工业大学博士学位论文. 2007, 43~44
    125黄仲涛.工业催化剂手册.北京:化工出版社. 2004
    126蒋晓原,周仁贤,毛建新等.CeO2对CuO/Al2O3分散状态及催化性能的影响.分子催化.1999, 13(3): 176~180
    127蒋晓原,周仁贤,朱波等.氧化镧对CuO/γ-Al2O3活性和结构的影响.科技通报.1997, 13(3): 148~151
    128 A. Dauscher, L. Hilaire, F. Lenormand, et al. Characterization by XPS and XAS of Supported Pt/TiO2-CeO2 Catalysts. Surface and Interface Analysis. 1990, 16: 341~346
    129 G. Praline, B. E. Koel, R. L. Hance, et al. X-Ray Photoelectron Study of the Reaction of Oxygen with Cerium. Journal of Electron Spectroscopy and Ralated Phenomena. 1980, 21(1): 17~38
    130 G. R. Rao, H. R. Sahu, B. G. Mishra. Surface and Catalytic Properties of Cu-Ce-O Composite Oxides Prepared by Combustion Method. Colloids and Surfaces A: Physicochem. 2003, 220: 261~269
    131 A. Pintar. J. Batista, S. Hocevar. Nanostructured CuxCe1-xO2-y Mixed Oxide Catalysts: Characterization and WGS Activity Tests. Journal of Colloid and Interface Science. 2007, 307: 145~157
    132 N. M. Deraz. Characterization and Catalytic Performance of Pure and Li2O-doped CuO/CeO2 Catalysts. Applied Surface Science. 2009, 255: 3884~3890
    133 A. E. Sahar, A. E. Gamil, A. S. Mishra. Catalytic Promotion of Activated Carbon by Treatment with some Transition Metal Cations. Chinese Journal of Catalysis. 2007, 28(7): 611~616
    134 R. Bauer, G. Waldner, H. Fallmann, et al. The Photo-Fenton Reaction and the TiO2/UV Process for Wastewater Treatment-Novel Developments. Catalysis Today. 1999, 53: 131~144
    135 E. Balanosky, F. Herrera, A. Lopez, et al. Oxidative Degradation of Textile Wastewater Modelling Reactor Performance. Water Research. 2000, 34: 582~596
    136 J. Feng, X. Hu, P. L. Yue. Effect of Initial Solution pH on the Degradation of Orange II Using Clay-based Fe Nanocomposites as Heterogeneous Photo-Fenton Catalyst. Water Research. 2006, 40(4): 641~646
    137 H. J. Fan, S. T. Huang, W. H. Chung, et al. Degradation Pathways of Crystal Violet by Fenton and Fenton-like Systems: Condition Optimization and Intermediate Separation and Identification. Journal of Harzardous Materials. 2009, 171: 1032~1044
    138贾之慎.比色法测量Fenton反应产生的羟自由基.生物化学与生物物理进展. 1996, 23(2): 184~186
    139 S. Horikoshi, H. Hidaka, N. Serpone. Environmental Remediation by an Integrated Microwave/UV-illumination Technique IV. Non-thermal Effects in the Microwave-assisted Degradation of 2,4-dichlorophenoxyacetic Acid in UV-Irradiated TiO2/H2O Dispersions. Journal of Photochemistry and Photobiology A: Chemistry. 2003, 159: 289~300
    140 S. Horikoshi, A. Saitou, H. Hidaka. Environmental Remediation by an Integrated Microwave/UV Illumination Method V. Thermal and Nonthermal Effects of Microwave Radiation on the Photocatalyst and on the Photodegradation of Rhodamine-B under UV/Vis Radiation. Environmental Science & Technology. 2003, 37: 5813~5822
    141 Z. Z. Sun, J. Ma, L. B. Wang, et al. Degradation of Nitrobenzene in Aqueous Solution by Ozone-ceramic Honeycomb. Journal of Environmental Sciences. 2005, 17(5):716~721
    142方艳芬,黄应平,陈和春等.二氧化钛光催化体系中的羟基自由基的测定.分析化学.2006, 34(9): 83~86
    143于怀东,方茹,陈士明等.锰离子参与的类Fenton反应的HPLC和ESR波谱研究.化学学报.2005, 63(14): 1357~1360
    144吕永为,郭祥群.荧光分光光度法测定两种中药对羟基自由基的清除作用.厦门大学学报(自然科学版).2004, 43(2): 208~212
    145 J. J. Gao, K. H. Xu, J. X. Hu, et al. Determination of Trace Hydroxyl Radicals by Flow Injection Spectrofluorometry and Its Analytical Application. Journal of Argricultural and Food Chemistry. 2006, 54:7968~7972
    146张国宇.微波诱导氧化水处理中催化剂的制备及应用研究.哈尔滨工业大学博士学位论文. 2005, 3~13
    147肖新荣.微波辐射Fenton试剂-活性炭催化氧化体系降解水中苯酚南华大学学报(自然科学版).2004, 18(4): 22~25
    148陶长元,向赟,刘仁龙等.微波与微波Fenton组合法.辽宁石油化工大学学报.2006, (4): 21~23
    149徐科峰,李忠,魏帅等.微波对Fenton试剂降解苯酚反应活化能的影响.华南理工大学学报(自然科学版). 2005, (12): 1~4
    150 Y. M. Ju, S. G.. Yang, Y. C. Ding, et al. Microwave-enhanced H2O2-based Process for Treating Aqueous Malachite Green Solutions: Intermediates and Degradation Mechanism. Journal of Hazardous Materials. 2009, 171: 123~132
    151 B. R. Prasannakumar, I. Regupathi, T. Murugesan. An Optimization Study on Microwave Irradiated Decomposition of Phenol in the Presence of H2O2. Journal of Chemical Technology and Biotechnology. 2009, 84: 83~91
    152 M. Ravera, A. Buico, F. Gosetti, et al. Oxidative Degradation of 1,5-naphthalenedisulfonic Acid in Aqueous Solutions by Microwave Irradiation in the Presence of H2O2. Chemosphere. 2009, 74: 1309~1314
    153 J. Sanz, J. I. Lonbrana, A. M. Deluis, et al. Microwave and Fenton’s Reagent Oxidation of Wastewater. Environmental Chemistry Letters. 2003, 1: 45~50
    154 R. Aravindhan, N. N. Fathima, J. R. Rao, et al. Wet Oxidation of Acid Brown Dye by Hydrogen Peroxide Using Heterogeneous Catalyst Mn-salen-Y Zeolite: a Potential Catalyst. Journal of Hazardous Materials. 2006, 138: 152~159
    155 R. Z. Chen, J. J. Pignatello. Role of Quinone Intermediates as Electron Shuttles in Fenton and Photo-assisted Fenton Oxidations of Aromatic Compounds. Environmental Science & Technology. 1997, 31: 2399~2406
    156 J. M. Joseph, H. Destaillats, H. M. Hung, et al. The Sonochemical Degradation of Azobenzene and Related Azo Dyes: Rate Enhancements via Fenton’s Reactions. Journal of Physical Chemistry A. 2000, 104: 301~307
    157 B. G. Kwon, D. S. Lee, N. Kang. Characteristic of p-chlorophenol Oxidation by Fenton’s Reagent. Water Research. 1999, 33: 2110~2118
    158 D. L. Sedlak, A. W. Andren. Aqueous-phase Oxidation of Polychlorinated Biphenyl Radicals. Environmental Science & Technology. 1991, 25: 777~782
    159 W. Z. Tang, C. P. Huang. 2,4-dichlorophenol Oxidation Kinetics by Fenton’s Reagent. Environmental Technology. 1996, 17: 1371~1378
    160 S. H. Lin, C. C. Lo. Fenton Process for Treatment of Desizing Wastewater. Water Research. 1997, 31: 2050~2056
    161 H. Gallard, J. D. Laat, B. Legube. Spectrophotometric Study of the Formation of Iron(III)-hydroperoxy Complexes in Homogeneous Aqueous Solutions. Water Research. 1999, 33: 2929~2936
    162 J. J. Pignatello. Dark and Photoassisted Fe3+-catalysed Degradation of Chlorophenoxy Herbicides by Hydrogen Peroxide. Environmental Science & Technology. 1992, 26: 944~951
    163 G. V. Buxton, C. L. Greenstock. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data. 1988, 17: 513~886
    164 B. L. Hayes. Microwave Synthesis: Chemistry at the Speed of Light. Matthews, NC: CEM Publishing. 2002: 10~17
    165 D. M. P. Mingos, A. G. Whittaker. In Chemistry under Extreme or Non-Classical Conditions. New York: John Wiley and Sons. 1997: 85~87
    166 Y. Lee, C. Lee, J. Yoon. Kinetics and Mechanisms of DMSO (Dimethylsulfoxide) Degradation by UV/H2O2 Process. Water Research. 2004, 38: 2579~2588
    167 W. Verstraete, H. Vanstaen, J. P. Voets. Adaptation to Nitrification of Activated-Sludge Systems Treating Highly Nitrogenous Waters. Journal of Water Pollution Control Federation. 1977, 49: 1604~1608
    168 E. Florence, G. Florence, P. Carole, et al. Catalytic Reduction of Nitrate and Nitrite on Pt–Cu/Al2O3 Catalysts in Aqueous Solution. Journal of Catalysis. 2001, 198(2): 309~318
    169 M. M. Yuri, B. Viktor, Y. Igor, et al. Cloth Catalysts in Water Denitrification I. Pd on Glass Fibres. Applied Catalysis B: Environmental. 2000, 27(2): 127~135