空心圆柱和空心球在径向应变情形的弹性动力学解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在这篇论文中给出了分别由弹性、压电和热释电三种材料组成的均匀正交各向异性空心圆柱的轴对称平面应变弹性动力学解。对于均匀弹性空心圆柱,首先通过引入一特定函数将非齐次边界条件化为齐次边界条件,然后利用分离变量法将位移减去特定函数的量展开为关于贝塞尔函数和时间函数乘积的级数,并由贝塞尔函数的正交性,导出时间函数的方程,容易求得此方程的解,最终可求得弹性空心圆柱动力学问题的位移解。对于均匀压电和均匀热释电空心圆柱,首先通过引入一特定函数将非齐次力学边界条件化为齐次力学边界条件,然后利用正交展开技术,导出关于时间函数的方程,再结合由初始条件和电学边界条件,将原问题转化为关于一个时间函数(与电位移函数有关)的第二类Volterra积分方程,并运用插值法,首次构造了两个递推公式,可以保证高精度而又快速地得到此积分方程的解,最终可求得原问题的位移、应力、电位移以及电势的响应解;对于层合空心圆柱,运用状态空间法并结合与求解均匀空心圆柱相似的方法,分别对每种材料给出了层合正交各向异性空心圆柱的弹性动力学解;对于功能梯度材料构成的空心圆柱,运用变量替换,将材料常数沿径向按幂函数r~n规律变化的一类特殊功能梯度材料组成的正交各向异性空心圆柱的弹性动力学问题转化为与均匀空心圆柱弹性动力学问题相同的一组方程进行求解,分别对每种材料给出了这种特殊形式功能梯度材料正交各向异性空心圆柱的弹性动力学解。还进一步研究了在轴对称平面应变基础上并考虑轴向应变的弹性动力学问题。对于弹性空心圆柱,通过引入一特定函数将非齐次边界条件化为齐次边界条件,然后利用正交展开技术,导出关于时间函数的方程,再结合初始条件和端部边界条件,将原问题转化为关于一个时间函数(轴向应变)的第二类Volterra积分方程,运用插值法可给出此积分方程的解;对于压电和热释电空心圆柱,利用求解弹性空心圆柱相似的方法,再结合电学边界条件,原问题转化为关于两个时间函数(轴向应变和与电位移有关的函数)的第二类Volterra积分方程组,同样可用插值法来构造相应的递推公式高效地求解此积分方程组。
     给出了弹性、压电和热释电三种材料组成的球面各向同性空心球在球对称变形情形的弹性动力学解。对每一种材料组成的空心球,分别研究了均匀、层合以及材料常数沿径向按幂函数r~n规律变化的一类特殊功能梯度材料三种情形。所用的方法与求解空心圆柱问题相似。
     给出了均匀各向同性实心圆柱和实心球的弹性动力学解并讨论了实心圆柱和实心球内的动应力集中现象。还给出了压电空心球平衡问题的通解及其应用。
     所给出的研究一维动力学问题方法的优点在于:可以避免积分变换,适用于任意厚度的空心圆柱和空心球在径向变形的弹性动力学问题,还可以方便地处理不同边界条件(边界自由、边界固定及边界上作用指定应力等)的问题,而且便于实现数值计算。
The elastodynamic solutions of othotropic hollow cylinder for axisymmetric plane strain problems are obtained in this paper. For homogeneous, othotropic elastic hollow cylinder, firstly, a special function is introduced to transform the inhomogeneous boundary conditions into homogeneous ones. Secondly, by using the method of separation of variables, the quantity that the displacement subtracts the special function is expanded as the multiplication series of Bessel function and the unknown functions of time. Thirdly, by virtue of the orthogonal properties of Bessel functions, the equations about these unknown functions are derived and the solutions are obtained. Finally, the elastodynamic solution of the hollow cylinder is obtained. For homogeneous, piezoelectric and pyroelectric hollow cylinders, by introducing a special function and by using orthogonal expansion technique, the equation about a function with respect to time is derived. Then by means of the initial conditions and electric boundary conditions, the dynamic problems of piezoelectric and pyroelectric hollow cylinders are transferred to a second kind Volterra integral equation about a time function which is related to electric displacement. And by using interpolation method, two recursive formula are constructed, which can be employed to solve the Volterra integral equation of the second kind efficiently and quickly. The solutions of displacement, stresses, electric placement as well as electric potential are finally obtained. For multilayered hollow cylinders, by using state space method and by following the solving procedure for homogeneous hollow cylinder, the elastodynamic solutions of multilayered orthotropic elastic, piezoelectric as well as pyroelectric hollow cylinder are finally obtained. For functionally graded material (FGM) orthotropic hollow cylinder, a special case that the material constants have a power-law dependence on the radial coordinate is considered. By introducing a new dependent variable, the elastodynamic problems of a FGM orthotropic hollow cylinder are then transferred into those of homogeneous ones which can be solved as above mentioned. The solutions of a special functionally graded, elastic, piezoelectric and pyroelectric, orthotropic hollow cylinders are obtained at the end. The elastodynamic problems of the orthotropic hollow cylinders for the case that the axial strain is considered are also investigated. For elastic hollow cylinder, by introducing a special function and by using the orthogonal expansion technique, the equation about a function of time is derived. And by using the initial conditions as well as the end conditions, the dynamic problem is then transferred to a second kind Volterra integral equation about the function of the axial strain with respect to time which can also be solved successfully by the interpolation method. For piezoelectric and pyroelectric hollow cylinders, by following the solving procedure for elastic hollow cylinder and by using the electric boundary conditions, the dynamic problems are transferred to two Volterra integral equations about two functions of time, one is axial strain and the other is related to electric displacement, which can also be solved efficiently and quickly by employing interpolation method.
    The elastodynamic solutions of hollow spheres, which are made of elastic, piezoelectric and pyroelectric materials, respectively, for spherically symmetric
    
    
    
    problems are also obtained. And for each of the materials, the elsatodynamic solutions of the homogeneous, multilayered as well as a special FGM (the material constants have a power-law dependent on radial coordinate) hollow sphere are presented at the end. The solving method for hollow spheres is just similar with that for hollow cylinders.
    The elastodynamic solutions of homogeneous, isotropic solid cylinder and solid sphere are also presented. And the stress-focusing effect phenomena in the solid cylinder and solid sphere are discussed. Additionally, the general solution of piezoelectric hollow sphere for equilibr
引文
[1] Abd-Alla A. M., Thermal stress in a transversely isotropic circular cylinder due an instantaneous heat source. Appl. Math. Comput, 1995, 68(2-3) : 113-124.
    [2] Abd-Alla A. M., Transient response of inhomogeneous transversely isotropic thermoelastic cylinder to a dynamic input. Appl. Math. Comput, 1996, 74(1) : 1-13.
    [3] Abd-alla, A. M., The effect of initial stress and orthotropy on the propagation waves in a hollow cylinder. Appl. Math. Comput.. 1999, 106(2-3) : 237-244.
    [4] Abd-alla, A. M., Abd-alla A. N. and Zeidan N. A., Transient thermal stresses in a spherically orthotropic elastic medium with spherical cavity. Appl. Math. Comput.. 1999, 105(2-3) : 231-252.
    [5] Abd-alla, A. M., Abd-alla A. N. and Zeidan N. A., Transient thermal stress in a rotation non-homogeneous cylindrically orthotropic composite tubes. Appl. Math. Comput.. 1999, 105(2-3) : 253-269.
    [6] Abd-alla, A. M., Abd-alla A. N. and Zeidan N. A., Thermal stresses in a non-homogeneous orthotropic elastic multilayered cylinder, J. Thermal Stresses, 2000, 23(5) : 413-428.
    [7] Abd-alla, A. M., Abd-alla A. N. and Zeidan N. A., Transient thermal stress in a transversely isotropic infinite circular cylinder, Appl. Math. Comput. 2001, 121(1) : 93-122.
    [8] Abd-alla, A. M., Ahmed S. M., Propagation of love waves in a nonhomogeneous orthotropic elastic layer under initial stress overlying semi-infinite medium. Appl. Math. Comput.. 1999, 106(2-3) : 265-275.
    [9] Adelman N. T, Stavsky Y., Segal E., Axisymmetric vibration of radially polarized piezoelectric ceramic cylinders. J. Sound & Vib. 1975, 38(2) : 245-254.
    [10] Adelman N. T, Stavsky Y., Segal E., Radial vibration of axially polarized piezoelectric ceramic cylinders. J. Acoust. Soc. Am. 1975, 57(2) : 356-360.
    [11] Ashida F., Tauchert T. R., Transient response of a piezothermoelastic circular disk under axisymmetric heating, Acta Mech., 1998, 128(1-2) : 1-14.
    [12] Ashida F., Transient plane-stress response of a piezothermoelastic circular disk. J. Thermal Stresses, 2002, 25(7) : 627-646.
    [13] Atsumi A., Itou S., Axisymmetric thermal stresses in a transversely isotropic circular cylinder having a spherical cavity. ASME J. Appl. Mech., 1976, 43(3) : 431-433.
    [14] Avery W. B., Herakovich C. T, Effect of fiber anisotropy on thermal stresses in fibrous composites. ASME J. Appl. Mech., 1986, 53(4) : 751-756.
    [15] Baker W. E., Hu W. C. L., Jackson T. R., Elastic response of thin spherical shells to axisymmetric blast loading. ASME J. Appl. Mech., 1966, 33(4) : 800-806.
    [16] Bespalova E. I., Grigorenko Y. M., Kitaigorodskii A. B., Shinkar A.I., Free vibrations of inhomogeneous cylindrical shells in a three dimensional formulation. Prikl. Mekh, 1984, 20(4) : 9-14.
    [17] Birman V., Simonyan A., Theory and applications of cylindrical sandwich shells with piezoelectric sensors and actuators. Smart. Mater. Struct., 1994, 3(4) : 391-396.
    [18] Borisyuk A. I., Kirichok I. F., Steady-state radial vibrations of piezoceramic spheres in compressible fluid, Prikl. Mekh., 1979, 15(10) : 45-49.
    [19] Butler J. L., Ehrlich S. L., Superdirective spherical radiator. J. Acoust. Soc. Am., 1977,
    
    61(6) : 1427-1431.
    [20] Cai Jinbiao, Chen Weiqiu, Ye Guiru, Ding Haojiang, Natural frequencies of submegerged piezoelectric hollow spheres, Acta Mech. Sin, 2000, 16(1) : 55-62.
    [21] Chen Chang-Qing, Shen Ya-Peng, Piezothermoelasticity anslysis for a circular cylindrical shell under the state of axisymmetric deformation. Int. J. Engng. Sci., 1996, 34(14) : 1585-1600.
    [22] Chen P. Y. P., Axisymmetric thermal stresses in an anisotropic finite hollow cylinder. J. Thermal Stresses, 1983, 6(2) : 197-205.
    [23] 陈伟球,球面各向同性球壳的耦合振动,浙江大学博士学位论文,1996.
    [24] Chen W. Q., Ding H. J., Exact static analysis of a rotating piezoelectric spherical shell, Acta Mech. Sin., 1998, 14(3) : 257-265
    [25] Chen W. Q., Effect of radial inhomgeneity on natural frequencies of an anisotropic hollow sphere. J. Sound. Vib., 1999, 226(4) : 787-794.
    [26] Chen W. Q., Problems of radially polarized piezoelastic bodies. Int. J. Solids Struct.. 1999, 36(28) : 4317-4332.
    [27] Chen W. Q., Vibration theory of non-homogeneous spherically isotropic piezoelectric bodies.J. Sound Vib.. 2000, 236(5) : 833-860.
    [28] 陈伟球,叶贵如,蔡金标,丁皓江,球面各向同性功能梯度球壳的自由振动,力学学报,2001, 33(6) : 768-775.
    [29] Chen W. Q., Ding H. J., Free vibration of multilayered spherically isotropic hollow spheres. Int. J. Mech. Sci., 2001,43(3) : 667-680.
    [30] Chen W. Q., Ding H. J., Xu R. Q., Three dimensional free vibration analysis of a fluid filled piezoceramic hollow sphere. Comput. Struct.., 2001, 79(6) : 653-663.
    [31] Chen W. Q., Ding H. J., Xu R. Q., Three dimensional static analysis of multi-layered piezoelectric hollow sphere via the state space method. Int. J. Solids Struct.., 2001, 38(28-29) : 4921-4936.
    [32] Chen W. Q., Shioya T. Piezothermoelastic behavior of a pyroelectric spherical shell, J. Thermal Stresses, 2001, 24(2) : 105-120.
    [33] Chen Wei-qiu, Ye Gui-ru, Cai Jin-biao, Thermoelastic stresses in a uniformly heated functionally graded isotropic hollow cylinder. J. Zhejiang Univ. Sci., 2002, 3(1) : 1-5.
    [34] Chen W. Q., Lu. Y, Ye G. R., Cai J. B., 3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loadings. Arch. Appl. Mech., 2002, 72(1) : 39-51.
    [35] Chen W. Q., Wang L. Z., Lu Y., Free vibrations of functionally graded piezoceramic hollow spheres with radial polarization. J. Sound Vib., 2002, 251(1) : 103-114.
    [36] Chen W. T., On some problems in spherically isotropic elastic materials. ASME J. Appl. Mech., 1966, 33(3) : 539-546.
    [37] Cho, H., Kardomateas, G. A.,Valle C. S., Elastodynamic solution for the thermal shock stresses in an orthotropic thick cylindrical shell. ASME J. Appl. Mech., 1998, 65(3) :184-192.
    [38] Cho H. and Kardomateas G. A., Thermal shock stresses due to heat convection at a bounding surface in a thick orthotropic cylindrical shell. Int. J. Solids Struct., 2001, 38(16) :2769-2788.
    [39] Chou P. C., Koenig H. A., A unified approach to cylindrical and spherical elastic waves by
    
    method of characteristics. ASME J. Appl. Mech., 1966, 33(1): 159-167.
    [40]Christopher T. H., Baker M. A., The Numerical Treatment of Integral Equation. Oxfbrd: Oxford University Press, 1977.
    [41]Cinelli G., Dynamic vibrations and stresses in elastic cylinders and spheres. ASME J. Appl. Mech., 1966, 33(4): 825~830.
    [42]Delves L. M., Mohamed J. L., Computational Method for Integral Equations. Cambridge: Cambridge University Press, 1985.
    [43]丁皓江,任永坚,邹道勤,陈伟球,球面各向同性弹性力学的位移解法.力学学报,1994,26(2),186-197.
    [44]Ding H. J., Chen W. Q., Natural frequencies of an elastic spherically isotropic hollow sphere submerged in a compressible fluid medium. J. Sound Vib., 1996, 192(1): 173-198.
    [45]丁皓江,陈伟球,邹道勤等,横观各向同性弹性力学,杭州:浙江大学出版社,1997.
    [46]Ding H. J., Guo Y. M., Yang Q. D., Chen W. Q., Free vibrations of piezoelectric cylindrical shells, Acta Mech. Solida Sin., 1997, 10(1): 48-55.
    [47]Ding H. J., Chen W. Q., Guo Y. M., Yang Q. D., Free vibrations of piezoelectric cylindrical shells filled with compressible fluid, Int. J. Solids Struct., 1997, 34(16): 2025-2034.
    [48]Ding H. J., Guo F. L., Hou P. F., Zou D. Q., On the equilibrium of piezoelectric bodies of revolution. Int J Solids Struct. 2000, 37(9): 1293-1326.
    [49]Ding H. J., Chen W. Q., Three dimensional problems of piezoelasticity. New York: Nova Science Publishers, Inc., 2001.
    [50]Ding H. J., Wang H. M., Chen W. Q., A theoretical solution of cylindrically isotropic cylindrical tube for axisymmetric plane strain dynamic thermoelastic problem. Acta Mech. Solida Sin., 2001, 14(4): 357-363.
    [51]丁皓江,王惠明,陈伟球,圆柱壳的轴对称平面应变弹性动力学解.应用数学和力学,2002,23(2),128-134.
    [52]Ding H. J., Wang H. M., Chen W. Q., Elastodynamic solution of a non-homogeneous orthotropic hollow cylinder, Acta Mech. Sin., 2002,18(6), 621-628.
    [53]Ding H. J., Wang H. M., Chen W. Q., Analytical thermo-elastodynamic solutions for a nonhomogeneous transversely isotropic hollow sphere, Arch. Appl. Mech., 2002, 72(8), 545-553.
    [54]Ding H. J., Wang H. M., Hou R F., The transient responses of piezoelectric hollow cylinders for axisymmetric plane strain problems, Int. J. Solids Struct., 2003, 40(1), 105-123.
    [55]Ding H. J., Wang H. M., Ling D. S., Analytical solution of a pyroelectric hollow cylinder for piezothermoelastic axisymmetric dynamic problems. J. Thermal Stresses, 2003, 26(3), 261-276.
    [56]Ding X. F., Furukawa T., Nakanishi H., Analysis of the stress-focusing effect in a solid cylinder subjected to instantaneous heating based on the generalized thermoelasticity. J. Thermal Stresses, 2001, 24(4): 383-394.
    [57]Ding X. F., Furukawa T., Nakanishi H., Generalized thermoelastic analysis of the stress-focusing effect in a solid cylinder under rotationally asymmetrical instantaneous thermal loading. Arch. Appl. Mech. 2002, 72(2-3): 107-118.
    [58]Dunn M. L., Taya M., Electroelastic field concentrations in and around inhomogeneities in piezoelectric solids, ASME J. Appl. Mech., 1994, 61(2): 474-475.
    [59]Dziewonski A. M., Anderson D. L., Preliminary reference earth model. Physics of the Earth
    
    and Planetary Interiors, 1981, 25, 185-191.
    [60] El-Naggar A. M., Abd-Alla A. M., Ahmed S. M, On the rotation of a non-homogeneous composite infinite cylinder of orthotropic material. Appl. Math. Comput. 1995, 69(2) :147-157.
    [61] El-Naggar A. M., Abd-Alla A. M., Mahmoud S. R., Analytical solution of electro-mechanical wave propagation in long bones. Appl. Math. Comput., 2001, 119(1) :77-98.
    [62] Erguven M. E., Torsion of nonhomogeneous and transversely isotropic half-space, J. Engng. Mech., 1986,112(10) : 1101-1106
    [63] Gazis D. C., Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders. J. Acoust. Soc. Am., 1958, 30(8) : 786-794.
    [64] Ghosh A. K., Agrawal M. K., Radial vibrations of spheres. J. Sound Vib., 1994, 171(3) : 315-322.
    [65] Ghoshal A., Parthan S., Hughes D., Schulz M. J., Free vibration characteristics of cylindrical shells using a wave propagation method. Shock Vib., 2001, 8(20) : 71-84.
    [66] 国凤林,压力热弹性理论中的若干问题,浙江大学博士学位论文,1999.
    [67] Hamming R. W., Numerical Methods for Scientists and Engineers(2nd Edition). New York: McGraw-Hill, 1973.
    [68] Hata T., Stress-focusing effect in a solid sphere caused by instantaneous uniform heating, JSME Int. J. A-Solid Mech. Mat. E., 1990, 33(1) :33-36.
    [69] Hata, T., Stress-focusing effect in a uniformly heated solid sphere. J. Appl. Mech., 1991, 58(1) : 58-63.
    [70] Hata T., Thermal shock in a hollow sphere caused by rapid uniform heating. ASME J. Appl. Mech., 1991, 58(1) : 64-69.
    [71] Hata T., Stress-focusing effect in a uniformly heated transversely isotropic sphere. Int. J. Solids Struct., 1993, 30(11) : 1419-1428.
    [72] Hata T., Stress-focusing effect in a transversely isotropic cylinder caused by instantaneous heating, JSME Int. J. A-Solid Mech. Mat. E., 1996, 39(3) : 362-366.
    [73] Hata T., Stress-focusing effect due to an instantaneous concentrated heat source in a sphere, J. Thermal Stresses, 1997, 20(3-4) : 269-279.
    [74] Hata T., Thermal stress-focusing effect following rapid uniform heating of sphere and long cylindrical rods, J. Thermal Stresses, 1997, 20(7) : 819-852.
    [75] Hata T., Analysis of the thermal stress-focusing effect in a spherical inclusion embedded in an infinite elastic medium, Int. J. A-Solid Mech. Mat.E.,1999,42(2) : 176-182.
    [76] Hata T., Thermal stresses-focusing effect following rapid nonuniform heating of long cylindrical rods. J. Thermal Stresses, 2001, 24(2) : 93-104.
    [77] Hata T., Thermal stresses-focusing effect in a transversely isotropic spherical inclusion embedded in an isotropic infinite elastic medium. J. Thermal Stresses, 2002,25(7) : 691-702.
    [78] Heyliger P., Wu Y. C. Electroelastic fields in layered piezoelectric spheres. Int. J. Engng. Sci., 1999,37(2) : 143-161.
    [79] Heyliger P., Wu Y. C. Free vibration of layered piezoelectric spherical caps. J. Sound Vib., 2001, 245(3) : 527-544.
    [80] Heyliger P. R., Ramirez G., Free vibration of laminated circular piezoelectric plates and discs. J. Sound Vib., 2000, 229(4) : 935-956.
    
    
    [81] Ho C. H., Stress focusing effect in a uniformly heated cylindrical rod. ASME J. Appl. Mech., 1976, 43(3) : 464-468.
    [82] Horgan C. O., Chan A. M., The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials. J. Blast. 1999, 55(1) : 43-59.
    [83] Horgan C.O., Chan A. M., The stress response of functionally graded isotropic linearly elastic rotating disk. J. Blast. 1999, 55(3) : 219-230.
    [84] Hu Keqiang, Zhong Zheng, Jin Bo, Anti-plane crack in a functionally gradient piezoelectric material. Acta Mech. Solisa Sin., 2002, 15(2) : 140-148.
    [85] 胡克强,仲政,金波,功能梯度压电材料反平面裂纹问题.力学季刊,2002. 23(1) :70-67.
    [86] Hu H. C., On the general theory of elasticity for a spherically isotropic medium. Acta Scientia Sinica, 1954, 3: 247-260.
    [87] Hung Chen-I, Chen Cha'o-Kuang, Lee Zong-Yi, Thermoelastic transient response of multilayered hollow cylinder with initial interface pressure. J. Thermal Stresses, 2001,24(10) : 987-1006.
    [88] Huth J. H., Cole J. D., Elastic-stress waves produced by pressure loads on a spherical shell. ASME J. Appl. Mech., 1955, 22(4) : 473-478.
    [89] Jabbari M., Sohrabpour S., Eslami M. R., Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int. J. Pres. Ves.. Pip., 2002, 79(7) :493-497.
    [90] Jane K. C., Lee Z. Y., Thermoelastic transient response of an infinitely long annular multilayered cylinder. Mech. Res. Commun., 1999, 26(6) : 709-718.
    [91] 江冰,李兴丹,吴代兴,Smart结构及其应用,力学进展,1994, 24(3) :353~361.
    [92] Jiang, H., Young, P. G., Dickinson, S. M., Natural frequencies of vibration of layered hollow spheres using exact three-dimensional elasticity equations. J. Sound Vib., 1996, 195(1) :155-162.
    [93] Jing Hung-sying, Tzeng Kuan-goang, Analysis of thick laminated anisotropic cylindrical shells using a refined shell theory. Int. J. Solids Struct., 1995, 32(10) : 1459-1476.
    [94] Jordan P. M., Puri P., Thermal stresses in a spherical shell under three thermoelastic models, J. Thermal Stresses, 2001, 24(1) :47-70.
    [95] Kapuria S., Dumir P. C., Sengupta S., Exact piezothermoelastic axisymmetric solution of a finite transversely isotropic cylindrical shell. Comput. & Struct.. 1996, 61(6) : 1085-1099.
    [96] Kardomateas G. A., Transient thermal stresses in cylindrically orthotropic composite tubes, ASME J. Appl. Mech., 1989, 56(2) : 411-417.
    [97] Kardomateas G. A., The initial phase of transient thermal stresses due to general boundary thermal loads in orthotropic hollow cylinders. ASME J. Appl. Mech., 1990, 57(3) : 719-724.
    [98] Kardomateas G. A., Elasticity solutions for sandwich orthotropic cylindrical shells under external/internal pressure or axial force, AIAA J., 2001, 39(4) : 713-719.
    [99] Kharouf N., Heyliger P. R., Axisymmetric free vibrations of homogeneous and laminated piezoelectric cylinders. J. Sound Vib., 1994, 174(4) : 539-561.
    [100] Khdeir A. A., Thermoelastic analysis of cross-ply laminated circular cylindrical shell. Int. J. Solids Struct., 1996, 33(27) : 4007-4017.
    [101] Kirichok I. F., Numerical solution of problems of the electroelastic oscillation of a cylinder and a sphere, Prikl. Mekh., 1980, 16(2) : 45-50.
    
    
    [102]Ko S. H., Brigham G. A., Multimode spherical hydrophone. J. Acoust. Soc. Am., 1974, 56(6): 1890-1898.
    [103]Kress R. Linear Integral Equation. Berlin: Springer-Verlag, 1989.
    [104]Krishtalev V. V., Transient processes in an elastic cylinder under a sudden load. Prikl. Mekh.,1990, 26(5): 25-30.
    [105]Lam K. Y., Qian Wu, Free vibration of symmetric angle-ply thick laminated composite cylindrical shells. Composites Part B: Engineering, 2000, 31(4): 345-354.
    [106]Lain K. Y., Loy C. T., Free vibrations of a rotating multilayered cylindrical shell. Int. J. Solids Struct., 1995, 32(5):647-663.
    [107]Lee M. H., Guo R., Bhalla A. S., Pyroelectric sensors, Journal of Electroceramics, 1998, 2(4): 229-242.
    [108]Lee Z. Y., Chen C. K., Hung C. I., Transient thermal stress analysis of multilayered hollow cylinder. Acta Mech., 2001, 151(1-2): 75-88.
    [109]Lekhnitskii S. G., Theory of elasticity of an anisotropic body. 1981, Moscow: Mir publishers.
    [110]李春雨,邹振祝,段祝平,正交各向异性功能梯度材料Ⅲ型裂纹尖端动态应力场.应用数学和力学,2000,21(6),590-596.
    [111]李鸿祥,王国金,王存政,几类积分方程和常微分方程的精确解.上海铁道学院学报,1995,16(1):72-85.
    [112]Li hongyun, Lin Qirong, Liu Zhengxing, Wang Chao, Free vibration of piezoelastic laminated cylindrical shells under hydrostatic pressure. Int. J. Solids Struct., 2001, 38(42-43):7571-7585.
    [113]李红云,刘正兴,林启荣,外激励下压电球壳的球对称稳态响应分析,应用数学和力学,2000,21(8):852-860.
    [114]林启荣,刘正兴,李红云,受谐激励的带压电层充液圆柱容器稳态解.固体力学学报,2001,22(2):209-213.
    [115]Lin S. Y., Coupled vibration analysis of piezoelectric ceramic disk resonators. J. Sound Vib., 1998, 218(2): 205-217.
    [116]Liu Guoli, Qu Jianmin, Transient wave propagation in a circular annulus subjected to transient excitation on its surface. J. Acoust. Soc. Am., 1998, 104(3): 1210-1220.
    [117]Liu KaiShin, Xie Suming, Tanimura Shinji, Two-Dimensional torsional wave propagation in layered transversely isotropic cylinders, JSME Int. J. A-Solid Mech. Mat. E., 1998, 41(2):199-203.
    [118]Liu KaiShin, Tanimura Shinji, Igaki Hisashi, Kaizu Koichi, The dynamic behavior of an elastic circular tube duo to longitudinal impact. JSME Int. J. A-Solid Mech. Mat. E., 1989, 32(4): 535-539.
    [119]Love A. E. H., A treatise on the mathematical theory of elasticity. Cambridge: Cambridge University Press, 1927.
    [120]Loza I. A., Shul'ga N. A., Axisymmetric vibrations of a hollow piezoceramic sphere withradial polarization. Prikl. Mekh., 1984, 20(2): 3-8.
    [121]Loza I. A., Shul'ga N. A., Forced axisymmetric vibrations of a hollow piezoceramic sphere with an electrical method of excitation. Prikl. Mekh., 1990, 26(9): 16-21.
    [122]Lu P., Lee K. H., Lin W. Z., Shen F., Lim S. P., An approximate frequency formula for piezoelectric circular cylindrical shells. J. Sound Vib., 2001, 242(2): 309-320.
    
    
    [123] Maiti M., Stress in anisotropic nonhomogeneous sphere. J. Eng. Mech., 1975, 10(1) ,101-108.
    [124] Mason M., Physical Acoustics. New York: Academic Press, 1961.
    [125] Mcivor I. K., The elastic cylindrical shell under radial impulse. ASME J. Appl. Mech., 1966, 33(4) : 831-837.
    [126] Mckinney J. M., Spherically symmetric vibration of an elastic spherical shell subject to a radial and time-dependent body-force field. ASME J. Appl. Mech., 1971, 38(3) : 702-705.
    [127] Misra J. C., Achari R. M., On axisymmetric thermal stresses in an anisotropic hollow cylinder. J. Thermal Stresses, 1980, 3(4) : 509-520.
    [128] Noda N., Transient thermal stress problem in a transversely isotropic finite circular cylinder under three-dimensional temperature field. J. Thermal Stresses, 1983, 6(1) : 57-71.
    [129] Noda N., Ashida F., A three-dimensional treatment of transient thermal stresses in a transversely isotropic semi-infinite circular cylinder subjected to an asymmetric temperature on the cylindrical surface. Acta Mech., 1986, 58(3-4) : 175-191.
    [130] Ootao Y., Tanigawa Y, Fukuda T., Axisymmetric transient thermal stress analysis of a multilayered composite hollow cylinder, J. Thermal Stresses, 1991, 14: 201-213.
    [131] Pao Y. H., Ceranoglu A. N., Determination of transient responses of a thick-walled spherical shell by the ray theory, ASME J. Appl. Mech., 1978,45(1) : 114-122.
    [132] Parida J. and Das A. K., Thermal stress in a thin circular disc of orthotropic material due to an instantaneous point heat source. Acta Mech., 1972, 13(3) : 205-214.
    [133] Paul H. S., Vibrations of circular cylindrical shells of piezoelectric silver iodide crystal, J.Acoust. Soc. Am., 1966, 4(5) : 1077-1080.
    [134] Paul H. S., Raju D. P., Asymmetric analysis of the modes of wave propagation in a piezoelectric solid cylinder, J. Acoust. Soc. Am., 1982, 71(2) : 255-263.
    [135] Paul H. S., Venkatesan M., Vibration of a hollow circular cylinder of piezoelectric ceramics. J. Acoust. Soc. Am., 1987, 82(3) : 952-956.
    [136] Paul H. S., Venkatesan M., Wave propagation in a piezoelectric solid cylinder of arbitrary cross section of class 6(bone): Int. J. Engng. Sci., 1989, 27(7) : 847-853.
    [137] Paul H. S., Venkatesan M., Wave propagation in a piezoelectric bone with a cylindrical cavity of arbitrary shape, Int. J. Engng. Sci., 1991, 29(12) : 1601-1607.
    [138] Paul H. S., Venkatesan M., Wave propagation in a piezoelectric human bone of arbitrary cross section with a Circular Cylindrical Cavity, J. Acoust. Soc. Am., 1991, 89(1) : 196-199.
    [139] Paul H. S. and Raman G. V, Wave propagation in a hollow pyroelectric circular cylinder of crystal class 6. Acta Mech.. 1991, 87(1-2) : 37-46.
    [140] Paul H. S., Raman G. V., Wave Propagation in a Pyroelectric Cylinder of Arbitrary Cross Section with a Circular Cylindrical Cavity, J. Acoust. Soc. Am., 1993,93(2) : 1175-1181.
    [141] Paul H. S. and Nelson V. K., Wave propagation in a pyroelectric cylinder of inner and outer arbitrary Shape. J. Acoust. Soc. Am. 1997, 102(1) : 301-307.
    [142] Rao S. S., Sunar M., Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures, AIAA J., 1993, 31(7) : 1280-1286.
    [143] Rao S. S., Sunar M., Piezoelectricity and its use in disturbance sensing and control of flexible structures: A survey. Appl. Mech. Rev., 1994, 47(4) : 113-123.
    [144] Rose J. L., Chou S. C., Chou P. C., Vibration analysis of thick-walled spheres and cylinders.J. Acoust. Soc. Am., 1973, 53(3) : 771-776.
    
    
    [145] Sankar B. V., Thermal stresses in functionally graded beams. AIAA J., 2002, 40(6) , 1228-1232.
    [146] Sarma K. V., Torsional wave motion of a finite inhomogeneous piezoelectric cylindrical shell, Int. J. Engng. Sci., 1980, 18(3) : 449-454.
    [147] Shaffer B. F., Orthotropic annular disks in plane stress. ASME J Appl Mech. 1967, 34(4) : 1027-1029.
    [148] 沈以淡,积分方程,北京:北京理工大学出版社,1992.
    [149] Shul'ga N. A., Grigorenko A. Y., Loza I. A., Axisymmetric electroelastic waves in a hollow piezoelectric ceramic cylinder, Prikl. Mekh, 1984, 20(1) : 23-28.
    [150] Shul'ga N. A., Electroelastic Oscillation of a Piezoceramic Sphere with Radial Polarization, Prikl. Mekh., 1986, 22(6) : 3-7.
    [151] Shul'ga N. A., Radial Electroelastic Vibrations of a Hollow Piezoceramic Sphere, Prikl. Mekh., 1989, 26(8) : 20-25.
    [152] Shul'ga N. A., Harmonic Electroelastic Oscillations of Spherical Bodies, Soviet Applied Mechanics, 1993,29:812-817.
    [153] Sinha D. K., Note on the radial deformation of a piezoelectric, polarized spherical shell with a symmetric temperature distribution. J. Acoust. Soc. Am., 1962, 34(8) : 1073-1075.
    [154] Sternberg E., Chakravorty J. G., Thermal shock in an elastic body with a spherical cavity. Quart. Appl. Math. 1959, 17: 205-218.
    [155] Sugano Y., Transient thermal stresses in a transversely isotropic finite circular cylinder due to an arbitrary internal heat generation. Int. J. Engng. Sci., 1979, 17(8) : 927-939.
    [156] Tarn J. Q., Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads. Int. J. solids struct. 2001,38(46-47) : 8189-8206.
    [157] Tarn J. Q., Wang Y. M., Laminated composite tubes under extension, torsion, bending, shearing and pressuring: a state space approach. 2001,38(50-51) : 9053-9075.
    [158] Tauchert T. R., Ashida F., Noda N., Adali S., Verijenko V., Development in thermopiezoelasticity with relevance to smart composite structures. Compos. Struct., 2000, 48(1) : 31-38.
    [159] Tressler James F., Sedatalkoy, Newnham R. E., Piezoelectric sensors and sensor materials, Journal of Electroceramics, 1998, 2(4) : 257-272.
    [160] Tusi T., Kraus H., Thermal Stress-wave propagation in hollow elastic spheres, J. Acoust. Soc. Am., 1965, 37(4) : 730-37.
    [161] Tzou H. S., Ye. R., Piezothermoelasticity and Precision Control of Piezoelectric Systems: Theory and Finite Element Analysis, J.Vib. Acoust., 1994, 116(4) : 489-495.
    [162] Tzou H. S., Bao Y, A theory on anisotropic piezothermoelastic shell laminates with sensor/actuator application. J. Sound Vib., 1995, 184(3) : 453-473.
    [163] Wang Hui-ming, Ding Hao-jiang, Chen Wei-qiu, Theoretical solution of a spherically isotropic hollow sphere for dynamic thermoelastic problems. J. Zhejiang Univ. Sci., 2003, 4(1) , 5-12.
    [164] Wang Xi and Gong Yuning, A theoretical solution for axially symmetric problem in elastodynamics. Acta Mech. Sinica, 1991, 7(3) : 275-282.
    [165] Wang X, Gong Y. N., An elastodynamic solution for multilayered cylinders. Int. J. Engng. Sci., 1992, 30(1) :25-33.
    [166] Wang X., Stress wave propagation in a two-layered cylinder with initial interface pressure.
    
    Int. J. Solids Struct., 1993, 30(12):1693-1700.
    [167]王熙,球体的弹性动力学解和动应力集中现象,应用数学和力学,1993,14(8):739-746.
    [168]Wang X., An elastodynamic solution for an anisotropic hollow sphere. Int. J. Solids Struct., 1994, 31(7): 903-911.
    [169]王熙.有界圆柱体的动应力和动应力集中现象.振动与冲击,1995,14(1):23-29.
    [170]王熙,王灿,沈家瑶,空腔球体热冲击问题的一种求解方法.南京理工大学学报,1995,19(6):565-568.
    [171]Wang X., Thermal shock in a hollow cylinder caused by rapid arbitrary heating. J. Sound & Vib., 1995, 183(5): 899-906.
    [172]王熙.在热冲击作用下圆柱体的动应力集中效应的解析解.振动与冲击,1996,15(3):28-33.
    [173]王熙,各向异性轴对称问题的弹性动力学解.力学学报,1997,29(5):606-611.
    [174]王熙,具有初始层间压力的层合圆筒的热冲击研究,应用数学和力学,1999,20(10):1065-1071.
    [175]王熙,球面各向同性球体内的动态热应力集中.力学学报,2000,32(2):245-250.
    [176]Wang X., Zhang K., Zhang W., Chen J. B., Theorectical solution and finite element solution for an orthotropic thick cylindrical shell under impact load. J. Sound Vib., 2000, 236(1):129-140
    [177]Wang X., Zhang W., Chan J. B., Dynamic thermal stress in a transversely isotropic hollow sphere, J. Thermal Stresses, 2001, 24(4): 335-346.
    [178]Wang X., Wang C., Lu G., Zhou B. M., Thermal stress-focusing in a transversely isotropic sphere and an isotropic sphere, J. Thermal Stresses, 2002, 25(1): 31-44.
    [179]Wang, X., Lu. G., Guillow, S. R., Stress wave propagation in orthotropic laminated Thick-walled spherical shells. Int. J. Solids Struct., 2002, 39(15): 4027-4037.
    [180]沃国纬,非均匀半平面问题地弹性力学解.应用数学和力学,1994,15(10):935—942.
    [181]Xu K., Noor A. K., Burton W. S., 3D solutions for free vibration of initially stressed thermoelectroelastic multilayered cylinders. J. Engng. Mech., 1997, 123(1): 45-51.
    [182]阎玉斌,崔明根,第二类Volterra积分方程的准确解.高等学校计算数学学报,1993,15(4):291-296.
    [183]Ye G. R., Chen W. Q., Cai J. B., A uniformly heated functionally graded cylindrical shell with transversely isotropy. Mech. Res. Commun., 2001,28(5): 535-542.
    [184]Yee K. C., Moon T. J., Plane thermal stress analysis of an orthotropic cylinder subjected to an arbitrary, transient, asymmetric temperature distribution. ASME J. Appl. Mech., 2002, 69(5): 632-640.
    [185]Yin, X. C., Yue, Z. Q., Transient plane-strain response of multilayered elastic cylinders to axisymmetric impulse. ASME J. Appl. Mech., 2002, 69(6): 825-835.
    [186]Zaker T. A., Dynamic thermal shock in hollow spheres. Quart. Appl. Math., 1968, 26(4): 503-52O.
    [187]张福学,王丽坤,现代压电学(上,中,下册),北京:科学出版社,2001.
    [188]Zhang Xiangzhou, Hasebe Norio, Thermally induced dynamic stresses in a bi-material sphere. J. Thermal Stresses, 1998, 21(2): 105-128.