阿奇博尔德·希尔生理学贡献研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿奇博尔德希尔(1886-1977),20世纪英国著名生理学家,肌肉生理学、肌肉力学的杰出代表,运动生理学的先驱者和奠基人,1922年诺贝尔生理学和医学奖获得者。
     本文以希尔的生理学贡献为选题,采用内史研究的路线,以历史学的实证考察为基本方法展开研究。本研究从希尔对不同分支学科的贡献入手,主要以时间为主线,分五个部分全面、深入地梳理和总结希尔在基础生理学和应用生理学的研究经历和丰硕成果,并初步探讨希尔科学活动的特点和规律,揭示希尔的理论观点与思想方法。
     本论文首先对希尔的生平做了全面的介绍。希尔从一名少年的数学天才成功转变为出色的生理学专家,并因为有关肌肉产热的发现荣获诺贝尔奖。希尔长期从事肌肉和神经生理研究,成绩斐然。更能创造性地为运动生理学成为一门独立学科奠定基础。在两次世界大战期间希尔积极投身战事,广泛而深入地参与军、政活动,为人类的和平解放事业做出了不可磨灭的贡献。
     希尔以测热为主要手段进行肌肉的研究。本文根据希尔在肌肉研究中所要解决的问题和侧重的领域,将其对肌肉生理学的贡献分成两个部分。在肌肉测热与肌肉化学方面,系统阐述希尔测热工作的系列成果,突出希尔对有氧恢复热的发现及其重大意义。希尔以肌肉测热工作为肌肉化学研究提供指南和参考,他的“化学图景的能量学框架”是他解决肌肉化学问题的指导思想,也是他在这一领域开展研究的显著特征。
     在肌肉力学方面,全面展示希尔结合热力学的工作在肌肉力学领域进行的不懈探索,总结其在各个阶段的卓越成就和深远影响。希尔从最初继承并发展早期的弹性体学说开始,结合对肌肉粘性特性的研究,提出了粘-弹性学说,再进而发现特征方程,建立起新的肌肉力学三元素模型。在不同时期,希尔的工作对这一领域都做出了重要贡献,而他的新模型也最终主导了肌肉力学的后继研究。
     在神经生理学领域,本文分别从神经热力学和电生理学研究两个方面阐述希尔的创造性工作和积极贡献,再现其极具教益的精彩论述。希尔把测热技术应用于神经研究,发现神经传导的产热现象,并结合相关成果阐明神经活动的机制。在具备一定条件后,希尔还曾转向电生理学,说明高频电震对神经具有抑制作用,其中的无效电刺激会延长神经的不应期。希尔还对电兴奋与适应的关系做了高度概括的理论总结。
     在运动生理学方面,希尔的成果主要集中在最大吸氧量和氧债等概念和理论的提出与研究上,本文对此做了重点阐述,并发掘整理希尔有关人体肌肉运动及其它若干问题的开拓性工作,强调希尔对这一学科建立的奠基性作用。希尔将其在肌肉生理学的成果应用到人体运动的研究中,以达到印证的目的,这不但促进了肌肉生理学的发展,更推动了运动生理学的崛起。同时希尔对运动人体的研究范围是广泛的。
     本论文还对希尔在基础生理学领域的其它零散研究工作进行了梳理和总结。他的这些研究课题或来自于身边的同事,或出自意外的发现,其内容主要包括饱和公式、血红蛋白、扩散现象和水的存在状态等具体问题,其中一些成果在生理学的发展史上引起了不小的反响,例如他提出的希尔方程至今仍出现在教科书中。
     本文认为,希尔的生理学研究具有鲜明的个人特色,这表现在两个方面,即物理学理论与方法的运用,以及采取从基础研究到应用研究的路线。希尔是一位生物物理学家,同时他重视基础理论、知识的印证与应用,他把肌肉生理的基础研究与人体运动的应用研究联系起来,这是希尔生理学研究中一条独特的路线。运动生理学重要理论的形成,事实上起自希尔对离体肌肉的测热研究。
     希尔的科学活动中体现了独特的科学思想方法,对我们今后的研究工作仍然具有借鉴的价值。突出的一点就是希尔很注重研究问题的角度,这集中体现在“化学图景的框架”这一思想上。同时,希尔没有将自己囿于一个领域或一个角度、一种方法,而是表现出明显的灵活性。对研究方向的坚持与适时转变是两个推动希尔研究工作向前发展的重要因素。在具体的方法运用上,希尔则始终以数学为有力工具。
     本文还对希尔生理学成就的社会历史条件进行了初步分析,认为肌肉化学在早期的发展水平低,运动生理学自身发展的客观要求,是希尔在这两个领域取得成功的重要历史条件,而希尔在科学研究道路上的有利社会环境是其成功的重要社会条件。
Archibald Hill (1886-1977), a famous British physiologist in the20thcentury, an excellent representative of muscle physiology and musclemechanics, pioneer and founder of exercise physiology, winner of the NobelPrize for physiology or medicine in1922.
     This paper is about a study of Hill's contribution to physiology, takingthe route of internal history research, based on the empirical research as thebasic method. From the perspective of Hill's contribution to different branches,this study mainly takes time as the main line, and from five parts, reviewesand summarizes Hill's research experience and fruitful results in basicphysiology and applied physiology, comprehensively and in-depth, anddiscusses preliminaryly Hill's characteristics of scientific activities, revealingHill's theoretic points of view and thinking methods.
     Firstly, this paper makes a comprehensive introduction of Hill's life. Hillturned from a teenage of math genius to an excellent physiology expert, andwas awarded the Nobel Prize for heat discovery in muscle. Long engaged inthe study of muscle and nerve physiology, Hill made great achievments, andlaid the foundation creatively for exercise physiology to become anindependent discipline. During the two world wars Hill was widely anddeeply involved in military and political activities, making an indeliblecontribution for peaceful liberation of human being.
     Hill took heat measuring as main means for the study of muscles. Basedon the problems to be solved and the field focused on in the study of muscles,Hill's contribution to muscle physiology is divided into two parts. In musclecalorimetry and chemistry, the series of Hill's work is systematicly elaboratedin this paper, highlighting Hill's discovery of aerobic recovery heat and itssignificance. Taking thermal measuring as guide and reference in muscle chemical research, Hill's "energetics framework of chemical vision" is hisguiding ideology to solve the problemes of muscle chemistry, as well as hischaracteristic of the research in the field.
     In terms of muscle mechanics, Hill's unremitting exploration work in thefield of muscle mechanics, combining thermodynamics, is comprehensivelydisplayed, his achievements and far-reaching influences in each phase aresummarized. From the original inheritance and development of the earlyelastic body theory, combined with the study of the sticky characteristics ofmuscle, sticky-elastic theory was proposed, and then the characteristicequation was found, a new trinary muscle mechanics model established. Indifferent periods, Hill's work made important contributiones to this field, andhis new model also eventually dominated the subsequent researches in musclemechanics.
     In the field of nerve physiology, Hill's creative work and positivecontribution is stated from thermodynamics and neural electrophysiologicalstudy respectively in this paper, and his extremely wonderful instructionreappeared. Hill applied thermal measurement technology to the nerveresearch, and found the heat phenomenon of nerve conduction, and clarifyedthe mechanism of neural activity combined with the related find. With certainconditions, Hill also turned to electrophysiology, showing that high frequencyshocks had inhibitory effectes on nerve, and the invalid electrical stimulationcan extend nerve's refractory period. Hill also made theoretic generalizationon the relationship between the electrical excitation and adaptation.
     In terms of exercise physiology, Hill's achievements mainly concentratedon maximal oxygen intake and oxygen debt, etc., puting forward and carryingout research on the concepts and theories, which this article discusses mainly.And this aricle also explores into Hill's pioneering work of some issues ofhuman muscle movement and others, stressing Hill's founding effect in settingup the subject. Hill applied fruits in muscle physiology to the study of humanmovement, to achieve the purpose of testing and verifying. He promoted notonly the development of muscle physiology, but also the rise of exercise physiology. Therefore, Hill's work in this aspect was from his muscle research.At the same time Hill's study of human's movement ranged wide.
     Hill's other scattered research work in the field of basic physiology arealso reviewed and summarized in this thesis. These research topics were fromhis colleagues, or unexpectedly, their contents mainly involved the saturationformula, hemoglobin, diffusion phenomenon and the exsiting state of water,and such specific problems, some of the achievements caused no smallrepercussions in the history of the development of physiology. For example,Hill equation he proposed has since appeared in the textbook.
     This paper argues that Hill's physiological research has distinctivepersonal characteristics, which display in two aspects, namely use of theoriesand methods of physics, and taking route of from basic research to appliedresearch. Hill is a biophysicist; he also attached great importance to theverification and application of basic theory and knowledge. Hill related thebasic research of muscle physiology to application research of humanmovement, which represents a unique clue in Hill's physiological study. Theformation of important theories of exercise physiology stemmed in fact fromHill's in vitro muscle physiology research. Hill pulled closer the distancebetween basic science and real life. People are influenced in theunderstanding of the concept of body movement by his theory.
     Hill's scientific activities reflected some unique scientific thoughts andmethods, which still for our future research work has reference value. Hillpaid much attention to the point of view of scientific research, which typicallymanifested in the thought of "framework for the vision of chemistry". At thesame time, Hill did not secure himself in one field, one perspective, or onemethod, but showed obvious flexibility. Insistence of research direction andtimely transformation are two important factors of promoting thedevelopment of Hill's work. On the use of specific methods, Hill has apowerful mathematical tool.
     In this paper, preliminary analysis of the social and historical conditionsin Hill's physiological achievements has been carried on, thinking that low level of muscle chemistry in the early time and the objective request of thedevelopment of exercise physiology were important historical conditions ofHill's success in these two territories. The favorable social environments areimportant factors on Hill's successful scientific road.
引文
①吴襄.近代生理学发展简史[M].北京:高等教育出版社,1996.
    ①陈孟勤,主编.中国生理学史(第二版)[M].北京:北京医科大学出版社,2000.
    ①中国著名生理学家、神经生物学家。于1930-1933年在希尔的实验室学习和研究,发现了肌肉代谢因拉长而增强的现象,这一现象后来被称为“冯氏效应(Feng effect)”。冯德培在此期间的工作和表现也得到了希尔的高度评价。
    ②孙咏萍.弗朗西斯克里克对遗传密码研究的历史贡献[D].呼和浩特:内蒙古师范大学,2012:15.
    ③B. Katz. Archibald Vivian Hill.26September1886-3June1977[J]. Biogr. Mems. Fell. R. Soc.,1978,
    24:71-149.
    ④A. V. Hill. Autobiographical sketch[J]. Perspect. Biol. Med.,1970,14:27-42.
    ⑤A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certain topicsand methods and a reconnaissance for further research[M]. London: Arnold,1965.
    ①D. J. Aidley著,在国内的译著即《可兴奋细胞的生理学》,周培爱等译。
    ②G. A. Brooks, T. D. Fahey, T. P. White, K. M. Baldwin. Exercise Physiology: Human Bioenergeticsand Its Application[M]. Mountain View, CA: Mayfield,2000.
    ③J. D. Massengale, R. A. Swanson. The History of Exercise and Sport Science[M]. Champaign, IL:Human Kinetics,1997.
    ④秦潮.为肌肉能量代谢研究做出卓越贡献的伟大生理科学家——希尔.生物学通报,1987,(7):40-41.
    ①海尔(A. V. Hill)著,薛以恒译.活机器.上海:商务印书馆,1947.
    ①本章内容主要参考:B. Katz. Archibald Vivian Hill.26September1886-3June1977[J]. Biogr.Mems. Fell. R. Soc.,1978,24:71-149.A. V. Hill. Autobiographical sketch[J]. Perspect. Biol. Med.,1970,14:27-42.http://www.nobelprize.org/nobel_prizes/medicine/laureates/1922/hill-bio.html.
    ②http://www.nobelprize.org/nobel_prizes/medicine/laureates/1922/hill-facts.html.
    ①英国剑桥数学家,早期关注量子理论发展的英国科学家之一。
    ②英国著名天体物理学家和数学家。
    ①哈佛疲劳实验室于1927年建立,1947年关闭,曾被冠以“宏伟的怪物”之称,在运动生理学界占据举足轻重的地位,是美国现代运动生理学乃至世界运动生理学的一个重要里程碑。
    ②《Living machinary》一书书名的今译。
    ①英国科学家,建立英国战争时期雷达防御系统的关键人物。
    ②英国物理学家,因对宇宙辐射研究的贡献获1948年诺贝尔奖。
    ①英国牛津大学教授,物理学家。20世纪40年代早期到50年代早期对英国政府产生过重要影响的科学顾问,尤其是对温斯顿丘吉尔(Winston Churchill)。
    ①菲克定律是描述气体扩散现象的宏观规律,包括两个内容:(1)早在1855年菲克就提出,在单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(称为扩散通量diffusion flux)与该截面处的浓度梯度(concentration gradient)成正比,也就是说,浓度梯度越大,扩散通量越大。这就是菲克第一定律。(2)菲克第二定律是在第一定律的基础上推导出来的。菲克第二定律指出,在非稳态扩散过程中,在距离x处,浓度随时间的变化率等于该处的扩散通量随距离变化率的负值。
    ②肌肉收缩时长度不变的收缩形式称为等长收缩,肌张力不变的收缩形式称为等张收缩。
    ①A. V. Hill. The energy degraded in the recovery processes of stimulated muscle[J]. J. Physiol.,1913,
    46:28-80.
    ②A. V. Hill. The energy degraded in the recovery processes of stimulated muscle[J]. J. Physiol.,1913,
    46:28-80.
    ①肌肉因所属运动神经元的一系列最大冲动而发生的短时收缩反应。
    ①W. Hartree, A. V. Hill. The recovery heat production of muscle[J]. J. Physiol.,1922,56:367-381.
    ①W. Hartree, A. V. Hill. The anaerobic processes involved in muscular activity[J]. J. Physiol.,1923,58:
    127-137.
    ①W. Hartree, A. V. Hill. The anaerobic processes involved in muscular activity[J]. J. Physiol.,1923,58:
    127-137.
    ①整块骨骼肌或单个肌细胞受到一次短促的刺激时,被刺激的细胞产生一次动作电位,紧接着进行一次收缩,称为单收缩。
    ①A. V. Hill. The negative delayed heat production in stimulated muscle[J]. J. Physiol.,1961,158:
    178-196.
    ①A. V. Hill. The absolute mechanical efficiency of the contraction of an isolated muscle[J]. J. Physiol.,1913,46:435-469.
    ②后负荷是指肌肉开始收缩时才能遇到的负荷或阻力,它不增加肌肉的初长度,但能阻碍收缩时肌肉的缩短。
    ①A. V. Hill. Length of muscle, and the heat and tension developed in an isometric contraction[J]. J.Physiol.,1925,60:237-263.
    ①肌肉因成串刺激而发生的持续性缩短状态,称为强直收缩。
    ①W. Hartree, A. V. Hill. The regulation of the supply of energy in muscular contraction[J]. J. Physiol.,1921,55:133-158.
    ①H. S. Gasser, A. V. Hill. The dynamics of muscular contraction[J]. Proc. Roy. Soc. B,1924,96:
    398-437.
    ①H. S. Gasser, A. V. Hill. The dynamics of muscular contraction[J]. Proc. Roy. Soc. B,1924,96:
    398-437.
    ①A. V. Hill. The heat of shortening and the dynamic constants of muscle[J]. Proc. Roy. Soc. B,1938,
    126:136-195.
    ①A. V. Hill. The heat of shortening and the dynamic constants of muscle[J]. Proc. Roy. Soc. B,1938,
    126:136-195.
    ①目前在肌肉力学中该方程被称为“希尔方程”。为了避免其与希尔在研究血红蛋白时提出的“希尔方程”发生混淆,本文中依然采用希尔最初的命名。
    ②A. V. Hill. The heat of shortening and the dynamic constants of muscle[J]. Proc. Roy. Soc. B,1938,
    126:136-195.
    ①D. J. Aidley著,周培爱等译.可兴奋细胞的生理学[M].北京:北京大学出版社,1983:251.
    ①A. V. Hill. Work and heat in a muscle twitch[J]. Proc. Roy. Soc. B,1949,136:220-228.
    ①冯元桢.生物力学[M].北京:科学出版社,1983:210.
    ①A. V. Hill. The abrupt transition from rest to activity in muscle[J]. Proc. Roy. Soc. B,1949,136:
    399-420.
    ①A. V. Hill. The abrupt transition from rest to activity in muscle[J]. Proc. Roy. Soc. B,1949,136:
    399-420.
    ①在肌肉收缩开始前的潜伏期内,肌张力发生短暂降低的变化,称为潜伏期舒张。
    ②构成粗肌丝的肌球蛋白分子呈长杆状,一端有球状膨大部。在组成粗肌丝时,球状部有规则地裸露在粗肌丝主干的表面,形成横桥。当横桥与细肌丝上的活性位点结合时,横桥发生扭动,细肌丝即在粗肌丝之间发生相对滑行,使肌原纤维缩短。
    ①肌纤维根据收缩速度快慢的划分。
    ①康铜是一种具有高电阻率的合金金属,是含40%镍,1.5%锰的铜合金。
    ①A. V. Hill. A closer analysis of the heat production of nerve[J]. Proc. Roy. Soc. B,1932,111:
    106-164.
    ①A. V. Hill. Nerve heat production as a physiological response to stimulation[J]. Proc. Roy. Soc. B,1934,115:200-216.
    ①组织兴奋后的一段时期内,无论再受到多大的刺激,都不能产生新的兴奋。此时组织的兴奋性降低为零,时间相当于动作电位的峰电位时期。
    ①L. Bugnard, A. V. Hill. The effect of frequency of excitation on the thermal response of medullatednerve[J]. J. Physiol.,1935,83:383-393.
    ②L. Bugnard, A. V. Hill. The effect of frequency of excitation on the thermal response of medullatednerve[J]. J. Physiol.,1935,83:383-393.
    ①L. Bugnard, A. V. Hill. The effect of frequency of excitation on the total electrical response ofmedullated nerve[J]. J. Physiol.,1935,83:394-406.
    ①L. Bugnard, A. V. Hill. A further analysis of the effects of high-frequency excitation of nerve[J]. J.Physiol.,1935,83:416-424.
    ①在理论上把刺激作用时间为无限长时,引起组织兴奋所需要的最小电流强度叫做基强度。低于基强度的电流,无论作用时间多么长,都不能引起组织兴奋。
    ②A. V. Hill, B. Katz, D. Y. Solandt. Nerve excitation by alternating current[J]. Proc. Roy. Soc. B,1936,
    121:74-133.
    ①A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certain topicsand methods and a reconnaissance for further research[M]. London: Arnold,1965:248-265.D. K. Hill, R. C. Woledge. A.V. Hill's instruments for measuring temperature change in muscle andnerve [proceedings][J]. J. Physiol.,1976,263:85P-86P.
    ①D. J. Aidley著,周培爱,等译.可兴奋细胞的生理学[M].北京:北京大学出版社,1983:244.
    ①D. J. Aidley著,周培爱,等译.可兴奋细胞的生理学[M].北京:北京大学出版社,1983:244.
    ①A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certain topicsand methods and a reconnaissance for further research. London: Arnold,1965:250.
    ②A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certain topicsand methods and a reconnaissance for further research. London: Arnold,1965:251.
    ①任氏液也称复方氯化钠,除了含有氯化钠成分外,还含有钾离子、钙离子、镁离子及乳酸根离子。因为它由英国生理学家林格所发明,所以又称林格氏液(Riger s Solution)。任氏液是一种比较接近两栖动物内环境的液体,可以用来保持两栖类离体组织器官生理活性。
    ①也称摄氧量(oxygen uptake)、耗氧量(oxygen consumption),是指单位时间内,机体摄取并实际消耗或利用的氧量。
    ①A. V. Hill, C. N. H. Long, H. Lupton. Muscular exercise, lactic acid and the supply and utilization ofoxygen[J]. Ⅳ-Ⅵ. Proc. Roy. Soc. B,1924,97:84-138.
    ①在持续的体力消耗过程中,由最初的精疲力尽阶段又恢复到呼吸相对均匀的状态。
    ①A. V. Hill, C. N. H. Long, H. Lupton. Muscular exercise, lactic acid, and the supply and utilization ofoxygen[J]. Ⅶ and Ⅷ. Proc. Roy. Soc. B,1924,95:155-176.
    ①A. V. Hill, C. N. H. Long, H. Lupton. Muscular exercise, lactic acid, and the supply and utilization ofoxygen[J]. Ⅶ and Ⅷ. Proc. Roy. Soc. B,1924,95:155-176.
    ①A. V. Hill, C. N. H. Long, H. Lupton. Muscular exercise, lactic acid and the supply and utilization ofoxygen[J]. Ⅳ-Ⅵ. Proc. Roy. Soc. B,1924,97:84-138.
    ②A. V. Hill, C. N. H. Long, H. Lupton. Muscular exercise, lactic acid and the supply and utilization ofoxygen[J]. Ⅳ-Ⅵ. Proc. Roy. Soc. B,1924,97:84-138.
    ①A. V. Hill. The maximum work and mechanical efficiency of human muscles and their mosteconomical speed[J]. J. Physiol.,1922,56:19-41.
    ①A. V. Hill. The maximum work and mechanical efficiency of human muscles and their mosteconomical speed[J]. J. Physiol.,1922,56:19-41.
    ①A. V. Hill. The maximum work and mechanical efficiency of human muscles and their mosteconomical speed[J]. J. Physiol.,1922,56:19-41.
    ①A. V. Hill. Muscular movement in man: the factors governing speed and recovery from fatigue[M].New York and London: McGraw-Hill Book Co. Inc.,1927.
    ①A. V. Hill. The air-resistance to a runner[J]. Proc. Roy. Soc. B,1928,102:380-385.
    ①A. V. Hill. The physiological basis of athletic records[J]. Rep. Brit. Ass.1925,153-163; Nature,1925,
    116:544-548.
    ①肌肉在收缩产生张力的同时被拉长的收缩形式成为离心收缩。以此种方式进行的肌肉训练称为离心练习。
    ①W. E. L. Brown, A. V. Hill. The oxygen dissociation curve of blood and its thermodynamical basis[J].Proc. Roy. Soc. B,1923,94:297-334.
    ①A. V. Hill, P. S. Kupalov. The vapour pressure of muscle[J]. Proc. Roy. Soc. B,1930,106:445-477.
    ①在物理化学中,指决定于一定空间中存在的分子数,而非决定于分子的大小、分子量或分子结构。溶液的依数特性有渗透压、沸点升高,冰点降低及蒸发压降低。
    ②又称逸度。测定物质从某一相到另一相,或从相中某部分到同相的另一部分的逸失倾向。逸性的对数与化学电能成正比。
    ①A. V. Hill. The diffusion of oxygen and lactic acid through tissues[J]. Proc. Roy. Soc. B,1928,104:39-96.
    [1]《中国大百科全书》总编委会编.《中国大百科全书》精华本[M].北京:中国大百科全书出版社,2002:3511.
    [2](英)威廉·哈维著,田洺译.心血运动论[M].武汉:武汉出版社,1992:V.
    [3](意)卡斯蒂廖尼著,程之范主译.医学史[M].桂林:广西师范大学出版社,2003:699.
    [4]潘承湘.世界近现代生物学史研究进展初析[J].自然辩证法通讯,1985,(4):50-57.
    [5]赵功民.自然科学史话外国著名生物学家传[M].北京:北京出版社,1987:1.
    [6] http://www.nobelprize.org/nobel_prizes/medicine/laureates/1922/hill-facts.html.
    [7]冯元桢.生物力学[M].北京:科学出版社,1983:214.
    [8] P. J. Rasch, R. K. Burke. Kinesiology and Applied Anatomy: The Science of Human Movement[M].Philadelphia, PA: Lea&Febiger,1959:17-34.
    [9] J. D. Wilkerson. Biomechanics[A]. In: J. D. Massengale, R. A. Swanson. The History of Exerciseand Sport Science[M]. Champaign, IL: Human Kinetics,1997:321-366.
    [10] B. Katz. Archibald Vivian Hill.26September1886-3June1977[J]. Biogr. Mems. Fell. R. Soc.,1978,24:71-149.
    [11] G. A. Brooks, T. D. Fahey, T. P. White, K. M. Baldwin. Exercise Physiology: Human Bioenergeticsand Its Application[M]. Mountain View, CA: Mayfield,2000.
    [12] D. R. Bassett. Scientific contribution of A. V. Hill: exercise physiology pioneer[J]. J. Appl. Physiol.,2002,93:1567-1582.
    [13]杨锡让,傅浩坚主编.运动生理学进展:质疑与思考[M].北京:北京体育大学出版社,2000:38.
    [14](美)洛伊斯.N.玛格纳著,李难,崔极谦,王水平译.生命科学史[M].武汉:华中工学院出版社,1985:1.
    [15]汪子春,田洺,易华.世界生物学史[M].长春:吉林教育出版社,2009:3.
    [16](美)加兰.E.艾伦著,田洺译.20世纪的生命科学史[M].上海:复旦大学出版社,2000:1.
    [17]傅杰青.生理学或医学诺贝尔奖八十年[M].北京:人民卫生出版社,1987:[5].
    [18] A. V. Hill. The Third Bayliss-Starling Memorial Lecture[J]. J. Physiol.,1969,204:1-13.
    [19] A. V. Hill. Autobiographical sketch[J]. Perspect. Biol. Med.,1970,14:27-42.
    [20] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:4.
    [21] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:8-12.
    [22] A. V. Hill. The delayed heat production of muscles stimulated in oxygen[J]. J. Physiol.,1912,45:xxxv-xxxvii.
    [23] A. V. Hill. The energy degraded in the recovery processes of stimulated muscle[J]. J. Physiol.,1913,46:28-80.
    [24] A. V. Hill. The absolute mechanical efficiency of the contraction of an isolated muscle[J]. J.Physiol.,1913,46:435-469.
    [25] A. V. Hill. The heat-production in prolonged contractions of an isolated frog s muscle[J]. J. Physiol.,1913,47:305-324.
    [26] W. M. Fletcher, F. G. Hopkins. Lactic acid in amphibian muscle[J]. J. Physiol.,1907,35:247-309.
    [27] A. V. Hill. The mechanism of muscular contraction(Nobel Lecture,12December,1923)[A]. In:Nobel Lectures, Physiology or Medicine1922-1941[C]. Amsterdam: Elsevier Publishing Company,1965.
    [28] W. Hartree, A. V. Hill. The recovery heat production of muscle. J. Physiol.,1922,56:367-381.
    [29] J. E. Johansson. Award ceremony speech[A]. In: C. G. Santesson. Les Prix Nobel en1921-1922[C].Stockholm: Imprimerie Royale, Norstedt,1923.
    [30] A. V. Hill, W. Hartree. The four phases of heat-production of muscle[J]. J. Physiol.,1920,54:84-128.
    [31] O. Meyerhof. Energy conversions in muscle(Nobel Lecture,12December,1923)[A]. In: NobelLectures, Physiology or Medicine1922-1941[C]. Amsterdam: Elsevier Publishing Company,1965.
    [32] W. Hartree, A. V. Hill. The anaerobic processes involved in muscular activity[J]. J. Physiol.,1923,58:127-137.
    [33] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:162.
    [34] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:168.
    [35] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:172.
    [36] A. V. Hill. The absence of delayed anaerobic heat in a series of muscle twitches[J]. Proc. Roy. Soc.B,1928,103:171-182.
    [37] W. Hartree, A. V. Hill. The anaerobic delayed heat production after a tetanus[J]. Proc. Roy. Soc. B,1928,103:207-217.
    [38] McK. Cattell, W. Hartree. The delayed anaerobic heat production of stimulated muscle[J]. J.Physiol.,1932,74:221-230.
    [39] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:170.
    [40] P. Eggleton, G. P. Eggleton. The inorganic phosphate and a labile form of orgnic phosphate in thegastrocnemius of the frog[J]. Biochem. J.1927,21:190-95.
    [41] C. H. Fiske, Y. Subbarow. The nature of the inorganic phosphate in voluntary muscle[J]. Science,1927,65:401-403.
    [42] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:165.
    [43] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:167.
    [44] A. V. Hill. The revolution in muscle physiology[J]. Physiol. Rev.,1932,12:56-67.
    [45] A. V. Hill. A challenge to biochemists[J]. Biochim. biophys. Acta,1950,4:4-11.
    [46] A. V. Hill. The negative delayed heat production in stimulated muscle[J]. J. Physiol.,1961,158:178-196.
    [47] W. Hartree. The analysis of the delayed heat production of muscle[J]. J. Physiol.1932,75:273-287.
    [48] L. Bugnard. The relation between total and initial heat in single muscle twitches[J]. J. Physiol.,1934,82:509-519.
    [49] A. V. Hill. The position occupied by the production of heat, in the chain of processes constituting amuscular contraction[J]. J. Physiol.,1911,42:1-43.
    [50] A. V. Hill. The absolute mechanical efficiency of the contraction of an isolated muscle[J]. J.Physiol.,1913,46:435-469.
    [51] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:40.
    [52] W. O. Fenn, A quantitative comparison between the energy liberated and the work performed by theisolated sartorius muscle of the frog[J]. J. Physiol.,1923,58:175-203.
    [53] W. O. Fenn. The relation between the work performed and the energy liberated in muscularcontraction[J]. J. Physiol.,1924,58:373-395.
    [54] A. V. Hill. Length of muscle, and the heat and tension developed in an isometric contraction[J]. J.Physiol.,1925,60:237-263.
    [55] W. Hartree, A. V. Hill. The factors determining the maximum work and the mechanical efficiencyof muscle[J]. Proc. Roy. Soc. B,1928,103:234-251.
    [56] W. Hartree, A. V. Hill. The regulation of the supply of energy in muscular contraction[J]. J. Physiol.,1921,55:133-158.
    [57] A. V. Hill. The relation between force developed and energy liberated in an isometric twitch[J].Proc. Roy. Soc. B,1958,149:58-62.
    [58] A. V. Hill. The absolute value of the isometric heat coefficient Tl/H in a muscle twitch, and theeffect of stimulation and fatigue[J]. Proc. Roy. Soc. B,1928,103:163-170.
    [59] A. V. Hill. Myothermic experiments on the frog s gastrocnemius[J]. Proc. Roy. Soc. B,1931,109:267-303.
    [60] A. V. Hill, R. C. Woledge. An examination of absolute values in myothermic measurements[J]. J.Physiol.,1962,162:311-333.
    [61] A. V. Hill, W. Hartree. The thermo-elastic properties of muscle[J]. Phil. Trans. Roy. Soc. B,1920,210:153-173.
    [62] Y. Doi. Studies on muscular contraction: II. The relation between the maximal work and the tensiondeveloped in a muscle twitch, and the effects of temperature and extension[J]. J. Physiol.,1921,54:335-341.
    [63] A. V. Hill. The maximum work and mechanical efficiency of human muscles and their mosteconomical speed[J]. J. Physiol.,1922,56:19-41.
    [64] H. S. Gasser, A. V. Hill. The dynamics of muscular contraction[J]. Proc. Roy. Soc. B,1924,96:398-437.
    [65] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:48.
    [66] A. V. Hill. The laws of muscular motion[J]. Proc. Roy. Soc. B,1926,100:87-108.
    [67] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:84.
    [68] A. V. Hill. The heat of shortening and the dynamic constants of muscle[J]. Proc. Roy. Soc. B,1938,126:136-195.
    [69] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:149.
    [70] A. V. Hill. Methods of analysing the heat production of muscle[J]. Proc. Roy. Soc. B,1937,124:114-136.
    [71] W. O. Fenn, B. S. Marsh. Muscular force at different speeds of shortening[J]. J. Physiol.,1935,85:277-297.
    [72] D.J.Aidley著,周培爱等译.可兴奋细胞的生理学[M].北京:北京大学出版社,1983:246.
    [73] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965.
    [74] A. V. Hill. The heat of activation and the heat of shortening in a muscle twitch[J]. Proc. Roy. Soc. B,1949,136:195-211.
    [75] A. V. Hill. The energetics of relaxation in a muscle twitch[J]. Proc. Roy. Soc. B,1949,135:211-219.
    [76] A. V. Hill. Work and heat in a muscle twitch[J]. Proc. Roy. Soc. B,1949,136:220-228.
    [77] A. V. Hill. Myothermic methods[J]. Proc. Roy. Soc. B,1949,136:228-241.
    [78] A. V. Hill. The onset of contraction[J]. Proc. Roy. Soc. B,1949,136:242-254.
    [79] A. V. Hill. The abrupt transition from rest to activity in muscle[J]. Proc. Roy. Soc. B,1949,136:399-420.
    [80] B. C. Abbott, X. M. Aubert, A. V. Hill. The absorption of work by a muscle stretched during asingle twitch or a short tetanus[J]. Proc. Roy. Soc. B,1951,139:86-104.
    [81] B. C. Abbott, X. M. Aubert. Changes of energy in a muscle during very slow stretches[J]. Proc.Roy. Soc. B,1951,139:104-117.
    [82] A. V. Hill, J. V. Howarth. The reversal of chemical reactions in contracting muscle during anapplied stretch[J]. Proc. Roy. Soc. B,1959,151:169-193.
    [83] J. M. Ritchie. The effect of nitrate on the active state of muscle[J]. J. Physiol.1954,126:155-168.
    [84] A. V. Hill. The development of the active state of muscle during the latent period[J]. Proc. Roy. Soc.B,1950,137:320-329.
    [85] A. Sandow. General properties of latency relaxation[J]. J. cell comp. physiol.,1944,24:221-256.
    [86] A. V. Hill. The effect of tension in prolonging the active state in a twitch[J]. Proc. Roy. Soc. B,1964,159:589-595.
    [87] D.J.Aidley著,周培爱等译.可兴奋细胞的生理学[M].北京:北京大学出版社,1983:268.
    [88] F. J. Julian. Activation in a skeletal muscle contraction model with a modification for insect fibrillarmuscle[J]. Biophys. J.,1969,9:547-570.
    [89] F. J. Julian. The effect of calcium on the force-velocity relation of briefly glycerinated frog musclefibres[J]. J. Physiol.,1971,218:117-145.
    [90] F. J. Julian, M. R. Sollins. Regulation of force and speed of shortening in muscle contraction[J].Cold Spring Harb. Symp. Quant. Biol.,1973,37:635-646.
    [91] B. C. Abbott, D. R. Wilkie. The relation between velocity of shortening and the tension-lengthcurve of skeletal muscle[J]. J. Physiol.,1953,120:214-223.
    [92] A. V. Hill. A reinvestigation of two critical points in the energetics of muscular contraction[J]. Proc.Roy. Soc. B,1953,141:503-510.
    [93] A. V. Hill. The effect of load on the heat of shortening of muscle[J]. Proc. Roy. Soc. B,1964,159:297-318.
    [94] F. D. Carlson, D. J. Hardy, D. R. Wilkie. Total energy production and phosphocreatine hydrolysis inthe isotonic twitch[J]. J. gen. Physiol.,1963,46:851-891.
    [95] A. V. Hill. The variation of total heat production in a twitch with velocity of shortening[J]. Proc.Roy. Soc. B,1964,159:596-605.
    [96] D.J.Aidley著,周培爱等译.可兴奋细胞的生理学[M].北京:北京大学出版社,1983:254.
    [97] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:15-16.
    [98] A. V. Hill. The absence of temperature changes during the transmission of a nervous impulse[J]. J.Physiol.,1912,43:433-440.
    [99] A. C. Downing, R. W. Gerard, A. V. Hill. The heat production of nerve[J]. Proc. Roy. Soc. B,1926,100:223-251.
    [100] A. V. Hill. The heat production of nerve[J]. J. Pharmacol.,1926,29:161-165.
    [101] R. W. Gerard, A. V. Hill, Zotterman. The effect of frequency of stimulation on the heat productionof nerve[J]. J. Physiol.,1927,63:130-143.
    [102] A. V. Hill. The heat production and recovery of crustacean nerve[J]. Proc. Roy. Soc. B,1929,105:153-176.
    [103] A. C. Downing, A. V. Hill. A new thermopile for the measurement of nerve heat production[J].Proc. Roy. Soc. B,1929,105:147-152.
    [104] A. V. Hill. Chemical wave transmission in nerve[M]. London: Cambridge University Press,1932:20.
    [105] A. V. Hill. A closer analysis of the heat production of nerve[J]. Proc. Roy. Soc. B,1932,111:106-164.
    [106] A. V. Hill. The three phases of nerve heat production[J]. Proc. Roy. Soc. B,1933,113:345-356.
    [107] A. V. Hill. Chemical wave transmission in nerve[M]. London: Cambridge University Press,1932.
    [108] A. V. Hill. Chemical wave transmission in nerve[M]. London: Cambridge University Press,1932:24-30.
    [109] A. V. Hill. Chemical wave transmission in nerve[M]. London: Cambridge University Press,1932:35.
    [110] B. C. Abbott, A. V. Hill, J. V. Howarth. The positive and negative heat production associated witha nerve impulse[J]. Proc. Roy. Soc. B,1958,148:149-187.
    [111] A. V. Hill. Chemical wave transmission in nerve[M]. London: Cambridge University Press,1932:57.
    [112] A. V. Hill. Nerve heat production as a physiological response to stimulation[J]. Proc. Roy. Soc. B,1934,115:200-216.
    [113] L. Bugnard. The heat production of cat s nerve[J]. J. Physiol.,1936,89:29-36.
    [114] A. V. Hill, J. V. Howarth. The initial heat production of stimulated nerve[J]. Proc. Roy. Soc. B,1958,149:167-175.
    [115] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:37.
    [116] A. V. Hill. A new mathematical treatment of changes of ionic concentration in muscle and nerveunder the action of electric currents, with a theory as to their mode of excitation[J]. J. Physiol.,1910,40:190-224.
    [117] A. V. Hill. Repetitive stimulation by commutator and condenser[J]. J. Physiol.,1934,82:423-431.
    [118] L. Bugnard, A. V. Hill. The effect of frequency of excitation on the thermal response ofmedullated nerve[J]. J. Physiol.,1935,83:383-393.
    [119] T. P. Feng, A. V. Hill. The steady state of heat production of nerve. Proc. Roy. Soc. B,1933,113:356-365.
    [120] L. Bugnard, A. V. Hill. The effect of frequency of excitation on the total electrical response ofmedullated nerve[J]. J. Physiol.,1935,83:394-406.
    [121] L. Bugnard, A. V. Hill. A further analysis of the effects of high-frequency excitation of nerve[J]. J.Physiol.,1935,83:416-424.
    [122] A. V. Hill. Excitation and accommodation in nerve[J]. Proc. Roy. Soc. B,1936,119:305-355.
    [123] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:33.
    [124] A. V. Hill, B. Katz, D. Y. Solandt. Nerve excitation by alternating current[J]. Proc. Roy. Soc. B,1936,121:74-133.
    [125] B. Katz. Experimental Evidence for a Non-Conducted Response of Nerve to SubthresholdStimulation[J]. Proc. R. Soc. B,1937,124:244-276.
    [126] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:254.
    [127] A. V. Hill, H. Lupton. Muscular exercise, lactic acid and the supply and utilization of oxygen[J].Quart. J. Med.,1923,16:135-171.
    [128] A. V. Hill, C. N. H. Long, H. Lupton. Muscular exercise, lactic acid and the supply and utilizationof oxygen. Ⅰ-Ⅲ[J]. Proc. Roy. Soc. B,1924,96:438-475.
    [129] A. V. Hill, C. N. H. Long, H. Lupton. Muscular exercise, lactic acid and the supply and utilizationof oxygen. Ⅳ-Ⅵ[J]. Proc. Roy. Soc. B,1924,97:84-138.
    [130] A. V. Hill, C. N. H. Long, H. Lupton. Muscular exercise, lactic acid, and the supply and utilizationof oxygen. Ⅶ and Ⅷ[J]. Proc. Roy. Soc. B,1924,95:155-176.
    [131] A. V. Hill, C. N. H. Long. Muscular exercise, lactic acid and the supply and utilization ofoxygen[J]. Ergebn. Physiol.,1925,24:43-51.
    [132] T. Hale, History of developments in sport and exercise physiology: A. V. Hill, maximal oxygenuptake, and oxygen debt[J]. J. Sports. Sci.,2008,26(4):365-400.
    [133] S. K. Powers, E. T. Howley. Exercise Physiology[M]. Boston, MA: McGraw-Hill,2001.
    [134] B. Saltin, S. Strange. Maximal oxygen uptake: old and new arguments for a cardiovascularlimitation[J]. Med. Sci. Sports Exerc.,1992,24:30-37.
    [135] P. O. strand, B. Saltin. Oxygen uptake during the first minutes of heavy muscular exercise[J]. J.Appl. Physiol.,1961,16:971-976.
    [136] T. D. Noakes. How did A V Hill understand the VO2max and the plateau phenomenon? Still noclarity?[J]. Br. J. Sports Med.,2008,42:574-580.
    [137] T. D. Noakes. Is it time to retire the A.V. Hill Model?: A rebuttal to the article by Professor RoyShephard [J]. Sports Med.,2011,41:263-277.
    [138]王瑞元主编.运动生理学[M].北京:人民体育出版社,2002:260.
    [139]王瑞元主编.运动生理学[M].北京:人民体育出版社,2002:261.
    [140] J. E. L. Carter, F. W. Kasch, J. L. Boyer, W. H. Phillips, W. D. Ross, A. Sucec. Structural andfunctional assessments of a champion runner-Peter Snell[J]. Res. Q. Exerc. Sport,1967,38:355-365.
    [141] J. A. Dempsey, P. Hanson, K. Henderson. Exercise-induced arterial hypoxemia in healthy humansat sea-level[J]. J. Physiol.,1984,355:161-175.
    [142] B. Ekblom, G. Wilson, P. O. strand. Central circulation during exercise after venesection andreinfusion of red blood cells[J]. J. Appl. Physiol.,1976,40:379-383.
    [143] A. V. Hill, H. Lupton. The oxygen consumption during running[J]. J. Physiol.,1922,56:xxxii-xxxiii.
    [144] A. Krogh, J. Lindhard. The changes in respiration at the transition from work to rest[J]. J. Physiol.,1920,53:431-439.
    [145](美)乔奇A布茹克司,汤姆士D法哈著,杨锡让等译.运动生理学[M].北京:北京体育学院出版社,1988.
    [146]杨锡让,傅浩坚主编.运动生理学进展:质疑与思考[M].北京:北京体育大学出版社,2000:310-311.
    [147]杨锡让,傅浩坚主编.运动生理学进展:质疑与思考[M].北京:北京体育大学出版社,2000:317-318.
    [148] G. A. Brooks, G. A. Gaesser. End points of lactate and glucose metabolism after exhaustingexercise[J]. J. Appl. Physiol.,1980,49:1057-1069.
    [149] C. M. Donovan, G. A. Brooks. Endurance training affects lactate clearance, not lactateproduction[J]. Am. J. Physiol. Endocrinol. Metab.,1983,244: E83-E92.
    [150] H. Lupton. The relation between the external work produced and the time occupied in a singlemuscular contraction in man[J]. J. Physiol.,1922,57:68-75.
    [151] A. V. Hill. The dynamic constants of human muscle[J]. Proc. Roy. Soc. B,1940,128:262-274.
    [152] A. V. Hill. Muscular movement in man: the factors governing speed and recovery from fatigue[M].New York and London: McGraw-Hill Book Co. Inc.,1927.
    [153] K. Furusawa, A. V. Hill, J. L. Parkinson. The dynamics of sprint running[J]. Proc. Roy. Soc. B,1927,102:29-42.
    [154] M.Ae,A. Ito, M. Suzuki. The men s100metres[J]. New StudiesAthletics,1992,7:48-52.
    [155] K. Furusawa, A. V. Hill, J. L. Parkinson. The energy used in sprint running[J]. Proc. Roy. Soc. B,1927,102:43-50.
    [156] A. V. Hill. The air-resistance to a runner[J]. Proc. Roy. Soc. B,1928,102:380-385.
    [157] J. Daniels, P. Bradley, N. Scardina, P. V. Handel, J. Troup. Aerobic responses to submax and maxtreadmill and track running at sea level and altitude[J]. Med. Sci. Sports Exerc.,1985,17:187.
    [158] C. T. M. Davies. Effects of wind assistance and resistance on the forward motion of a runner[J]. J.Appl. Physiol.,1980,48:702-709.
    [159] C. R. Kyle, V. J. Caiozzo. The effect of athletic clothing aerodynamics upon running speed[J].Med. Sci. Sports Exerc.,1986,18:509-515.
    [160] A. V. Hill. The physiological basis of athletic records[J]. Nature,1925,116:544-548.
    [161] J. Daniels, N. Scardina, P. V. Foley. VO2submax during five modes of exercise[A]. In: L. P. M.Bachl, R. Suckert. Proceedings of the World Congress on Sports Medicine,1982[C]. Vienna: Urban andSchwartsenberg,1984:604-615.
    [162] P. O. strand, B. Saltin. Maximal oxygen uptake and heart rate in various types of muscularactivity[J]. J. Appl. Physiol.,1961,16:977-81.
    [163] D. R. Bassett, E. T. Howley. Limiting factors for maximum oxygen uptake and determinants ofperformance[J]. Med. Sci. Sports Exerc.,2000,32:70-84.
    [164]体育学院通用教材.运动生理学[M].北京:人民体育出版社,1990:92.
    [165]王瑞元主编.运动生理学[M].北京:人民体育出版社,2002:266.
    [166] R. L. Sharp, D. L. Costill, W. J. Fink, D. S. King. Effects of eight weeks of bicycle ergometersprint training on human muscle buffer capacity[J]. Int. J. Sports Med.,1986,7:13-17.
    [167] W. C. Byrnes, P. M. Clarkson, J. S. White, et al. Delayed onset muscle soreness followingrepeated bouts of downhill running[J]. J. Appl. Physiol.,1985,59:710-715.
    [168] D. B. Dill. Introduction[A]. In: L. E. Morehouse, A. T. Miller. Physiology of Exercise[M]. St.Louis, MO: Mosby,1948.
    [169] E. J. Hamley. A. V. Hill, C. H., F. R. S.-an appreciation[J]. Br. J. Sports Med.,1976,10:195.
    [170] E. Jokl.90th Birthday of Professor A. V. Hill[J]. J. Sports Med.Phys. Fitness,1976,16:349.
    [171] A. V. Hill. The mode of action of nicotine and curari, determined by the form of the contractioncurve and the method of temperature coefficients[J]. J. Physiol.,1909,39:361-373.
    [172] J. N. Langley. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regardsthe reaction of striated muscle to nicotine and to curari[J]. J. Physiol.,1905,33:374-413.
    [173]沈同,王镜岩主编.生物化学[M].北京:高等教育出版社,1991:245.
    [174]陈学民,周文森.卓越的美国化学家和物理学家欧文朗缪尔[J].化学通报,1983,(3):57-59,64.
    [175] J. Barcroft, A. V. Hill. The nature of oxyhaemoglobin, with a note on its molecular weight[J]. J.Physiol.,1910,39:411-428.
    [176] J. Barcroft, Ff. Roberts. The dissociation curve of haemoglobin[J]. J. Physiol.,1909,39:143-148.
    [177] A. V. Hill. The possible effects of the aggregation of the molecules of haemoglobin on itsdissociation curves[J]. J. Physiol.,1910,40: iv-vii.
    [178] A. V. Hill. The combinations of haemoglobin with oxygen and carbon monoxide[J]. Biochem. J.,1913,7:471-480.
    [179] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:102.
    [180] C. G. Douglas, J. S. Haldane, J. B. S. Haldane. The laws of combination of haemoglobin withcarbon monoxide and oxygen[J]. J. Physiol.,1912,44:275-304.
    [181] A. V. Hill. The combinations of haemoglobin with oxygen and carbon monoxide, and the effectsof acid and carbon dioxide[J]. Biochem. J.,1921,15:577-586.
    [182] W. E. L. Brown, A. V. Hill. The oxygen dissociation curve of blood and its thermodynamicalbasis[J]. Proc. Roy. Soc. B,1923,94:297-334.
    [183] A. V. Hill. The interactions of oxygen, acid and CO2in blood[J]. J. Biol. Chem.,1922,51:359-365.
    [184] G. S. Adair. The Osmotic Pressure of Haemoglobin in the Absence of Salts[J]. Proc. R. Soc. A,1925,109:292-300.
    [185] G. S. Adair, A. V. Bock, H. Field. The hemoglobin system. Ⅵ. the oxygen dissociation curve ofhemoglobin[J]. J. Biol. Chem.,1925,63:529-545.
    [186] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:106.
    [187] A. V. Hill. Myothermic apparatus[J]. Proc. Roy. Soc. B,1928,103:117-137.
    [188] A. V. Hill. Adventures in Biophysics[M]. Philadelphia: University of Pennsylvania Press,1931:1-4.
    [189] A. V. Hill. The role of oxidation in maintaining the dynamic equilibrium of the muscle cell[J].Proc. Roy. Soc. B,1928,103:138-162.
    [190] A. V. Hill. Adventures in Biophysics[M]. Philadelphia: University of Pennsylvania Press,1931:10-11.
    [191] A. V. Hill. Adventures in Biophysics[M]. Philadelphia: University of Pennsylvania Press,1931:13-14.
    [192] A. V. Hill. Adventures in Biophysics[M]. Philadelphia: University of Pennsylvania Press,1931:17-18.
    [193] A. V. Hill. A thermal method of measuring the vapour pressure of an aqueous solution[J]. Proc.Roy. Soc. A,1930,127:9-19.
    [194] R. Margaria. The vapour pressure of normal human blood[J]. J. Physiol.,1930,70:417-433.
    [195] E. J. Baldes. A micromethod of messuring osmotic pressure[J]. J. sci. Instrum.,1934,11:223-225.
    [196] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:111.
    [197] J. C. Bramwell, A. V. Hill. The velocity of the pulse wave in man[J]. Proc. R. Soc. B,1922,95:298-306.
    [198] J. C. Bramwell, A. V. Hill. Velocity of transmission of the pulse wave[J]. Lancet,6May1922,891-892.
    [199] J. C. Bramwell, A. V. Hill, B. A. McSwiney. The velocity of the pulse wave in man in relation toage as measured by the hot-wire sphygmograph[J]. Heart,1923,10:233-255.
    [200] J. C. Bramwell, A. V. Hill. The formation of breakers in the transmission of the pulse wave[J]. J.Physiol.,1923,57: lxxiii-lxxiv.
    [201] J. C. Bramwell, A. C. Downing, A. V. Hill. The effect of blood pressure on the extensibility of thehuman artery[J]. Heart,1923,10:289-300.
    [202] A. V. Hill, P. S. Kupalov. The vapour pressure of muscle[J]. Proc. Roy. Soc. B,1930,106:445-477.
    [203] A. V. Hill. The state of water in muscle and blood and the osmotic behaviour of muscle[J]. Proc.Roy. Soc. B,1930,106:477-505.
    [204] A. Grollman. The vapour pressures of aqueous solutions with special reference to the problem ofthe state of water in biological fluids[J]. J. Gen. Physiol.,1931,14:661-683.
    [205] A. V. Hill. The diffusion of oxygen and lactic acid through tissues[J]. Proc. Roy. Soc. B,1928,104:39-96.
    [206] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:107.
    [207] G. Stella. The concentration and diffusion of inorganic phosphate in living muscle[J]. J. Physiol.,1928,66:19-31.
    [208] P. Eggleton. The diffusion of creatine and urea through muscle[J]. J. Physiol.,1930,70:294-300.
    [209] A. V. Hill, P. Kupalov. Anaerobic and aerobic activity in isolated muscle[J]. Proc. Roy. Soc. B,1929,105:313-322.
    [210] A. V. Hill. Trails and Trials in Physiology: a Bibliography,1909-1964; with reviews of certaintopics and methods and a reconnaissance for further research[M]. London: Arnold,1965:221.
    [211](比利时)C.西伯斯马著.沈淑敏,王大成等译.生物物理学引论[M].北京:科学出版社,1979.
    [212]冯元桢.生物力学[M].北京:科学出版社,1983:199.
    [213]杨桂通,陈维毅,徐晋斌.生物力学[M].重庆:重庆出版社,2000:6.
    [214]梁国钊.诺贝尔奖获得者论科学思想、科学方法与科学精神[C].北京:中国科学技术出版社,2002:95.