重金属有机废水电生物修复及生物膜结构与生物吸附模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电生物技术作为一项绿色高新技术在环境污染治理领域的应用已初见端倪,深入开展有关研究具有重要的理论和现实意义。
    针对污染严重的重金属有机废水,提出了全新电沉积-生物膜复合工艺进行综合治理,关键在于一是筛选高效功能菌,二是确定生物体系中最佳的电沉积电位。本文主要研究内容如下:
    培养与驯化后混合微生物TEM、SEM分析表明,不同于混合培养,驯化后微生物种群数量急剧减少,但适应性个体数量明显增加,且细胞结构,表面形态均发生了变化。同时,降解动力学实验也发现,尽管混合培养与驯化后微生物均能将葡萄糖降解到很低水平,但比降解速率曲线差异很大。
    对于重金属电沉积过程中的极化现象,从理论与实验两方面进行了探讨,并确定了不同金属的还原峰电位。
    采用新型复合工艺连续处理重金属有机废水,同时,与单一电沉积法和生物膜法对比发现,复合工艺具有更高的净化效果。
    生物膜形成过程一直是关注的焦点,本文运用离散-微分结合法进行了动态模拟,其形态特征如厚度、密度和表面粗糙性等以输出量形式反映出来,并研究了模型参数改变对生物膜结构的影响。
    最后,建立了电场强化重金属传递与生物膜吸附模型,并结合实验结果进行了验证。进而,探讨了电迁移速度、废水进口流速、重金属初始浓度对平衡吸附量的影响。
Electro biotechnology as an environment-friendly technology shows potential values in the field of environment pollution treatment. It is necessary to carry out extensive research theoretically and practically.
    A novel combined process of micro electrolysis and biofilm is initially put forward and utilized to purify metal-laden organic wastewaters in this article. Two key factors to achieve this aim are to screen the qualified functional bacteria and determine the optimum electro deposition potential of metals on the premise of physiological and biochemical activity sustained. The main content in this article are as follows:
     TEM and SEM Analyses of mixed microbial cells show that: after acclimation by heavy metals or non-degradation organic substances, small sorts of mixed microbial are survived, and adaptable individuals are increased obviously. Moreover, their microstructure and morphological characteristics are changed greatly.
     Biodegradation kinetics indicates that glucose can be degraded to much lower levels by mixed microbial cells cultured or acclimated, but the curves of specific degrading rates are quite different.
    Polarization phenomena of metals electro deposition are studied in both theory and experiments, and the reductive peak potentials of metals are also determined.
     Continuous treatments of metal-bearing organic wastewaters by combined process were carried out in this article, and its purification efficiency is obviously prominent than that of sole electro deposition or biofilm processes.
     A combined method of discrete-differential is used to dynamically simulate biofilm formation and development in 2-D space, and the morphological characteristics of biofilm are output values of model. Further, the effects of model parameters on biofilm microstructure are investigated, too.
     A model of metal ions transfer and biofilm adsorption under direct-current electric field is established and tested with the experimental results. Moreover, the effects of electro migration velocity, initial concentrations of heavy metals and wastewaters maximum input velocity on the equilibrium adsorbance are also studied deeply.
引文
[1] Mellor R B, Reduction of nitrate in water by immobilized enzymes, Nature, 1992, 355: 717-719
    [2] Teissié J, Effects of electric fields and currents on living cells and their potential use in biotechnology: a survey, Bioelectrochemistry Bioenergetics, 1988, 20: 133-142
    [3] 黄河清,林庆梅,生物电化学电解池的设计与应用,分析仪器,1999, 2: 13-17
    [4] Grosse H H, Bauer E, Berg H, Electro stimulation during fermentation, Bioelectrochemistry Bioenergetics, 1988, 20: 279-285
    [5] Bartsch G, Baumannn M, Grebe R, Numerical calculation of electric fields surrounding biological cells in three dimensions, Bioelectrochemistry Bioenergetics, 1997, 42: 221-226
    [6] Saffer J D, Phillips J L, Evaluating the biological aspects of in vitro studies in bioelectromagnetics, Bioelectrochemistry Bioenergetics, 1996, 40: 1-7
    [7] Sakakibara Y, Kuroda M, Electric prompting and control of denitrification, Biotechnol Bioeng, 1993, 42: 535-537
    [8] 李天成,李鑫钢,王大为等,一种处理含重金属离子有机废水的新工艺,化工进展,2002,21(8):604-606
    [9] Jackman S A, Giacomo M, Sharman A, The effects of direct electric current on the viability and metabolism of acidophilic bacteria, Enzyme Microbial Technology, 1999, 24(1): 316-324
    [10] 马文漪,杨柳燕,环境微生物工程,南京:南京大学出版社,1998,124-150
    [11] 全向春,刘佐才,范广裕等,生物强化技术及其在废水治理中的应用,环境科学研究,1999,12(3):22-27
    [12] Volesky B. Biosorption of Heavy Metals, Department of Chemical Engineering, Montreal Quebec, Canada: McGill University, 1990, 14-19
    [13] 陈勇生,孙启俊,陈钧等,重金属的生物吸附技术研究,环境科学进展,1997,5(6):34-43
    [14] 张笑一,潘渝生,重金属致毒的化学机理,环境科学研究,1997, 10(2): 45-49
    [15] 王忠玉,姚重华(译),水环境的金属污染,北京:海洋出版社,1987,3-55
    [16] 秦麟源,废水生物处理,上海:同济大学出版身社,1989,1-29
    [17] 刘雨,赵庆良,郑兴灿,生物膜法污水处理技术,北京:中国建筑工业出版社,2000,47-82
    [18] Characklis W C, Biofilm Processes, In: Characklis W C, Marshall C G, Biofilm, New York: John Wiley and sons Inc, 1990, 195-231
    [19] 杨平,潘永亮,何力,废水生物处理中生物膜的形成及动力学模型研究进展,环境科学进展,2000,13(5):50-53
    
    
    
    [20] Liu Y, Tay J H, The essential rolr of hydrodynamic shear force in the formation of biofilm and granular sludge, Wat Res, 2002, 36: 1653-1665
    [21] Heijnen J J, Van Loosdrecht M C M, Mulder A, et al, Formation of biofilm in a biofilm air-lifted suspension reactor, Wat Sci Technol, 1992, 26 (5): 647-654
    [22] Rittmann B E, McCarty P L, Substrate flux into biofilms of any thickness, J Environ Eng, ASCE, 1981, 107: 831-850
    [23] Capdeville B, Nguyen K M, Kinetics and modeling of aerobic and anaerobic film growth, Wat Sci Technol, 1990, 22: 149-170
    [24] Capdeville B, Nguyen K M, Rols J L, Biofilm modeling: Structural reactional and diffusional aspects, In: Melo L F, Bott T R, Fletcher M, et al, Biofilms Science and Technology, Kluwer Academic Publishers, 1992, 251-276
    [25] Belkhadir R, Capdeville B, Roques H, Fundamental descriptive study and modelization of biological film growth, Wat Res, 1988, 22: 59-69
    [26] 曹宏斌.电流及电迁移对生物膜结构、形态和传质性能影响机理的研究:[博士学位论文],天津:天津大学,2001
    [27] Zhang T C, Influence of biofilm structure on transport and transformation processes in biofilms, [Ph. D, dissertation], Univ of Cincinnati, Cincinnati, Ohio, U S A
    [28] Zhang T C, Bishop P L, Structure activity and composition of biofilms, Proc First Int Specialized Conf on Microorganisms in Activated Sludge and Biofilm Processes, Paris, France, 1993, 303-312
    [29] Zhang T C, Bishop P L, Evaluation of tortuosity factors and effective diffusivities in biofilms, Wat Res, 1994, 28: 2279-2287
    [30] Zhang T C, Bishop P L, Density, porosity, and pore Structure of biofilm, Wat Res, 1994, 28(11): 2267-2277
    [31] Hermanowicz S W, Schindler U, Wilderer P, Fractal structure of Biofilms: New tools for investigation of morphology, Wat Sci Tech, 1995, 32(8): 99-105
    [32] Yang X M, Beyenal H, Harkin G, et al, Evaluation of biofilm image thresholding methods, Wat Res, 2001, 35(5): 1149-1158
    [33] Stewart P S, Murga R, Srinivasan R, et al, Biofilm structure heterogeneity visualized by three microscopic methods, Wat Res, 1995, 29(8): 2006-2009
    [34] Yang X M, Beyenal H, Harkin G, et al, Quantifying biofilm structure using image analysis, J Microbiological Methods, 2000, 39: 109-119
    [35] Massol-Deya A A, Whallon J, Hickey R F, et al, Channel structures in aerobic biofilms of fixed-film reactors treating contaminated groundwater, Appl Envir Micro, 1995, 61(3): 769-777
    [36] Gjaltema A, Arts P A M, Van Loosdrecht M C M, Heterogeneity of biofilms in rotating annular reactors: occurrence, structure, and consequences, Biotechnol Bioeng, 1994, 44(2): 194-204
    [37] Peys K, Development of a membrane biofilm reactor for the degradation of chlorinated aromatics, Wat Sci Tech, 1997, 36(1): 205-214
    
    
    [38] Hinson R K, Kocher W M, Model for effective diffusivities in aerobic biofilms, J Environ Eng, 1996, 122(11): 1023-1030
    [39] Spath R, Sorption properties of biofilm, Wat Sci Tech, 1998, 37(4-5): 207-210
    [40] Satoshi O, Significance of the spatial distribution of microbial species in mixed population biofilms, Biofouling, 1997,11(2): 119-136
    [41] Xia F, Beyenal H, Lewandowski Z, An electrochemical technique to measure local flow velocity in biofilms, Wat Res, 1998, 32(12): 3631-3636
    [42] Hermanowicz S W, Two-dimensional simulations of biofilm development: Effecrs of external environmental conditions, Wat Sci Tech, 1999, 39(7): 107-114
    [43] Rittmann B E, McCarty P L, Model of steady-state-biofilm kinetics, Biotechnol Bioeng, 1980, 22: 2343-2357
    [44] Atkinson B, Davies I J, The overall rate of substrate uptake by microbial films, Part I: A biological rate equation, Trans Instn Chem Engrs, 1974, 52: 248-259
    [45] Wanner O, Gujer W, A multispecies biofilm model, Biotechnol Bioeng, 1986, 28: 314-328
    [46] Wanner O, Reichert P, Mathematical modeling of mixed-culture biofilms, Biotechnol Bioeng, 1996, 49: 172-184
    [47] Picioreanu C, Multidimensional modeling of biofilm structure, [Ph. D. thesis], Delft University of Technology, the Netherlands, 1999
    [48] Zouboulis A I, Rousou E G, Matis K A, et al, Removal of toxic metals from aqueous mixtures, Part 1: Biosorption, J Chem Tech Biotech, 1999, 74: 429-436
    [49] 吴乾菁,李昕,李福德等,微生物治理电镀废水的研究,环境科学, 1997,18(5):47-50
    [50] Ford T E, Mitchel R, Microbial transport of toxic metals, In: Mitchel R, Environ mental Microbial, New York: John Wiley-liss, 1992, 83-101
    [51] Moral F M N, Principles of Aquatic Chemistry, New York: Wiley-Interscience, 1983, 300-309
    [52] Ford T E, The microbial ecology of water distribution and outfall systems, In: Ford T E, Aquatic Microbiology: An Ecological Approach, Boston: Blackwell, 1993, 455-482
    [53] 何孟常,水体沉积物重金属生物有效性及评价方法,环境科学进展,1998,6(5):9-19
    [54] 唐翔宇,吕伯升,吴文华,水生生态系统中的微生物-金属相互作用,环境科学研究,2000,12(3):28-30
    [55] Glimour C C, Henry E A, Mercury methylation in aquatic systems affected by acid deposition, Environ Pollut, 1991, 71: 131-137
    [56] Compeau G C, Bartha R, Sulfate-reducing bacteria: Principal methylators of mercury anoxic sediments, Appl Environ microbial, 1985, 50: 498-502
    [57] Xue H B, Stumm W, Sigg L, The binding of heavy metals to algal surface, Wat Res, 1988, 22: 917-923
    
    
    
    [58] Ferris F G, Metallic ion interactions with the outer membrane of gram-negative bacteria, In: Beveridge T J, Doyle R J, Metal Ions and Bacteria, New York: Wiley, 1989, 295-323
    [59] Doyle R J, How cell walls of gram-positive bacteria interact with metal ions, In: Beveridge T J, Doyle R J, Metal Ions and Bacteria, New York: Wiley, 1989, 275-293
    [60] Black J P, Ford T E, Mitchell R, The role of bacterial polymers in metal release into water, In: Cullimore R, International Symposium on Biofouled Aquifers: Prevention and Restoration, Bethesda, MD: AWAR, 1986, 37-42
    [61] Finlayson J C, The relationship between the structure of activated sludge flocs and the sorption of hydrophobic pollutants, Wat Sci Tech, 1998, 37(4-5): 353-357
    [62] Jernelov A, Ecological implications of metal metabolism by microorganisms, Swedish Water and Air Pollut Res Lab, 1975, 32-48
    [63] Bird R B, Stewart W E, Lightfoot E M, transport phenomena, New York: John Wiley & sons, Inc, 1960
    [64] Levenspiel O, Chemical reaction engineering, New York: John Wiley & sons, Inc, 1962
    [65] Hoehn R C, Ray A D, Effects of thickness on bacterial film, J Wat Pollut, 1973, 45: 2302-2320
    [66] Atkinson B, Fowler H W, The significance of microbial film in fermenters, Adv Biochem Eng, 1974, 3: 221-227
    [67] Rittmann B E, McCarty P L, Variable order model of bacterial film kinetics, J Environ Eng, ASCE, 1978, 104: 889-900
    [68] Suidan M T, Wang T T, Unified analysis of biofilm kinetics, J Environ Eng ASCE, 1985, 11: 634-647
    [69] Harremoes, The signification of pore diffusion to filter denitrification, J Wat Pollut Control Fed, 1976, 48: 377-388
    [70] LaMotta E J, Internal diffusion and reaction in Biological-film, Environ Sci Technol, 1976, 10: 765-769
    [71] Liu Y, Capdeville B, Kinetic behaviors of nitrifying biofilm growth in wastewater nitrification process, Environ Technol, 1994, 15(11): 1001-1013
    [72] Liu Y, Capdeville B, Growth dynamics of nitrifying biofilm in biological nitrogen removal process, Wat Sci Technol, 1994, 29: 377-380
    [73] Liu Y, Capdeville B, Specific activity of nitrifying biofilm in water nitrification process, Wat Res, 1996, 30: 1645-1650
    [74] Liu Y, Estimating minimum fixed biomass coneentration and active thickness of nitrifying biofilm, J Environ Eng, ASCE, 1997, 123: 198-202
    [75] Moreau M, Liu Y, Capdeville B, Audic, J M, Calvez L, Kinetic behaviors of heterotrophic and autotrophic biofilms in wastewater treatment processes, Wat Sci Technol, 1994, 29: 385-391
    
    
    
    [76] Lazarova V, Manem J, Advances in biofilm aerobic reactors ensuring effective biofilm activity control, Wat Sci Technol, 1994, 29(10-11): 319-327
    [77] Zhang T C, Bishop P, Structure, acativity and composition of biofilms, Wat Sci Technol, 1994, 29: 335-344
    [78] de Beer D, Stoodley P, Roe F, Effects of biofilm structures on oxygen distribution and mass transport, Biotech Bioeng, 1994, 43(11): 1131-1138
    [79] Liu Y, Dynamique de crossance de biofilms nitrificants appliqués aux traitements des eaux, [Ph D. Thesis], INSA-Toulouse, France, 1994
    [80] 李鑫钢,电-生物膜反应器净化含重金属离子有机废水的研究,天津市自然科学基金重点资助项目,2001,项目编号:013802911
    [81] Smythe G, Matelli G, Biological treatment of salty wastewater, Environ Prog, 1997, 16(3): 179~183
    [82] 庞金钊,杨程,曹宏斌等,生物膜法去除石化氨氮废水实验,中国给水排水,1998,14(5):47-49
    [83] 马汉泽,谢可蓉,吴承力等,利用微生物快速挂膜技术治理糖果废水的研究,环境工程,2000,18(1):10-11
    [84] 唐受印,汪大翚,废水处理工程,北京:化学工业出版社,1998,262-286
    [85] Anselmo A M, Degradation of Phenol by Immobilized mycelium of Fusarium flocci-ferumin continuous culture, Wat Sci Tech, 1992, 25(1): 161-168
    [86] Pai S L, Continuous degradation of Phenol by R. Hodoccus sp. Immobilized on granular activated carbon and in caccium alginate, Bioresource Technol, 1995, 51: 37-42
    [87] Crist R H, Martin J R, Carr D, et al, Interaction of metals and protons with algae, Ion exchange vs adsorption models and a reassessment of Scatchard plots; Ion exchange rate and equilibria compared with calcium alginate, Environ Sci Technol, 1994, 28: 1859-1866
    [88] Zhao M, Duncan J R, Van Hill R P, Removal and recovery of zinc from solution and electroplating effluent using Azolla Filiculoides, Wat Res, 1999, 33 (6): 1516-1522
    [89] Butter T J, Evison L M, Hancock I C, et al, The kinetics of metal uptake by microbial biomass: Implications for the design of a biosoption reactor, Wat Sci Tech, 1998, 38(6): 279-286
    [90] Wu Q H, Li Y F, Electrochemical kinetic, Beijing: China Higher Education Press, Verlag Berlin Heidelber: Springer, 1998, 113-132
    [91] 李荻,电化学原理,北京:北京航空航天大学出版社,1999,334-341
    [92] Gabe D R, The role of hydrogen in metal electro-deposition, J Appl Electrochem, 1997, 27: 908-915
    [93] Naumczyk J, Szpyrkowicz L, Zilio G F, Electrochemical treatment of textile wastewater. Wat Sci Technol, 1996, 33 (7): 306-315
    [94] 宋卫锋,倪亚明,何德文,电解法水处理技术的研究进展,化工环保, 2001, 21(1):11-15
    
    
    [95] 贾金平,申哲民,周红,电化学方法治理废水的研究与进展,上海环境科学,1999,18(1): 29-31
    [96] 周军,金奇庭,电解法处理废水的研究进展,水处理技术,2000,26(3):130-135
    [97] Morisaki H, Sugimoto M, Shiraishi H, Attachment of bacterial cells to carbon electrodes, Bioelectrochemistry, 2000, 51: 21-25
    [98] Yagishita T, Sawayama S, Tsukahara K, et al, Behavior of glucose degradation in Synechocystis sp. M-203 in bioelectrochemical fuel cells, Bioelectrochemistry Bioengergetics, 1997, 43: 177-180
    [99] Plecher D, Walsh F C, Industrial electrochemistry, London: Chapman & Hall, 1990, 331-383
    [100] Genders J D, Weinberg N L, Electrochemistry for a cleaner environment, New York: Electrosynthesis Co., 1992
    [101] Rajeshwar K, Ibanez J G, Swain G M, Electrochemical and environment, J Appl Electrochem, 1994, 24: 1077-1091
    [102] 吴辉煌,水中有机污染物电化学清除的研究进展,环境污染与防治,2000,22(4):39-42
    [103] Butter T J, Evison L M, Hancock I C, et al, Removal and recovery of heavy metals from dilute aqueous streams by biosorption and electrolysis, Med Fac Landbouww, University Gent, 1996, 61/4b, 1863
    [104] Njau K N, Janssen L J J, Electrochemical reduction of nickel ions from dilute solutions, J Appl Electrochem, 1995, 25(10): 982-986
    [105] Brennsteiner A, Zondlo J W, Stliler A H, et al, Environmental pollution control devices based on novel forms of carbon: heavy metals, Energy Fuels, 1997, 11(2): 348-353
    [106] Armstrong R D, Todd M, Selective electrodeposition of metals from simulated waste solutions, J Appl electrochem, 1996, 26: 379-384
    [107] Szpyrkowicz L, Zilio G F, Kaul S N, et al, Electrochemical treatment of copper cyanide wastewater using stainless steel electrodes, Wat Sci Technol, 1998, 38(6): 261-268
    [108] 马志毅,田志坚,刘瑞强,电化学反应器对水中离子去除的实验研究,中国环境科学,1998,18(3): 260-263
    [109] Hatfield T L, Kleven T L, Pierce D T, Electrochemical remediation of metal-bearing wastewaters, Part I: Copper removal from simulated mine drainage waters, J Appl Electrochem, 1996, 26: 567-574
    [110] Walsh F C, Marshall R J, A review of some recent electrolytic cell designs, Surf Technol, 1985, 24: 45-77
    [111] Do J S, Chen C P, In situ oxidation degradation of formaldehyde with electrogenerated hydrogen peroxide, J Electrochemical Society, 1993, 140(6): 1632-1637
    
    
    
    [112] 张红波,徐仲榆,莫笑文,膨胀石墨流态化电极处理酸性含镉废水研究,环境科学,1993,14(6):20-23
    [113] 熊英健,范娟,朱锡海,三维电极电化学处理技术研究现状及方向,工业水处理,1998,16(1):5-8
    [114] Feleke Z, Sakakibara Y, A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide, Wat Res, 2002, 36: 3092-3102
    [115] Flora J R V, Suidan M T, Islam S, B, et al, Numerical modeling of a biofilm-electrode reactor used for enhanced denitrification, Wat Eci Tech, 1994, 29(10-11): 517-524
    [116] Li X G, Cao H B, Wu J C, et al, Inhabitation of the metabolism of nitrifying bacteria by direct electric current, Biotechnology Letters, 2001, 23(9): 705-709
    [117] Cast K L, Flora J R V, An evaluation of two cathode materials and the impact of copper on bioelectrochemical denitrification, Wat Res, 1998, 32(1): 63-70
    [118] Morisaki H, Sugimoto M, Shiraishi H, Attachment of bacterial cells to carbon electrodes, Bioelectrochemistry, 2000, 51: 21-25
    [119] Ishizaki A, Nomura Y, Iwahara M, Built-in electrodialysis batch culture, a new approach to release of end product inhibition, J Ferment Bioengineering, 1990, 70: 108-113
    [120] 曹宏斌,钟方丽,孙津生等,直流电对消化细菌活性的影响,北京:中国化学会第五届水处理大会论文集,2000,231-235
    [121] 白毓谦,方善康,高东,微生物实验技术,济南:山东大学出版社,1987,1-28
    [122] 范秀容,李广武,沈萍,微生物学实验,北京:高等教育出版社,1997,24-50
    [123] 戴大临,张清敏,生物医学电镜样品制备方法,天津:天津大学出版社,1993,1-3
    [124] 朱丽霞,程乃乾,高信曾,生物学中的电子显微镜技术,北京:北京大学出版社,1983,1-72
    [125] 田中敬一,永谷隆(著),李文镇,应国平(译),图解扫描电子显微镜生物样品制备,北京:科学出版社,1984,1-25
    [126] 叶常明,黄玉瑶,张景镛等,水体有机污染的原理研究方法及应用,北京:海洋出版社,1990,1-39
    [127] 王建龙,文湘华,现代环境生物技术,北京:清华大学出版社,2001,222-226
    [128] 顾夏声,废水生物处理数学模式,北京:清华大学出版社,1993,42-91
    [129] 上海市环保局,废水生化处理,上海:同济大学出版社,2000,158-163
    [130] 孟祥和,胡国飞,重金属废水处理,北京:化学工业出版社,2000,12-16
    [131] 郭鹤桐,覃奇贤,电化学教程,天津:天津大学出版社,2000,300-329
    [132] 查全性,电极过程动力学导论,北京:科学出版社,1987,1-11
    [133] Antropov L I (ed.), 吴仲达,朱耀斌,吴万伟(译),理论电化学,北京:高等教育出版社,1982,296-423
    ДAМ ACKИH Б Б, ПETPИЙ O A (ed.), 谷林锳,泰尔华,王嘉棨(译),
    
    [134] 电化学动力学导论,北京:科学出版社,1989,177-289
    [135] Matsuda H, Ayabe Y Z, Zur theorie der randles-sev?ikschen kathodenstrahl polarographie, Electrochem, 1955, 59(6): 494-503
    [136] 李天成,曹宏斌,李鑫钢等,处理含重金属离子有机废水的研究,农业环境保护,2002,21(4):369-371
    [137] 小泽昭弥(著),吴继勋,卢燕平,齐怡(译),现代电化学,北京:化学工业出版社,1995,1-7
    [138] Gibbs J T, Bishop P L, A method for describing biofilm surface roughness using geostatistical techniques, Wat Sci Tech, 1995, 32(8): 91-98
    [139] Characklis W G, Marshall, K C, Biofilms: a basis for an interdisciplinary approach, In: Characklis W G and Marshall K C, Biofilms, New York: John Wiley and Sons Inc., 1990, 3-15
    [140] Rittmann B E, Manem J A, Development and experimental evaluation of a steady-state, multispecies biofilm model, Biotechnol Bioeng, 1992, 39, 914-922
    [141] Christensen B E, Characklis W G, Physical and chemical properties of biofilms, In: Characklis W G, Marshall K C, Biofilms, New York: John Wiley and Sons Inc., 1991, 93-130
    [142] Gjaltema A, van der Marel N, van Loosdrecht M C M, et al, Adhesion and biofilm development on suspended carriers in airlift reactors: Hydrodynamic conditions versus surface characteristics, Biotechnol Bioeng, 1997, 55: 880-889
    [143] Lawrence J R, Korber D R, Hoyle B D, et al, Optical sectioning of microbial biofilms, J Bacteriol, 1991, 173: 6558-6567
    [144] de Beer D, Stoodley P, Lewandowski Z, Liquid flow in heterogeneous Biofilms, Biotechnol Bioeng, 1994, 44: 636-641
    [145] de Beer D, Stoodley P, Lewandowski Z, Liquid flow and mass transport into biofilms, Wat Res, 1996, 30: 2761-2765
    [146] Stoodley P, Boyle J D, de Beer D, et al, Evolving perspectives of biofilm structure, Biofoling, 1999, 14(1): 75-90
    [147] Costerton J W, Lewandowski Z, Caldwell D E, et al, Microbial biofilms, Annual Review of Microbiology, 1995, 49: 711-745
    [148] Eberl H J, Picioreanu C, Heijnen J J, et al, A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms, Chem Eng Sci, 2000, 55: 6209-6222
    [149] Bishop P, Rittmann B E, Modeling heterogeneity in biofilms: Report of the discussion session, Wat Sci Tech, 1996, 32(8): 263-265
    [150] Picioreanu C, van Loosdrecht M C M, Heijnen J J, A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads, Biotechnol Bioeng, 1998, 57(6): 718-731
    [151] Hermanowicz S W, A simple 2-D biofilm model yields a variety of morphological features, Mathematical Biosciences, 2001, 169: 1-14
    
    
    
    [152] Wimpenny J W T, Colasanti R, A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models, FEMS Microbial Ecology, 1997, 22: 1-16
    [153] Picioreanu C, van Loosdrecht M C M, Heijnen J J, Discrete-differential modeling of biofilm structure, Wat Sci Tech, 1999, 39(7): 115-122
    [154] Noguera D R, Pizarro G, Stahl D A, et al, Simulation of multispecies biofilm development in three dimension, Wat Sci Tech, 1999, 39(7): 123-130
    [155] Chopard B, Masselot A, Cellular automata and lattice Boltzmann methods: a new approach to computational fluid dynamics and particle transport, Future Generation Computer System, 1999, 16: 249-257
    [156] Chen H, Klein L W, Theory of multicolor lattice gas: A cellular automaton Posson solver, J Comput Phy, 1990, 88:433-466
    [157] Rittmann B E, Pettis M, Reeves H W, et al, How biofilm clusters affect substrate flux and ecological selection, Wat Sci Tech, 1999, 39(7): 99-106
    [158] Picioreanu C, van Loosdrecht M C M, Heigen J J, Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach, Biotech Bioeng, 1998, 58(1): 101-116
    [159] van Loosdrecht M C M, Eikelboom D, Gjaltema A, et al, Biofilm structures, Wat Sci Technol, 1995, 32(8): 235-243
    [160] Kugaprasatham S, Nagaoka H, Ohgaki S, Effect of turbulence on nitrifying biofilms at non-limiting substrate conditions, Wat Res, 1992, 26(12): 1629-1638
    [161] Kwok W K, Picioreanu C, Ong S L, et al, Influence of biofilm structures in a biofilm airlift suspension reactor, Biotechnol Bioeng, 1998, 58(4): 400-407
    [162] Picioreanu C, Mark C M, van Loosdrecht M C M, et al, Effect of Diffusive and convective substrate transport on biofilm structure formation: A two-dimensional modeling study, Biotechnol Bioeng, 2000, 69(5): 504-515
    [163] Garrido J M, van Benthum W A J, van Loosdrecht M C M, et al, Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor, Biotechnol Bioeng, 1997, 53: 168-178
    [164] Tijhuis L, van Loosdrecht M C M, Heijnen J J, Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors, Biotechnol Bioeng, 1994, 44: 595-608
    [165] Tijhuis L, Hijman B, van loosdrecht M C M, et al, Influence of detachment, substrate loading rate and reactor scale on the formation of biofilms in airlift reactors, Appl Microbiol Biotechnol, 1995, 45: 7-17
    [166] Yang S, Lewandowski Z, measurement of local mass transfer coefficient in biofilms, Biotechnol Bioeng, 1995, 48: 737-744
    [167] Zhang T C, Bishop P L, Gibbis J T, Effects of roughness and thickness of biofilms on external mass transfer resistance, In: Critical issues in Water and Wastewater Treatment National Conference in Environmental Engineering, New York: ASCE. 1994, 593-600
    
    
    [168] Bishop P L, Gibbis J T, Cunningham B E, Relationship between concentration and hydrodynamic boundary layers over biofilms, Environ Technol, 1997, 18: 375-386
    [169] Stoodley P, Boyle J D, Lappin-Scott H M, Consenus model of biofilm structure. In: Biofilms: Community Interactions and Control, Wimpenny J W T, Handley P, Gilbert P, et al, Bioline, Cardiff, U K, 1-9
    [170] 李鑫钢,外电场下的生物膜传质,国家自然科学基金,批准号:29976030
    [171] van Loosdrecht M C M, Picioreanu C, Heijinen J J, A more unifying hypothesis for the structure of microbial biofilms, FEMS, Microb Ecol, 1997, 24: 181-183
    [172] Beeftink H H, van der Heijden R T J M, Heijnen J J, Maintenance requirements: Energy supply from simultaneous endogenous respiration and substrate consumption, FEMS, Microbial Ecol, 1990, 73: 203-210
    [173] Wijffels R H, de Gooijer C D, Kortekaas S, et al, Growth and substrate consumption of Nitrobacter agllis cells immobilized in carrageenan: Part I. Dynamics modeling, Biotechnol Bioeng, 1991, 38: 224-231
    [174] Herbert D, Some principles of continuous culture, In: Tunevall G (eds.), Recent progress in microbiology, Stockholm: Almqvist & Wiksell, 1959, 381-396,
    [175] Pirt S J, The maintenance energy of bacteria in growing cultures, Proc R Soc Lond, 1965, 163B: 224-231
    [176] Veglio F, Beolchini F, Removal of metals by biosorption: a review, Hydrometallurgy, 1997, 44: 301-316
    [177] White C, Gadd G M, Biosorption of radionuclides by fungal biomass, J Chem Tech Biotechnol, 1990, 49: 331-343
    [178] Sa? Y, Kutsal T, Determination of the biosorption activation energies of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus, Process Biochemistry, 2000, 35: 801-807
    [179] Aksu Z, Acikei ü, Kabasakai E, et al, Equilibrium modeling of individual and simultaneous biosorption of chromium (VI) and nickel (II) onto dried activated sludge, Wat Res, 2002, 36: 3063-3073
    [180] Li T C, Li X G, Feng X, et al, Treatment of organic wastewater containing Cr3+ by a novel complex process of electrodeposition and biofilm, Transactions of Tianjin University, (Accepted)
    [181] Flemming H C, Sorption sites in biofilms, Wat Sci Tech, 32(8): 27~33
    [182] Sp?th R, Flemming H C, Wuertz S, Sorption properties of Biofilms, Wat Sci Tech, 1998, 37(4-5): 207~210
    [183] Juang R S, Shao H J, A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan, Wat Res, 2002, 36: 2999~3008