动车组维修物联网及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高质量、高效率的运用维护是保障高速列车运营安全及服务质量的重要基础。动车组是高新技术集成体,技术含量高,运用、维修方式与既有机车、车辆存在较大差异,其特点是高度的专业化、程序化、集约化和社会化。对于运用维护的生产组织、技术管理、安全质量控制等工作提出了更高的要求,本文依托于铁路重大工程项目“动车组管理信息系统”开展关于物联网管理技术的研究。
     动车组维修物联网是既有维修信息系统中信息在自动感知与关联应用方面的提升完善,利用物联网技术实现动车组运用维护体系中动车组、配件、人员、设备的智能化识别、定位、跟踪、监控和管理服务。物联网的泛在感知与可视化能力,及其高度强调“信息空间”与“物理过程”融合的特征,为妥善解决传统信息系统一系列固有问题提出新的解决思路。
     利用RFID、传感器等物联网技术实现信息感知,通过数据集成对业务对象的属性、位置和状态信息进行整合;研究动车组维修物联网设计方法;构建综合集成的动车组维修物联网总体架构;集中突破各项系统关键技术;寻找合适的物联网技术应用场合,优化既有业务流程,深化设计应用功能;形成基于物联网的创新型应用实践。
     论文主要工作包括:
     (1)总结物联网的基本概念和发展现状,选择具有参考价值的物联网典型应用,通过应用模式分析得出经验和启示。总结物联网技术在动车组维修中的初步应用成果,分析当前维修信息系统存在的问题,提出动车组维修对物联网的需求,以及动车组维修物联网的研究目标、研究内容和技术路线。
     (2)通过对动车组维修业务需求的深入分析,依据业务特征把应用场景划分为“维修现场高端综合应用”、“行车安全监控与状态修”两个部分,指出物联网技术在其中的应用思路与实现难点。
     (3)给出物联网系统的一般设计原则,参考技术接受模型(TAM),归纳出影响物联网技术被用户接受的采纳因素,研究物联网技术方案定性和定量的评价决策方法,结合以上方法提出规范严谨的动车组维修物联网设计流程。
     (4)遵循动车组维修物联网的设计流程,借鉴有影响力的物联网架构参考模型,提出动车组维修物联网的总体架构,并定义各种功能组件及其相互关系。
     (5)总结物联网硬件设备选型与设计的重要参考因素,设计实现动车组维修物联网的前端感知系统,提出关于配件识别、人员识别、动车组识别、检修装备识别监测、动车组运行状态感知、以及室内生产对象定位的完整技术方案。
     (6)研究动车组维修物联网所涉及的关键技术,包括○1数据质量控制:提出“硬件级-中间件级-应用级”层次化的RFID数据质量控制机制,基于设备冗余性和应用上下文设计相应的数据清洗策略,通过仿真进行方法有效性验证,并给出设备的布局优化建议;○2高层业务信息提取:提出以事件为中心的RFID数据处理架构,基于Petri网理论研究RFID复杂事件的检测技术,通过发现在线数据流的关联性关系,实现实时的高层业务信息提取;○3海量数据存储处理:提出关于动车组运行及故障信息的海量数据存储管理策略,以及针对超大规模数据集的高性能处理技术;○4信息安全和隐私保护:对物联网新技术应用所带来的信息安全隐患进行深入研究,提出动车组维修物联网的安全框架。
     (7)针对“维修现场高端综合应用”和“行车安全监控与状态修”两种应用场景,分别提出信息综合集成方案、业务流程优化和应用功能深化方案;设计了支持高端综合服务的应用系统。
High-quality high-efficiencyMaintenance&Operationguaranteesthe operatingsafety and service quality of high-speed trains. EMU (Electric Multiple Units) is atightlyintegrated bodywith high technical content, itsmaintenance&operation fashionof aremuch different from that of legacy railway rolling-stocks, which is characterizedby specialization, routinization, intensiveness as well as socialization.Therefore, higherrequirement are put forward on the production management, technicaladministration, safety and quality control. This paper is based on amajor railwayengineering project-EMU Management Information System, with an emphasis on theinformation management approaches inInternet of things (IoT).
     The EMU maintenance in IoT is an upgrading and perfection in terms of automaticinformation sensing and associated utilization;in which intelligent services such asidentification, location, tracking, and management are achieved owing toabundantinformation originated from trains, parts, staff and device in the EMUoperation&maintenance domain.Ubiquitous sensing and reality visualization of IoT, aswell as its emphasis on theconbination of information space and physical process,offers appropriate soluationsfor a series of inherent problems in present informationsystems.
     Implementing information sensing with IoT technologies like RFID,sensor,.etc,theproperties, location, and status of business objects are integratedtogether; studying the design method of EMU maintenance in IoT; estabilishingcorresponding comprehensive integrated general framework; overcome necessary keytechnologies; seeking appropriate application scenarios, optimizing legacy businessprocess, deepening application function; eventually forming an innovative practicebased on the IoT.
     The primary works of this paper are as followed:
     (1) Summarizing basic concept and current development of IoT, chosingtypical IoT applications with referenced value, experience and enligntenment wereattained during application pattern analysis. Summing up the initial results of IoT inEMU maintenance, analyzing existed problems in current maintenance information system; the requirements of IoT, research objectives, main content, and technicalapproaches were proposed.
     (2) After thorough analysis of EMU maintenance business, the applied scenarioswere divided into two parts: High-end Integrated Application in MaintenanceWorkshop, and Traffic Safety Monitoring and Repair Based on Condition, pointing outthe application and realization difficulties.
     (3) Presenting the general design principals of IoT system; moreover, referringtechnical acceptance model (TAM), user acceptance factors with respect of IoTtechnologies were concluded; qualitative and quantitativeproject decision methodsfor IoT technical solution were studied, on which a rigorous design flow was presented.
     (4) Complying with the design flow of EMU maintenance in IoT, and referringinfluential IoT reference Architectures, the general framework of EMU maintenance inIoT,as well as its functional components and relationship, was proposed.
     (5) Summarizingimportant factors of IoT hardware selection and design, realizingthe front-end sensing systems in EMU maintenance; complete technical solutions,which consist of part identification, staff identification, train identification,maintenance equipment identification, EMU running state sensing, as well as indoorproductive objects location, were presented.
     (6) Studying key technologies involved in the IoT system for EMU maintenance.○1Data Quality Control: a layered “hardware-middleware-application” data qualitycontrol mechanism was proposed, in which some data cleaning algorithms weredesigned. Performing evaluation through simulation, in which a number of devicelayout suggestions were acquired.○2High-level Business Information Extraction: anevent-driven RFID data processing framework was proposed, in which the complexevent processing method was studied to discovery potential relationship in on-linedata flow and realize high-level business information extraction.○3Massive DataStorage&Processing: The massive EMU operation and failure data storage method, aswell as intensive data processing technologies were presented.○4InformationSafety&Privacy Protection: With respect to the new hidden trouble owing to theadoption of IoT technologies, a security framework of EMU maintenance in IoT waspresented.
     (7) With respect to the two application scenarios, i.e. High-end IntegratedApplication in Maintenance Workshop, and Traffic Safety Monitoring and Repair Basedon Condition, technical solutions of information integration, business flowoptimization, and deepened applied functions were proposed respectively; anddesigning application system which support high-end comprehensive services.
引文
[1]史天运,孙鹏.动车组管理信息系统的建设与发展[J].铁路计算机应用,2013(1).
    [2]国务院关于印发“十二五”国家战略性新兴产业发展规划的通知[EB/OL].国发〔2012〕28号. http://www.gov.cn/zwgk/2012-07/20/content_2187770.htm.
    [3]国务院关于推进物联网有序健康发展的指导意见[EB/OL].国发〔2013〕7号.
    [4] http://www.gov.cn/zwgk/2013-02/17/content_2333141.htm.
    [5]中华人民共和国铁道部,运装管验[2009]95号.动车组管理信息系统总体方案[R].北京:铁道部运输局,2009.2.
    [6]董耀华,佟锐,孙伟,等.物联网技术与应用[M].上海科学技术出版社,2011.
    [7]刘云浩.物联网导论[M].科学出版社,2011.
    [8] ITU Internet Reports2005: the Internet of things[EB/OL].www.itu.int/internetofthings/.
    [9]刘文宁,黄文雷,孙棣华, et al.基于射频识别的离散制造业制造执行系统设计与实现[J].计算机集成制造系统,2007,13(10):1886-1890.
    [10]白翱,唐任仲,吕景祥, et al.面向U-制造的车间物流实时数据语义分析[J].计算机集成制造系统,2012,18(3):550-559.
    [11]何积峰. Cyber-physical Systems[J].中国计算机学会通讯,6(1):25-29,2010.
    [12]工业和信息化部电信研究院.物联网白皮书(2011年)[R],2011.
    [13]刘海涛,马建,熊永平.物联网技术应用[M].机械工业出版社,2011.
    [14] IoTResearch.欧盟第七框架物联网倡导专项项目(IoT-i)简介[EB/OL].http://iotresearch.wikispaces.com/IoT-i.
    [15]刘强,崔莉,陈海明.物联网关键技术与应用[J].计算机科学,37(6):1-10,2010.
    [16]马华东.物联网技术初探[J].中国计算机学会通讯,6(4):6-7,2010.
    [17]封松林,叶甜春.物联网/传感网发展之路初探[J].中国科学院源刊,25(1):50-54,2010.
    [18]佟立本.铁道概论(第六版)[M].中国铁道出版社,2012.
    [19]董锡明.现代高速铁路概论[M].北京:中国铁道出版社,2006.
    [20]崔莉,刘强,李栋.物联网系统及核心设备[J].中国计算机学会通讯,6(4):18-22,2010.
    [21] Coetzee L, Eksteen J. The internet of things-promise for the future? an introduction[C]//IST-Africa Conference Proceedings,2011. IEEE,2011:1-9.
    [22]孙凝晖,徐志伟,李国杰.海计算:物联网的新型计算模型[J].中国计算机学会通讯,6(7):52-57,2010.
    [23]郭苑,张顺颐,孙雁飞.物联网关键技术及有待解决的问题研究[J].计算机技术与发展,20(11):180-183,2010.
    [24]黄映辉,李冠宇.物联网:语义、性质与归类[J].计算机科学,38(1):31-33,2011.
    [25] ZF Friedrichshafen AG connects complete process chain through RFID[EB/OL].http://www.rfidglobal.org/News/2009-10/200910141603101114.html
    [26]倪霖.基于RFID的汽车生产线信息集成模式及关键技术研究[D].重庆大学,2010.
    [27]颜波,黄烨华,张彩江.基于RFID的服装供应链管理应用研究[C].第二十七届中国控制会议论文集,2008.7.
    [28] Bansal, R."Coming Soon to a Wal-Mart Near You." IEEE Antennas and PropagationMagazine,45,6,2003,105-106
    [29] L.W.Sze, S.Zailani, Y.Fernando, Determinants of RFID Adoption in Supply Chain amongManufacturing Companies in China: A Discriminant Analysis, Journal of TechnologyManagement&Innovation, Vol.4No.1, pp.22-32,200
    [30] C.Ranganathan, S.Jha, Adoption of RFID technology: An exploratory examination fromsupplier's perspective, Proc. of the Eleventh American Conference on Iinformation Systems,pp.2195-2199,11-14August, Omaha, USA,2005
    [31] Qiannong Gu. Supply Chain Coordination with RFID Implementation[R], University ofHouston,2008.
    [32]甘卫华,张婷婷,朱雨薇.铁路物流中心的RFID技术应用[J].中国铁路,2010(9):33-36.
    [33]盛亚.航空领域RFID应用介绍[J].射频世界,2010(2):36-39.
    [34]姚国章,丁秋林.航空制造业无线射频识别技术应用进展[J].航空维修与工程,2006(6):24-27.
    [35] Siemens. Cargo Automation[R],2012.
    [36]王志华,史天运.射频识别技术(RFID)在交通领域的应用现状[J].交通运输系统工程与信息,5(6):96-99:2005.
    [37]王晓亮,宓奇,彭苏勉.物联网在我国铁路运输领域的应用与发展探讨[J].铁道通信信号,46(3):47-49,2010.
    [38]朱琎,杨剑锋,周宇. SAW RFID技术在列车定位与跟踪中的应用[J].铁路标准设计,2012(9):102-105.
    [39]黄学文,刘春明,冯璨,等. CRH3高速动车组故障诊断系统[J].计算机集成制造系统,16(10):2311-2318,2010.
    [40]赵红卫,王立文,王欣,等.客车行车安全检测诊断系统的网络系统设计[J].中国铁道科学,30(5):138-144,2009.
    [41]曹松.铁路行车安全预警理论与方法研究[D].中国铁道科学研究院,2011.
    [42]于丽颖.物联网技术在铁路罐车运输危险货物中的应用[J].货运安全,2011(11):30-32.
    [43] Mayordomo I, Spies P, Meier F, et al. Emerging technologies and challenges for the internetof things[C]//Circuits and Systems (MWSCAS),2011IEEE54th International MidwestSymposium on. IEEE,2011:1-4.
    [44]史天运,王英杰,李平.数字铁路框架体系的研究[J].交通运输系统工程与信息,10(6):29-33,2010.
    [45]史天运,王成. RFID技术在铁路客票系统中的应用[J].中国铁道科学,30(6):135-140,2009.
    [46]刘瑞扬.铁路车号自动识别系统原理及应用(M).北京:中国铁道出版社,2003.
    [47] RFID journal, The Basic of RFIDTechnology[EB/OL].http://www.rfidjournal.com/articles/view?1337/.
    [48] Chunli L. Intelligent transportation based on the Internet of Things[C]. Consumer Electronics,Communications and Networks (CECNet),20122nd International Conference on. IEEE,2012:360-362.
    [49]张荣新,刘子铁,郭景武.物联网技术在铁路交通中的应用研究[J].铁道工程学报,2011(10):115-118.
    [50]石三黑,闫卫东,石中明.基于ZigBee无线物联网技术的客车防盗系统[J].铁道通信信号,47(4):67-69.
    [51]梁昌勇,叶娟,沈浩杰. RFID技术在汽车生产线的应用模式研究[J].机械设计与制造,2010(12):79-81.
    [52]施一明,黄文君,何伟挺,等.新型高可靠性列车运行监控装置[J].中国铁道科学,32(4):134-138,2011.
    [53]陈凯. RFID技术在列车运行控制系统中的应用[J].沿海企业与科技,2008(12):19-21.
    [54]武茂荣.广深铁路基于UHF RFID电子客票研究[J].铁路计算机应用,20(4):13-15,2011.
    [55] Mojix. Mojix STAR3000: Active Performance with Passive Economics[R].2011.
    [56] XERAFY.com. RFID in Metal: A Dream Come True For Asset Tracking[R].
    [57]董锡明.高速列车维修及其保障技术[M].北京:中国铁道出版社,2008.
    [58]中华人民共和国铁道部.动车组运用维修规程(暂行)[M].北京:中国铁道出版社,2007.
    [59] Internetional Union of Railways. Maintenance of High Speed Lines[R].2010.
    [60]吴敌,钟雁.我国铁路客运动车组检修制度的研究[J].铁路运输与经济,28(1),2006:54-55.
    [61]刘丽影,刘继刚,刘继.我国高速动车组检修制度[J].同济大学学报,29(8):1000-1003,2001.
    [62]马国友.动车组检修基地的规划设计及分析[J].铁道标准设计,2005(5):98-101.
    [63]沈岐安.关于机车检修基地设计思想的研究[J].铁道机车车辆,30(3):72-74,2010.
    [64]李波.动车组一、二级检修作业能力优化[J].中国铁路,2008(12):28-30.
    [65]李波,刘建国.关于CRH系列动车组运用均衡检修的探讨[J].铁道车辆,46(12):35-37,2008.
    [66]张才春,陈建华,花伟.基于不同检修能力的动车组运用计划研究[J].中国铁道科学,31(5):130-133,2010.
    [67]史天运.铁路高速客运专线信息系统总体框架研究[J].交通运输系统工程与信息,5(1):92-97,2005.
    [68]史天运,贾利民.中国铁路智能运输系统模拟试验基地的总体规划[J].交通运输系统工程与信息,3(3):22-27,2003.
    [69]李雪梅,阎玮.基于产业生命周期理论的我国铁路发展趋势分析[J].中国铁道科学,32(1):127-132,2011.
    [70]狄威.简论机车车辆的可靠性与维修性及维修信息管理[J].北京交通大学学报,31(6):15-17,2007.
    [71]沈志军.客运专线动车组运用检修设施设置原则的探讨[J].铁道机车车辆,26(2):1-2,2006.
    [72]何华武,等.德、法、西班牙三国铁路动车组运用维修设施考察报告[R].2000.
    [73]马艳峰,王雅林.制造业企业信息技术能力评价研究[J].计算机集成制造系统,2007,13(9):1743-1749
    [74]甘立人,许应楠.企业信息系统用户接受行为影响因素研究[J].情报分析与研究,2009(2).
    [75] Muhammad Muazzem Hossain, Victor R. Prybutok. Comsumer Acceptance of RFIDTechnology An Exploratory Study[J]. IEEE Trans on Engineering Management,2008,55(2):316-328.
    [76] Yung-Hsiang Cheng, Ann Shawing Yang. Investigating Key Factors of Deciding RFID'sAdoption in Logistics Service Providers[C]. Proc of11th Conference on Computer SupportedCooperative Work in Design,2007:1128-1133.
    [77] Stefanie Jahner, Jan Marco Leimeister, Uta Knebel, et al. A Cross-Cultural Comparison ofPerceived Strategic Importance of RFID for CIOs in Germany and Italy[C]. Proc of the41stHawaii International Conference on System,2008.
    [78]方针.用户信息技术接受的影响因素模型与实证研究[D].复旦大学,2005.
    [79]陈文波,黄丽华.组织信息技术采纳的影响因素研究述评[J].软科学,20(6):1-4,2006.
    [80]刘鲁川,孙凯.享乐型信息系统用户采纳的理论模型及实证检验[J].计算机应用,2011,31(11).
    [81]刘振华.个人用户手机支付采纳意向研究[D].大连理工大学,2010.
    [82]李文川.汽车生产线射频识别技术采纳的影响因素研究[J].计算机集成制造,2012,18(3):575-582
    [83]廖燕.供应链管理中RFID应用价值评估与采纳扩散研究[D].华中科技大学,2009.
    [84]李文川.汽车制造企业RFID采纳过程模型及应用问题研究[D].重庆大学,2011.
    [85]李怡文.组织在采纳信息技术前后的行为影响因素比较研究[D].同济大学,2006.
    [86]郭歌.智能铁路体系结构建模与分析技术的研究[D].中国铁道科学研究院,2011.
    [87]郭湛,商小雷,李海.基于AHP的轨道交通安全评价体系模型[J].中国铁道科学,32(3):123-125,2011.
    [88] EPCglobal, Full set of EPCglobal standards[EB/OL], http://www.gs1.org/gsmp/kc/epcglobal.
    [89] IoTResearch.欧盟第七框架物联网架构专项项目(IoT-A)简介[EB/OL].http://iotresearch.wikispaces.com/IoT-A.
    [90]1451-IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-Common Functions, Communication Protocols, and Transducer Electronic Data Sheet(TEDS) Formats[S]
    [91]1451.1-IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-Network Capable Application Processor (NCAP) Information Model[S]
    [92]1451.2-IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-Transducer to Microprocessor Communication Protocols and Transducer Electronic DataSheet (TEDS) Formats[S]
    [93]1451.3-IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-DigitalCommunication and Transducer Electronic Data Sheet (TEDS) Formats for DistributedMultidrop Systems[S]
    [94]1451.4-IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-Mixed-Mode Communication Protocols and Transducer Electronic Data Sheet (TEDS)Formats[S]
    [95]1451.5-IEEE Standard for a Smart Transducer Interface for Sensors and ActuatorsWireless Communication Protocols and Transducer Electronic Data Sheet (TEDS) Formats[S]
    [96]1451.7-IEEE Standard for Smart Transducer Interface for Sensors and Actuators--Transducers to Radio Frequency Identification (RFID) Systems Communication Protocolsand Transducer Electronic Data Sheet Formats[S]
    [97] Chao-Wen Tseng, Chih-Ming Chang, Chua-Huang Huang. Complex Sensing Event Processof IoT Application Based on EPCglobal Architecture and IEEE1451[C]. IEEE Internet ofThings2012.
    [98] Wei Wang, Dong Guo. Towards Unified Heterogeneous Event Processing for the Internet ofThings[C]. Proc of IEEE Internet of Things2012.
    [99]李楠,刘敏,严隽薇.面向钢铁连铸设备维护维修的工业物联网框架[J].计算机集成制造系统,17(2):413-418,2011.
    [100]张映锋,赵曦滨,孙树栋,等.一种基于物联技术的制造执行系统实现方法与关键技术[J].计算机集成制造系统,2012,18(12):2634-2642
    [101]宁焕生,张瑜,刘芳丽,等.中国物联网信息服务系统研究[J].电子学报,34(12A):2514-2517.
    [102]李仁发,谢勇,李蕊,等.信息-物理融合系统若干关键问题综述[J].计算机研究与发展,49(6):1149-1161,2012.
    [103] Luis Roalter, Matthias Kranz, Andreas Moller. A Middleware for Intelligent Environmentsand the Internet of Things[J]. Ubiquitous Intelligence and Computing. Springer BerlinHeidelberg,2010:267-281.
    [104]康东,石喜勤,李勇鹏,等.射频识别(RFID)核心技术与典型应用开发案例[M].北京:人民邮电出版社.2008.
    [105]周晓光,王晓华.射频识别(RFID)技术原理与应用案例[M].北京:人民邮电出版社,2006.
    [106]周晓光,王晓华,王伟.射频识别(RFID)系统设计、仿真与应用[M].北京:人民邮电出版社,2008.
    [107]张晖.物联网技术标准概述[M].北京:电子工业出版社,2012.
    [108]张亚平,杨大恒,徐玲玲.交通运输物联网[M].北京:中国物资出版社,2011.
    [109]周翔,何明,夏利锋.物联网与工程机械[M].北京:电子工业出版社,2012
    [110]孙鹏,史天运,张惟皎. RFID在动车高级修中的应用研究[J].交通运输系统工程与信息,2012,12(3):52-58.
    [111]于戈,李芳芳.物联网中的数据管理[J].中国计算机学会通讯,6(4):30-34,2010.
    [112]谷峪,于戈,张天成. RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267.
    [113]许嘉,于戈,谷峪,等. RFID不确定数据管理技术[J].计算机科学与探索,2009,3(6).
    [114]王意洁,李小勇,祁亚斐,等.不确定数据查询技术研究[J].计算机研究与发展,2012,49(7):1460-1466.
    [115] Yijian Bai, Funsheng Wang, etc. Efficiently Filtering RFID Data Streams [C]. Proc of the1stInt VLDB Workshop on Clean Databases.2006:57-60.
    [116] Libe Valentine Massawe, Herman Vermaak, Johnson D.M.Kinyuan. An Adaptive DataCleaning Scheme for Reducing False Negative reads in RFID Data Streams[C].2012IEEEInternational Conference on RFID,2012.
    [117] Shawn R. Jeffery, Minos Garofalakis, Michael J.Franklin. Adaptive Cleaning for RFID DataStream[C]. VLDB'06,2006.
    [118] Hector Gonzalez, Jiawei Han, Xuehua Shen. Cost-Conscious Cleaning of Massive RFIDData Sets[C]. IEEE ICDE2007.
    [119] Nova Ahmed, Rajnish Kumar, Robert Steven French, etc. RF2ID: A Reliable MiddlewareFramework for RFID Deployment[J].2007
    [120] Bilal Hameed, Imran Khan, etc. An RFID Based Consistency Management Framework forProduction Monitoring In a Smart Real-Time Factory [C]. IEEE Internet of Things.2010.
    [121] AMR:一种RFID数据不确定性的自适应度量算法[J].电子学报,2011,39(3):579-584
    [122] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, ect.A Pipelined Framework forOnline Cleaning of Sensor Data Streams[C]. Proceedings of ICDE'06,2006.
    [123]王霞,玄丽娟,夏秀峰.基于时序关系的RFID不确定数据清洗算法[J].辽宁大学学报:自然科学版,2012,39(2).
    [124] Thorben Keller, Frederic Thiesse, Jens Kung, et al. Using Low-Level Reader Data to DetectFalse-Positive RFID Tag Reads[C]. IEEE Internet of Things.2010.
    [125]彭商濂,李战怀,陈群,等.在线-离线数据流上复杂事件检测[J].计算机学报,2012,35(3):540-554.
    [126]聂艳明,李战怀.不确定RFID数据流上基于熵的数据推导方法[J].华中大学学报:自然科学版,2012,40(4):13-18.
    [127]“The Basics of RFID Technology,”http://www.rfidjournal.com/article/articleview/1337/1/129/
    [128] Nova Ahmed, Rajnish Kumar, etc. RF2ID: A Reliable Middleware Framework for RFIDDeployment. IEEE IPDPS, IEEE Computer Society Press (2007)
    [129] B. S. Prabhu et al.,”WinRFID–A Middleware for the enablement ofRadio Frequency Identification.(RFID) based Applications,” UCLA–Wireless Internet for the Mobile Enterprise Consortium.
    [130] T. Hassan et al.,"A Taxonomy for RFID,” Proceedings of the39th Annual HawaiiInternational Conference on System Sciences (HICSS'06),2006.
    [131] David C. Luckham, Brian Frasca. Complex Event Processing in DistributedSystems[J].Stanford University Technical Report CSL-TR-98-754, March1998,28pages.
    [132] David B. Robins. Complex Event Processing[J].2010.
    [133]臧传真,范玉顺.基于智能物件的制造企业复杂事件处理研究[J].计算机集成制造系统,2007,13(11):2243-2253
    [134]臧传真,范玉顺.基于智能物件的制造企业信息系统研究[J].计算机集成制造系统,2007,13(1):49-56
    [135]臧传真,范玉顺.基于智能物件的实时企业复杂事件处理机制[J].机械工程学报,2007,43(2):22-32.
    [136]叶蔚,黄雨,赵文, et al.基于Petri网的RFID中间件中复合事件检测研究[J].电子学报,2008,36(12A)
    [137]谷峪,于戈,吕雁飞,等.针对泊松流的截止期敏感的复杂事件处理资源分配模型[J].计算机学报,2012,35(5):937-950
    [138]阎新庆,尹周平,熊有伦.无线射频识别系统中的事件处理机制[J].华中科技大学学报,2008,36(9):63-66
    [139]康庄庄,陈群,孙林超.分布式RFID复杂事件处理技术的研究[J].计算机工程与科学,2011,33(12):136-142.
    [140]刘海龙,李战怀,陈群等. RFID复杂事件检测方法的研究和改进[J].计算机工程与应用,2008,44(11):5-8
    [141] Qun Chen, Zhanhuai Li, Hailong Liu. Optimizing Complex Event Processing over RFIDData Streams[D].
    [142]杜彦华,刘春煌,曹松.行车安全综合监控系统的时序Petri网描述及验证[J].铁道学报,27(4):11-15,2005.
    [143]袁崇义. Petri网原理与应用[M].北京:电子工业出版社,2004.
    [144]吴哲辉. Petri网导论[M].北京:机械工业出版社,2006.
    [145]江志斌. Petri网及其在制造系统建模与控制中的应用[M].北京:机械工业出版社.2004.
    [146]林闯.随机Petri网和系统性能评价(第2版)[M].北京:清华大学出版社.2005.
    [147]韩燕波,赵卓峰,王桂玲,等.物联网与云计算[J].中国计算机学会通讯,6(2):58-62,2010.
    [148]工业和信息化部电信研究院.云计算白皮书(2012年)[R],2012
    [149]范伟,李晓明.物联网数据特性对建模和挖掘的挑战[J].中国计算机学会通讯,6(9):42-47,2010.
    [150] Ghemawat S, Gobioff H, Leung S T. The Google file system[C]. ACM SIGOPS OperatingSystems Review. ACM,2003,37(5):29-43.
    [151] Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters[J].Communications of the ACM,2008,51(1):107-113.
    [152] Chang F, Dean J, Ghemawat S, et al. Bigtable: A distributed storage system for structureddata[J]. ACM Transactions on Computer Systems (TOCS),2008,26(2):4.
    [153]基于SOA的列车客运服务系统集成创新研究[J].交通运输系统工程与信息,10(3):171-175,2010.
    [154]李伯虎,张霖,王时龙,等.云制造-面向服务的网络化制造新模式[J].计算机集成制造,2010,16(1):1-7
    [155]王辉.面向互联网的Web服务基础设施构建和应用[D].天津大学,2010.
    [156]倪文波,王雪梅.高速列车网络与控制技术[M].成都:西南交通大学出版社2008.
    [157]张惟皎,刘春煌,蒋荟,等.铁路行车安全综合监控系统的复杂性研究[J].铁道运输与经济,26(9):39-41,2006.
    [158]刘瑞扬.客车运行安全监控系统[J].中国铁道科学,28(2):126-131,2007.
    [159]李瑞淳,王大伟. CRH系列动车组技术标准的转化与研究[J].铁道技术监督,35(7):4-6,2007.
    [160]吴鹏,李思坤.适于社会网络结构分析与可视化的布局算法[J].软件学报,22(10):2467-2475,2011.
    [161]喻剑.RFID中间件关键技术研究[D].华南理工大学,2009.
    [162]廖国琼. RFID实时中间件技术[M].成都:西南交通大学出版社,2010.
    [163]聂学武,等.物联网安全问题及其对策研究.计算机安全,2011(11).
    [164]李玮,古大武,赵辰,等.物联网环境下LED轻量级密码算法的安全性分析[J].计算机学报,2012,35(3).
    [165]张学军,王玉,王锁萍,等.基于循环移位的轻量型相互认证协议研究[J].电子学报,40(11),2012:2270-2275.
    [166]钟章队,倪晏明.基于物联网的铁路安全信息保障系统[J].中国铁路,2011,11:42-46.
    [167]李鹤田,刘云,何德全.信息系统安全风险评估模型及其在铁路客票系统中的应用[J].中国铁道科学,28(1):127-130,2007.
    [168] Hoopad Mobahat. Authetication and Lightweight Cryptography in Low Cost RFID[C]. Procof2nd International Conference on Software Technology and Engineering,2010.
    [169]胡向东,魏琴芳,向敏,等.物联网安全[M].北京:科学出版社,2012.
    [170]彭皓,李泉林. RFID隐私与安全中的关键技术研究[C].国际RFID技术高峰论坛会议论文集,2006.
    [171]王伯铭.高速列车总体及转向架[M].成都:西南交通大学出版社2008.
    [172]韩宝明,李学伟.高速铁路概论[M].北京:北京交通大学出版社,2008.
    [173]姜飞鹏.动车组检修设备管理信息系统的设计与实现[J],铁路计算机应用,2011(2).
    [174]沈海燕,史宏,须征文,鲁锦.铁路车号自动识别系统(ATIS)的实现及应用[J],中国铁路,2001(6).
    [175]李忠厚,王华胜.高速列车维修的若干问题探讨[J],铁道机车车辆,2003(12).
    [176]黄纯颖.设计方法学[J],工程设计,1997(11).
    [177]丁治国. RFID关键技术研究与实现[D].中国科学技术大学,2009.
    [178]孙鹏,史天运,张惟皎.面向动车组高级修的工业物联网信息系统框架[J],计算机应用,2012(6).