非线性方程优化迭代方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究求解非线性方程近似解析解的若干优化迭代方法.全书分为四章:第一章是绪论,第二章建立了一种与长期项无关的优化迭代算法(SFIA),考虑非线性微分方程,
     其中a(t)和b(t)都是连续的,f(t,u,υ’)在区域D内的一次偏导数有界,且是关于υ和u’的一般的非线性函数.根据常数变易公式,并结合变分迭代法的基本思想,建立了下面的优化迭代公式:
     通过上面的简单迭代程序,可以方便的得到精度很高的近似解。并且迭代程序可以自动消除高阶近似中的长期项,极大地减少了运算量,具有高的运算效率.
     第三章考虑下面的微分方程:的近似周期解问题。其中a(.),b(.)和f(.,u,u’)关于时间t都是T-周期的.
     根据常数变易公式,可以得到下面的迭代公式:其中Lagrange乘子
     应用这个迭代公式可以方面地求出近似的解析周期解。方法直接利用常数变易公式来确定其中的Lagrange乘子,而不需要对校正泛函实施变分,不需要应用稳定性条件确定Lagrange乘子。此外,建立的迭代公式使得高阶近似中不会出现长期项,从而极大的节约了运算时间.
     第四章,针对带有约束的规划问题,我们利用变分法给出一种求解约束问题新的迭代方法.考虑下面带约束的规划问题:相应的lagrange函数为:其中g(x)=(g1(x),g2(x),…,gm(x))T,h(x)=(h_1(x),h_2(x),…,h_ι(x))T,y∈Rm,z∈R_l,并且f_i,g_i,h_i关于x∈R_n为二次连续可微函数.为了得到上述优化问题的最优解,我们构造如下迭代公式:其中上式中的Lagrange乘子y,z,可以通过对上式两边做变分,得到一个关于乘子的代数方程,从而可以求得.然后带回上式中进行迭代.利用变分法来研究这类带有约束的规划问题,与其它的优化方法相比,不用直接计算KKT条件,而是利用Lagrange函数直接进行迭代,从而极大的简化了运算步骤,节约了运算时间.
This thesis mainly deals with optimization iteration method for non-linear equations. It is well known that the research of nonlinear problem became popular from 1950s and 1960s, and searching approximate solutions problem for nonlinear differential equations is an important branch of the nonlinear science. There are many useful methods for solving nonlinear dif-ferential equations, such as perturbation method, approximation method、Multi-scale method、Harmonic balance method、Homotopy method、Vari-ational iteration method、Adomain decomposition methods, etc. However, there is not a universal method in this field.
     In Chapter 2, we obtain a new iteration method for searching approxi-mate solutions problem for nonlinear differential equations. Our idea comes from Constant variation formula. We mainly consider the following equation where a(·),b(·) and f(·,u,u') is T-periodic in t. FromConstant variation formula, we obtain the following modified interation procedure
     Where Lagrange multiplier is For variational interation method, one has to obtain Lagrange multiplier from stability condition by modifying the above functional, while Lagrange multiplier can be determined by Constant variation formula, directly using our method. Thus the actual calculation greatly enhances its usefulness and to reduce unnecessary variation caused by the complex process of computing. In addition, variational iteration method will often lead to the emergence of a secular terms, like the need to select the optimal Lagrange multiplier and the initial conditions to guarantee the convergence of the iterative process, and in order to eliminate the secular terms options that would greatly increase the computational complexity. take advantage of our approach there will be no secular terms, which greatly saves computational time.
     In Chapter 3, we give a new iteration algorithm (SFIA), using this kind of iteration algorithm and Constant variation formula, we can obtain the iteration method for approximate solutions to nonlinear systems. this kind of iteration algorithm is irrelated to secular terms. Consider the 2n-dimensional equation
     Where a(t) and b(t) are continuous, f(t, u, u), the derivative of f is bounded in D. We can obtain the following
     There are a lot of methods for searching approximate solutions problem, such as, Formal group methods, multi-scale method. All of these methods for solving the approximate solution in the process can not avoid secular terms, resulting in additional costs to eliminate secular terms, leading to a very low computation efficiency. Take advantage of our iterative method can be contains a secular terms, Using this kind of iteration method we can obtain the approximate solutions of nonlinear differential equations. Through a simple iterative procedure can be simplified with high precision Approximate solution, in addition to the secular terms because they are not elimination, thereby reducing a huge amount of computing.
     In Chapter 4, for programming problem with constraining conditions, we give a new kind of iteration method for solving the programming problem. Consider the following programming problem: The corresponding Lagrangian is Where g(x)= (g1(x), g2(x),=(g1(x),g2(x)…,gm(x))T, h(x)=(h1(x), h2(x),…, hl(x))T, y∈Rm,z∈Rl, and fi,gi,hiis a C2 function of x∈Rn in order to obtain the op-timal solution for the above programming problem, we provide the following iteration formula
     where the style of the Lagrange multiplier y, z, can be done on both sides of the previous type of variational get an algebraic equation on the multiplier, which can be obtained. And then back to the iterative formula. Variational method to study the use of such programming problem with constraints, as compared with other optimization methods, do not directly calculate the KKT conditions, but to use Lagrange function is directly iteration, Thereby greatly simplifying the operation steps, saving computation time.
引文
[1]G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl.135 (1988) 501-544.
    [2]G. Adomian, Solving Frontier Problems of Physics:The Decomposition Method, Kluwer Academic Publishers, Boston,1994.
    [3]L. Cesari, Functional Analysis and Galerkin's Method. In Mich. Math. J., vol.11, No.3, pp.383-414,1964.
    [4]J.H. He, A new approach to nonlinear partial differential equations, Comm. Nonlinear Sci Numer. Simul.2 (4) (1997) 203-205.
    [5]J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng.167 (1998) 57-68.
    [6]J.H. He, A variational iteration approach to nonlinear problems and its applications, Mech. Appl.20 (1) (1998) 30-31.
    [7]J.H. He, Variational iteration method - a kind of nonlinear analytical tech-nique:some examples, Internat. J. Nonlinear Mech 34 (1999) 708-799.
    [8]J.H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput.114 (2/3) (2000) 115-123.
    [9]J.H. He, Homotopy perturbation method:a new nonlinear technique, Appl. Math. Comput.135 (2003) 73-79.
    [10]J.H. He, Some asymptotic methods for strongly nonlinear equations, Inter-nat. J. Modern Phys. B 20 (10) (2006) 1141-1199.
    [11]J.H. He, Non-perturbative methods for strongly nonlinear problems, dissertation.de-Verlag im Internet GmbH, Berlin,2006.
    [12]A. Wazwaz, A comparison between the variational iteration method and Adomian decomposition method, J. Comput. Appl. Math.207 (2007), no. 1,129-136.
    [13]A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations, John Wiley. Sons, Inc, 1979.
    [14]H. Y. Hu H.Y, Applied Nonlinear Dynamics, Aeronautic Industry Publishing House.2000.
    [15]L. Y. Chen, N. Goldenfeld and Y. One, Renormalization group and singular perturbations:Multiple scales, boundary layers, and reductive perturbation theory, Physical Review E,1996,51:376-394
    [16]J. H. He, Variational iteration method:a kind of nonlinear analytical tech-nique:some examples. International Journal Nonlinear Mechanics,1999; 34(4):690-708.
    [17]J. H. He, Variational Iteration method for autonomous ordinary differential systems, Applied Mathematics and Computation,2000; 114:115-123.
    [18]J. H. He, A new approach to nonlinear partial differential equations, Commu-nications in Nonlinear Science, Numerical Simulation,1997:2(4):230-235.
    [19]J. H. He, Homotopy perturbation technique, Computational Methods for Applied Mechanics and Engineering,1999; 178(3-4):257-262.
    [20]Wu Z.Q., and Li, Y., Ordinary Differential Equation, High Educational Pub-lishing House,2004
    [21]Waterloo Maple Software, Maple V. University of Waterloo, Waterloo, Canada,1990
    [22]C. W. Xu, Introduction to Computational Methods, Higher Education Press, 1993.
    [23]C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Sci-entists and Engineers, McGraw-Hill, New York,1978.
    [24]Stoker J.J., Nonlinear Vibrations in Mechanical and Electrical Systems, In-terscience, New York,1950.
    [25]Minorsky N., Nonlinear oscillations, Van Nostrand, Princeton, New Jersey, 1962.
    [26]Cole J.D., Perturbation Methods in Applied Mathematics, Blaudell, Waltham,1968.
    [27]Nayfeh A.H., Mook D.T., Nonlinear Oscillations, Wiley Inter-science, New York,1979.
    [28]Nayfeh A.H., Introduction to Perturbation Techniques, Wiley Inter-science, New York,1981.
    [29]Hagedorn P., Nonlinear Oscillations, Clarendon, Oxford,1988.
    [30]Mickens R.E., Oscillations in Planar Dynamic Systems, World Scientific, Singapore,1996.
    [31]De Jager E.M, Jiang F.R., The Theory of Singular Perturbation, North-Holland Publishing Co., Amsterdam,1996.
    [32]闻邦春,李以农,韩清凯,非线性振动理论中的解析方法及工程应用,东北大学出版社,沈阳,2001年.
    [33]刘延柱,陈立群,非线性振动,高等教育出版社,北京,2001年.
    [34]陈予恕,非线性振动,高等教育出版社,北京,2002年.
    [35]Marion J.B., Classical Dynamics of Particles and Systems, Second Ed., Aca-demic, New York,1970.
    [36]Thomson W.T., Theory of Vibration with applications, Prentice-Hall, New Jersey,1972.
    [37]Awrejcewicz J., Andrianov I.V., Manevitch L.I., Asymptotic Approaches in Nonlinear Dynamics, Springer-Verlag Berlin Heidelberg, New York,1998.
    [38]周纪卿,朱因远,非线性振动,西安交通大学出版社,西安,1998年.
    [39]李鹏松,求解大振幅非线性振动问题的若干解析逼近方法,吉林大学博士学位论文,长春,2004年.
    [40]陈树辉,强非线性振动系统的定量分析方法,科学出版社,北京,2006.
    [41]Van der Pol B., A theory of the amplitude of free and forced triode vibration, Radio Review,1920,
    [42]Popov E.P., Palitov I.P., Approximate Methods for the Analysis of Nonlinear Automatic Systems, (in Russian:State Press for Physics and Mathematical Literature, Moscow,1960. English translation:Foreign Technical Division, AFSC, Wright-Patterson AFB, Ohio, Report FTD-Ⅱ-62-910).
    [43]Mendelson K.S., Perturbation theory for damped nonlinear oscillators, Jour-nal of Mathematical Physics,1970,11,3413-3415.
    [44]Struble R.A., Nonlinear Differential Equations, McGraw-Hill. New York, 1962.
    [45]Mitropolsky Yu.A., Nonstationary Processes in Nonlinear Oscillatory Sys-tems, (in Russian), Izd-vo AN USSR, Kiev,1955.
    [46]Bogliubov N.N., Mitropolsky Yu.A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York,1961.
    [47]Mitropolsky Yu.A., The Averaging Method in Nonlinear Mechanics, (in Rus-sian), Naukova Dumka, Kiev,1971.
    [48]Krylov N.M., Bogoliubov N.N., Introduction to Nonlinear Mechanics, Princeton University Press, New Jersey,1947.
    [49]Alam M.S., A modified and compact form of Krylov-Bogoliubov-Mitropolskii unified method for solving an nth order non-linear differential equation, International Journal of Non-Linear Mechanics,39,2004,1343-1357.
    [50]Yamgou e S.B., Kofan é T.C., On the analytical approximation of damped oscillations of autonomous single degree of freedom oscillators, International Journal of Non-Linear Mechanics,2006,41,1248-1254.
    [51]Sturrock P.A., Nonlinear theory of electromagnetic waves in plasmas, Stan-ford University Microwave Laboratory Report,1963, No.1004.
    [52]Frieman E.A., On a new method in the theory of irreversible processes, Journal of Mathematical Physics,1963,4,410-418.
    [53]Nayfeh A.H., A perturbation method for treating nonlinear oscillation prob-lems, Journal of Mathematics and Physics,1965,44,368-374.
    [54]Sandri G., A new method of expansion in mathematical physics, Nuovo Cimento,1965, B36,67-93.
    [55]Cole J.D., Kevorkian J., Uniformly valid asymptotic approximations for cer-tain nonlinear differential equations, Nonlinear Differential Equations and Nonlinear Mechanics,1963,113-120.
    [56]Kuzmak G.E., Asymptotic solutions of nonlinear second order differential equations with variable coefficients, Journal of Applied Mathematics and Mechanics,1959,23,730-744.
    [57]Cochran J.A., Problems in Singular Perturbation Theory, PH. D. Thesis, Stanford University,1962.
    [58]Mahony J.J., An expansion method for singular perturbation problems, Journal of the Australian Mathematical Society,1962,2,440-463.
    [59]Nayfeh A.H., An expansion method for treating singular perturbation prob-lems, Journal of Mathematical Physics,1965,6,1946-1951.
    [60]Duffing G., Erwugene Schwingungen bei Veranderlicher Eigenfrequenz, Friedrich Vieweg und Sohn, Braunschweig,1918.
    [61]Mickens R.E., Iteration procedure for determining approximate solutions to nonlinear oscillator equations, Journal of Sound and Vibration,1987,116, 185-188.
    [62]Lim C.W., Wu B.S., A modified Mickens procedure for certain nonlinear oscillators, Journal of Sound and Vibration,2002,257,202-206.
    [63]Li P.S., Wu B.S., An iteration approach to nonlinear oscillations of conser-vative single-degree-of-freedom systems, Acta Mechanica,2004,170,69-75.
    [64]Mickens R.E., A generalized iteration procedure for calculation approxima-tions to periodic solutions of " truly nonlinear oscillators ", Journal of Sound and Vibration,2005,287,1045-1051.
    [65]Mickens R.E., Iteration method solutions for conservative and limit-cycle xl/3 force oscillators, Journal of Sound and Vibration,2006,292,964-968.
    [66]Hu H., Solution of the Duffing-harmonic oscillator by an iteration procedure, Journal of Sound and Vibration,2006,298,446-452.
    [67]Marinca V., Herisanu N., A modified iteration perturbation method for some nonlinear oscillation problems, Acta Mechanica,2006,184,231-242.
    [68]Liao S.J., Beyond Perturbation:Introduction to the Homotopy Analysis Method, CRC Press, LLC,2004.
    [69]He J.H., Some asymptotic methods for strongly nonlinear equations, Inter-national Journal of Modern Physics B,2006,20(10),1141-1199.
    [70]T.A. Abassy, M. El-Tawil, H. El Zoheiry, Toward a modified variational iteration method, J. Comput. Appl. Math,2007,207,137-147.
    [71]M.阿佛里耳,非线性规划一分析与方法(上册),上海科学技术出版社.