低钛铝合金的偏析及微观组织研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接电解加钛是一种新的加钛方式,这种方式得到的低钛铝合金不仅生产工艺简单、生产成本低而且具有很好的晶粒细化效果。钛含量越高经济效益越显著,但直接电解生产钛含量高于1%的低钛铝合金在技术上还是有很大困难的。对于直接电解的较高钛含量(0.3%     本文探索以直接电解获得的低钛铝合金(Ti0.6%)为原料,利用高温保温,通过铝钛偏析使低钛铝合金偏析成钛含量更低的符合国家标准能作为母体材料使用的低钛铝合金和钛含量更高的能作为中间合金使用的高钛铝合金。本文对偏析的影响因素进行了系统的研究,本文的研究内容主要包括以下几个方面。
     首先,研究了直接电解的低钛铝合金的铝钛偏析的可行性、偏析的影响因素及偏析后的微观组织。结果表明,在合适的温度下保温一段时间,低钛铝合金有明显的偏析现象,可以偏析成含钛量不等界线分明的两部分;在700℃保温时含钛相的偏析主要受熔体粘度的控制,随着时间的增加偏析效果改善;在750℃保温时,含钛相偏析受熔体粘度、扩散和平衡浓度的共同作用,温度升高粘度减小,偏析程度改善,由于平衡浓度的升高,偏析效果又开始减弱;在800℃保温时,熔体的粘度小,扩散作用强,扩散充分,随着时间的增加偏析效果变化很小,由于此时平衡浓度较高,偏析效果没低温时好;偏析后的上部的低钛合金中,钛元素主要以固溶体的形式分布在铝基体中,在偏析后的下部的高钛合金中,A13Ti相主要以丝状和棒状的形式存在。
     另外,对低钛铝合金的偏析工艺进行了研究,并对比研究了偏析后两部分含钛合金和直接电解的低钛铝合金以及Al-5Ti中间合金对工业纯铝的细化效果。结果表明,直接电解的含钛量为0.6%的低钛铝合金在750℃保温60min可取得较好的偏析结果,偏析后得到的上部低钛合金的钛含量为0.2%-0.3%可以作为母体材料使用,下部高钛合金钛含量为2%-3%可以作为中间合金使用;偏析后的两部分合金对纯铝都有良好的细化效果,其细化能力和直接电解的低钛铝合金以及A1-5Ti中间合金的细化能力相当,偏析没有减弱原合金的细化能力,合金的细化能力得到了保持。
Titanium addition by electrolysis is a new technology of producing aluminum containing low content titanium. This method has lots of advantages, such as simple production technology, low cost, excellent grain refinement effect and so on. The higher titanium content, the more significant economic benefits, but it is still very difficult in technology to produce low-titanium aluminum alloy which contain titanium more than 1% by electrolysis. The promotion of low-titanium aluminum alloy with high titanium content (0.3%     In this paper, low-titanium aluminum alloy (Ti0.6%) produced by electrolysis was served as raw materials. Method of high temperature insulation was adopted, and the low-titanium aluminum alloy was divided into low-titanium aluminum alloy with lower titanium content which can meet the national standard and be used as the matrix material and low-titanium aluminum alloy with higher titanium content which can be use as a master alloy through the segregation of aluminum and titanium. In this paper, the feasibility of this approach was explored, and the factors that influence the segregation were investigated systematically. This study mainly include the following contents:
     First, the feasibility of segregation of the low-titanium aluminum alloy produced by electrolysis was investigated. After segregation, the variation of volume and mass ratio of the lower part of low-titanium aluminum alloy with temperature and time was investigated. In addition, the microstructure morphology of the sample after segregation was observed. The results show that low-titanium aluminum appears obvious segregation, and obvious dividing line appears between the two parts of the alloy after insulation with different temperatures and times; For the insulation at 700℃, the segregation of titanium phase is mainly affected by the melt viscosity and the segregation effects can be improved by increasing the insulation time.; For the insulation at 750℃, the segregation of titanium phase is affected by melt viscosity, diffusion and equilibrium concentration:increasing the temperature can improve segregation due to the decreasing of the viscosity, but, the effect of segregation decline again because the improvement of the equilibrium concentration; For the insulation at 800℃, the melt viscosity is small, the diffusion is strong and fully, the segregation effect changed very little when increasing segregation time, the equilibrium concentration is higher, the segregation effect is not as good as that of low temperature; After segregation, Ti mainly distributed in the Al matrix in the form of solid solution for the low-titanium alloy of the upper part, and for the lower part of the high-titanium Alloy, Al3Ti distributed in the form of filamentous and rod.
     In addition, the industrial feasibility of segregation was simulated. Effect of two parts of low-titanium aluminum alloy with segregation, low-titanium aluminum alloy without segregation produced by electrolysis and Al-5Ti master alloy on the commercially pure aluminum refining was compared and investigated. The results show that the best segregation result was obtained in the insulation temperature of 750℃and insulation time of 60min for the low-titanium aluminum alloy of Ti0.6% produced by electrolysis. After segregation, the upper part of low-titanium alloy has titanium content of 0.2%~0.3% which can be used as a matrix material, the high-titanium has titanium content of 2%~3% which can be used as an master alloy; Both of the two parts of low-titanium aluminum alloy with segregation have desirable refining effect on the commercially pure aluminum, and its refining capacity is comparable to the low-titanium aluminum alloy without segregation produced by electrolysis and Al-5Ti master alloy; segregation has not diminished the refining capacity of the original alloy, and the refining capacity has been maintained.
引文
[1]火良译.铝手册[M].北京:北京轻工业出版社,1983.5:1~5
    [2]王平甫.我国铝电解的技术进展[J].世界有色金属,1999(7):4~8
    [3]王平甫.我国铝电解工业的发展、存在问题和对策探讨[J].世界有色金属,2000(1)18~22
    [4]薛文林.我国铝电解节能技术的开发与应用状况[J].世界有色金属,1994(5):13~18
    [5]Zhiyong Liu, Minxing Wang,Yonggang Weng, et al. Grain refinement effects of Al based alloys with low titanium content produced by electrolysis[J].Trans.Ferrous.Met.S oc.China.2002,12(6):1121~1126
    [6]田应甫.大型铝电解槽生产实践[M].长沙:中南工业大学出版社,2003.3~5
    [7]邱竹贤.泥土中的铝—科技腾飞的使者[M].北京:清华大学出版社,2000,12~15
    [8]中国有色金属工业总公司编.有色金属进展一下篇一第十分册一电解铝[G].长沙:中南工业大学出版社,1984,9
    [9]杨瑞祥.大型预焙槽开发及技术进展[J].轻金属,2006,(2):16~19
    [10]中国有色金属工业总公司编.有色金属进展(第2版)一轻金属冶炼篇一电解铝分册[G].长沙:中南工业大学出版社,2002,10-16
    [11]邱建华.中国铝工业发展现状和对策研究[D].[硕士论文].洛阳:河南科技大学,2005
    [12]姚世焕.中国铝电解技术的两次“飞跃”[J].中国铝业,2004,12~15
    [13]罗英涛.中国电解铝技术创新模式研究[D].[硕士论文].长沙:中南大学,2007
    [14]陆文华,李隆盛等.铸造合金及其熔炼[M].北京:机械工业出版社,1997.38~42
    [15]全国有色轻金属标准化分技术委员会编.铝冶炼标准化手册(下)[M].北京:中国标准出版社,2004.208~213
    [16]邱竹贤编著.预焙槽炼铝(第3版)[M].北京:冶金工业出版社,2005.24~26
    [17]Liu Xiangfa, Bian Xiufang, Zhou Shengcun, et al. The morphologies of TiAl3 in AlTi3 alloys and their effect on refinement efficiency [J]. Heat Machine Process,1997,1:9~11
    [18]Ma Hongtao, Xiao Yunzheng, Grain refining mechanism of Al-Ti-B(1) [J]. Light metal, 1991,2:52-55.
    [19]Wang Mingxing, Liu Zhiyong, Song Tianfu, et al, Industrial test for electrolytic low content titanium aluminum alloy and the analysis of the uniformity of titanium distribution in the test product [J].Light metal,2003,4:41~44.
    [20]王春雷.电解低钛铝的温度特性及TiB2粒子沉淀与形核作用研究[D].[硕士论文].郑州:郑州大学,2006
    [21]范广新,王明星等.电解加钛和熔配加钛对工业纯铝的晶粒细化作用的研究[J].中国有色金属学报,2004,14(2):249~254
    [22]B.S.Murty, S.A.Kori, and M.Chakra borty, Grain refinement of aluminum and its alloys by heterogeneous nucleation and alloying[J].Internation Materials Reviews,2002,47(1):15~ 17
    [23]H.Li, T. Sritharan, Y. M. Lam, and N.Y. Leng, Effects of processing parameters on the performance of Al grain refinement master alloys Al-titanium and Al-B in small ingots [J]. Journal of Materials Processing Technology,1997,66:253~257.
    [24]Yu Lina, Liu Xiangfa, Bian Xiufang, Deposition of compounds containing Ti in Al melts [J].Materials science & technology,2003,11,185~192
    [25]P.S.Mohanty and J.E.Gruzleski. Mechanism of grain refinement in Aluminum[J]. Acta metall,1995,43(5):2003-2012.
    [26]刘志勇,工业电解低钛铝基合金细化效果、细化原理及其应用研究[D],[博士论文].郑州:郑州大学,2003
    [27]B.S.Murty, S.A.Kori, and M. Chakraborty, Grain refinement of aluminum and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews,2002,47(1): 11-15
    [28]杨异,杨冠群,杨巧芳等.电解法生产铝硅钛合金的现状与前途[J].有色金属(冶炼部分),1997,3:15~17
    [29]马润香,谢敬佩,刘怀喜等.电解低钛铝合金在变形合金6063中的应用研究[J].热加工工艺,2004,4:49~50
    [30]谢敬佩,王爱琴,刘忠侠等.电解低钛铝合金定向凝固的微观组织研究[C].轻有色合金,2006(年会专刊):33~35
    [31]高希柱,刘同湖,李景坤等.电解生产铝钛合金研究与实践[J].轻金属,2006,5:48-51
    [32]谢敬佩,王爱琴,刘忠侠等.电解低钛铝合金定向凝固的微观组织研究[J],特种铸造及有色合金,2006年年会专刊,2006:33~35
    [33]王明星,刘智勇,宋天福等.电解生产低钛铝合金工业试验及产品中钛分布的均匀性分析[J].轻金属,2003,4:41~44
    [34]孟祥永.电解低钛铝合金制备亚共晶Al-Si合金的组织与性能研究[D].[硕士论文].郑州:郑州大学,2006
    [35]李姿景,翁永刚,杜晓晗等.不同电解加钛方式对ZL101A合金疲劳裂纹扩展性能的影响[J],特种铸造及有色合金,2006年年会专刊,2006:30~33
    [36]仲志国,细晶铝锭熔炼的A356铝合金组织与性能研究[D].[硕士论文].郑州:郑州大学,2006
    [37]刘京勋,耿庆森.Al-Ti-B细化剂在生长6063型材中的应用[J],轻合金加工技术,1996,24(5):25~28
    [38]Toshio Mat subara, Tomohide Shibutani, etal. Fabrication of Ti reinforced A13Ti composite layer on Ti substrate by reactive pulsed elecric current sintering[J].Materials Science and Engineering,2002, H9/331:84~91.
    [39]Mark Easton and David Stjohn. Grain refinement of aluminum alloys:part I.The nucleant and solute paradigms—A review of the literature[J].Metallurgical and Materials Transactions A,1999,30A:1613
    [40]Mohanty P S and Gruzleski J E. Mechanism of grain refinement in Aluminum [J]. Acta metall.1995,43(5):2003-2012
    [41]Yu Jiaoqi. Hand book of Binary Alloy Phase Diagrams [M]. Shanghai:shanghai Science and Technology Press,1987:35~43.
    [42]胡庚祥,蔡殉,材料科学基础[M],上海:上海交通大学出版社,2000:205-219
    [43于丽娜,刘相法,边秀房.钛化物在铝熔体中的沉淀现象[J],材料科学与工艺,2003(6)185~192
    [44]孝云祯.Al Ti B中间合金的实验研究[J]轻合金加工技术,1988(4):8~14
    [45]郭有军.A356.2合金铸锭中Si元素的偏析现象[J],特种铸造及有色合金,2008.28(4):319~321
    [46]郭景杰,傅恒志.合金熔体及其处理[M].北京:机械工业出版社,2005.25~27
    [47]段素青.晶格振动对Ti-Al系统相稳定的影响[J].计算物理,2000,7(1):11~21
    [48]孙振岩,刘春明.合金中的扩散与相变[M].沈阳:东北大学出版社,2002.23~24
    [49]杨阳,刘相法,边秀房等.AlTiB中间合金中TiAl3形态的遗传与变异[J]铸造,1997(6):9~12
    [50]李平,邓胜华,Ti/Si杂质对Al晶界影响的研究[J].安徽师范大学学报,2008,31(5):439~442
    [51]孙海斌,电解法生产的细晶铝锭的微观组织和电化学行为研究[J],郑州大学学报,2006(3):21~25
    [52]张作贵,刘相法,边秀房,TiE分布形态对AlTi5B合金细化特性的影响[J].特种铸造及有色合金,1999,(5):12~13
    [53]P.S.Mohanty and J.E. Gruzleski. Mechanism of Grain Refinement in Aluminum [J].ActaMetall.Mater.1995,43(5):2001~2012.
    [54]李小波,朱耀宵.提高耐蚀合金性能的新方法——低偏析法[J],化工设备与防腐蚀,2003,2:74~76
    [55]赵玉厚,严文,苗瑞霞等.原位增强体Al3Ti形成热力学及合金元素对其形貌影响[J].铸造技术,2005,26(6):481~485.
    [56]Varin R A, Zbroniec L, Wang Z G. Fracture toughness and yield strength of boron-doped, high (Ti+Mn)L12 titanium trialuminides[J].Inter metallic,2001,9:195~207.
    [57]Tohru Takahashi, Koji Tominaga, Yasuhiko Tsuchida, et al.Mechanical properties of L12 modified titanium trialuminides alloyed with chromium, iron and vanadium[J].Materials Science and Engineering,2002, H9/331:474~480.
    [58]詹成伟,谢敬佩,马润香等.低钛铝合金晶粒细化的凝固计算[J].河南科技大学学报,2004,(1):10~12
    [59]Varin R A, Zbroniec L, Czujko T, et al. Fracture toughness of intermetallic compact s consolidated from nanocrystalline powders[J].Materials Science and Engineering,2001,9: 1~11.
    [60]J.A.Spitle, S.Sadli. The Influence of Zirconium and Chromium on the Grain Refining Efficiency of Al-Ti-B Inoculants [J]. Cast Metals.1995, (7):247~253.
    [61]P.S. Mohanty, J.E.Gruzleski. Grain Refinement Mechanisms of Hypoeutectic Al-Si Alloys[J]. Acta Mater,1996,44(9):3749-3760.
    [62]H.T.Lu, L.C.Wang and S.K.Kung, Grain Refinement in A356 Alloys [J]. Journal of Chinese Foundry man's Association,1981,29:10~18.
    [63]Yenichi Yaguchi, Hiroyasu Tezuka, et al.Grain Refinement of Cast Al Alloys by Al-B[J]. Materials Science Forum,2000,331~337:391~396.
    [64]G. K. Sigworth and M. M. Guxowski. Grain refinement of Hypoeutectic Al-Si Alloys [J]. AFS Transaction,1997,85:907-912.
    [65]B.S.Murty, S.A. Kori, et al. Grain refinement of Aluminum and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews,2002,47(1):3~29.
    [66]M. M. Guzowski, G. K. Sigworth and D. A. Senterner. The Role of Boron in the Grain Refinement of Aluminum with Titanium [J]. Metallurgical Transactions A,1987,18A: 603-619.
    [67]姜文辉,韩行霖.Al-Ti-C中间合金品粒细化剂的合成及其细化晶粒作用[J].中国有色金属学报,1998,8(2):268~271
    [68][苏]邦达列夫,那帕尔科夫.变形铝合金的细化处理[M].北京:冶金工业出版社,1988.37~39
    [69]刘相法,边秀房,杨阳等.AlTi5B中间合金中TiAl3形态形成规律的研究[J],铸造2000,(5):16~19