IL-27信号通路在原发性胆汁性肝硬化发病机制中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性胆汁性肝硬化(primary biliary cirrhosis, PBC)是一种慢性炎症性、进行性肝内胆汁淤积性自身免疫性病,以血清出现抗线粒体抗体(antimitochondrial antibody,AMA)、肝脏门脉周围淋巴细胞浸润、小胆管特异性破坏为特征,最终发展成肝硬化和肝衰竭。PBC在任何年龄段均可发病,主要累及中年妇女,它的发病高峰出现在50岁左右,25岁以下不常见。PBC典型病理表现为非化脓性损伤,胆管炎或肉芽肿性胆管炎,以破坏小胆管为主,镜下主要为中间胆管的慢性非化脓性破坏性变化,小叶间胆管减少。目前对PBC尚没有特效的治疗方法,熊脱氧胆酸(UDCA)被认为是目前治疗该病最有效的药物,虽然可以明显改善胆汁淤积症状,但却不能阻断疾病进程。PBC发展到晚期的唯一治疗选择是进行肝移植。
     PBC的确切发病机制至今尚不完全清楚,可能与遗传因素、病毒和细菌感染、自身免疫状态及环境因素等有关。很多研究认为本病的发病机理是机体对自身抗原的耐受性被打破,致使肝内中、小胆管上皮细胞不断受到免疫系统的攻击而引起胆汁淤积最终发病。但是,诱发自身免疫应答的始动因素和自身免疫耐受破坏的机制尚不清楚。研究表明PBC汇管区浸润的T细胞中,以CD4+T细胞居多,因此推断CD4+T细胞可能在免疫炎症中发挥重要作用。原位杂交分析发现PBC患者汇管区IFN-γ的表达明显增加,说明Thl细胞介导的免疫炎症在导致PBC肝脏病变过程中发挥重要作用。
     IL-27是2002年发现并命名的一种新的IL-6/IL-12家族细胞因子,主要作用于固有免疫系统和适应性免疫系统的各种细胞而发挥广泛的免疫调节作用。IL-27是由两条多肽链EBI3(与IL-12/p40亚基同源)和p28(与IL-12/p35亚基同源)通过二硫键组成的异二聚体。EBI3是一种可溶性细胞因子受体,最初在EB病毒转化的B细胞的培养上清中被发现。p28则是Pflanz等在基因库中找到的一种与IL-6/IL-12家族细胞因子同源的长链4螺旋多肽,p28不与EBI3结合时并无生物学活性,IL-27主要由活化的单核细胞、单核细胞来源的树突状细胞,淋巴细胞等产生。IL27的受体是由WSX-1和gp130共同组成。WSX-1和gp130两者单独均不能传递IL-27的信号,它们组成的复合物是介导IL227的生物学效应的必要受体形式,IL-27受体在T细胞和NK细胞的表达水平最高,其实是表达于表达于单核细胞,肥大细胞内皮细胞及郎罕氏细胞等。
     IL-27与受体的结合主要激活JAK/STAT信号转导途径。IL-27在CD4+和CD8+T细胞激活JAK1、JAK2、TYK2、STAT1-5。IL-27还可在B细胞激活STAT1,在单核细胞激活STAT1和STAT3,以及在肥大细胞激活STAT3。IL-27在各种细胞激活不同的JAK/STAT通路而引起的特异的生物学效应。
     很多文献表明,IL-27对Thl型免疫反应具有重要的调节作用。IL-27可以促进初始CD4+T细胞的增殖,也可以促进其向Thl细胞的分化及产生IFN-γ。而在高度Th1极化的情况下,IL-27的主要作用是限制Thl型免疫反应的强度和持续时间,从而保护机体免受过度的免疫反应的损伤。IL-27在抗感染免疫,抗肿瘤免疫及自身免疫性炎症等Th1型免疫主导的病理过程中起重要作用。
     基于以上国内外的研究现状和存在问题,本课题拟通过测定PBC患者IL-27信号通路表达变化,初步了解IL-27信号通路在PBC发病机制中的作用,从而为PBC的免疫学治疗提供一个新的靶点
     第一部分IL-27介导的炎症反应在原发性胆汁性肝硬化中的作用
     原发性胆汁性肝硬化(PBC)是一种胆汁淤积性自身免疫性疾病,以血清中抗线粒体抗体阳性(AMA)和肝内小胆管进行性非化脓性损伤为特征。免疫组化结果表明PBC患者肝脏汇管区淋巴细胞浸润明显,这可能与PBC炎症有着密切的关系。其病因及发病机制目前仍不清楚。
     本部分探讨IL-27介导的免疫炎症性反应在PBC发病机制中的作用。我们使用荧光定量PCR,流式细胞术,酶联免疫吸附实验(ELISA),免疫组化等方法检测PBC患者IL-27的表达,生化常规测定PBC患者和健康对照者的谷草转氨酶(AST),碱性磷酸酶(ALP),谷丙转氨酶(ALT),总胆红素(TBIL)、谷氨酰基转移酶(GGT)水平,分析IL-27与它们之间的相关性。
     结果发现PBC患者外周血IL-27/P28亚基mRNA的表达显著高于CHB和HC组(P<0.05), IL-27/EBI3 mRNA未有明显改变;免疫组化结果显示IL-27在PBC患者肝脏呈阳性表达;流式细胞仪检测结果表明IL-27在PBC患者的CD4+T细胞表达率(72.4±6.22%)较慢性乙型肝炎组(59.4±7.03,P<0.01%)和健康对照组(1.7±0.55%,P<0.01)明显升高,而IL-27在各研究组的CD8+T细胞,单核细胞,B细胞中的表达无明显变化:PBC患者外周血血清IL-27的表达(126.25±36pg/ml)显著高于慢性乙型肝炎组(51.81±23.3pg/ml, P<0.01)和健康对照组(34.19±9.7pg/ml, P<0.01), PBC患者IL-27的血清蛋白表达水平与GGT(r=0.554,P<0.01)和TBIL(r=0.559,P<0.01)水平呈显著正相关,与ALT, AST和ALP无相关性。
     以上结果说明,PBC患者外周血和肝内汇管区均出现IL-27表达升高,且和一些肝功能指标呈正相关,说明可能通过一些信号通路促进CD4+T细胞向Thl细胞分化,最终参与肝内汇管区的炎症反应,使得IL-27在启动PBC发病早期的炎症反应过程中可能发挥重要作用。
     第二部分IL-27对PBC患者CD4+T细胞的作用机制
     我们前面的研究表明PBC患者的外周血以及肝脏中IL-27的表达发生变化,相关性分析初步说明IL-27的表达变化与PBC患者的肝功能呈正相关,但是IL-27是如何发挥作用的?作用在什么细胞上的?基于这些疑问,我们在本部分的研究分离PBC患者的CD4+T细胞,观察IL-27对PBC患者CD4+T细胞的分化、增值以及细胞因子分泌的影响,阐述IL-27通过CD4+T细胞在PBC发病机制中的作用。
     结果表明,IL-27可以诱导各研究组STAT1和STAT3酪氨酸磷酸化的表达,PBC患者组中最明显;IL-27还可以增强PBC患者组CD4+T细胞中T-bet的表达,抑制GATA3的表达;对细胞培养上清进行检测,IL-27可以增加PBC患者中CD4+T细胞培养上清中IL-2,γ-IFN的表达,抑制IL-10的表达。
     本部分研究说明IL-27可以促进PBC患者中CD4+T细胞向Thl分化,同时γ-IFN的表达增加更容易诱导Thl细胞的活化,使机体内免疫反应发生过度,导致了机体内免疫平衡的紊乱和免疫耐受的破坏,从而诱发了自身免疫性疾病。
     第三部分IL-27作用于PBC患者的单核细胞
     前面的研究表明PBC患者的外周血以及肝脏中IL-27的表达发生变化,且IL-27作用PBC患者CD4+T细胞后影响Thl的分化改变,在本部分的研究中,我们观察IL-27对PBC患者单核细胞的作用,进一步的阐述IL-27在PBC发病机制中的作用。结果表明,IL-27可以诱导各研究组STAT1和STAT3酪氨酸磷酸化的表达,PBC患者中最明显;相对于正常组,IL27能明显增加PBC患者单核细胞培养上清中IL-1(P<0.01)和TNF-α(P<0.01),而没有增加IL-8的表达(P>0.05)。
     综上所述,IL-27可以影响单核细胞培养上清炎性细胞因子IL-1和TNF-α的表达,PBC患者门管区淋巴出现淋巴细胞和单核细胞浸润,我们推测IL-27可能参与在PBC的发病过程,为今后进一步研究PBC的发病机制,提供思路。
Primary biliary cirrhosis (PBC) is a slowly progressive autoimmune disease of liver characterized by destruction of the small intrahepatic bile ducts, portal inflammation, and the presence of antimitochondrial antibodies (AMA), The loss of bile ducts leads to decreased bile secretion and the retention of toxic substances within the liver, resulting in further hepatic damage, fibrosis, cirrhosis, and eventually, liver failure. This disease primarily affects women, and its peak incidence occurs in the fifth decade of life, and it is uncommon in persons under 25 years of age. Histopathologically, The characteristic lesion of PBC is the asymmetric destruction of the intralobular bile ducts within portal triads, portal inflammation and immune-mediated destruction of the intrahepatic bile ducts. Ursodeoxycholic acid(UDCA) is known as the most effective drug for PBC, it can only provide symptomatic relief of cholestasis but not block disease course. At late stage of PBC, the only selection is liver transplantation.
     The pathogenesis of PBC remains obscure. Genetic, environmental risk factors, pollution, host susceptibility may be involved in the pathogenetic mechanism of PBC that initiate the immunopathological cascade. Some research suggest that the generation of immune responsiveness to self-antigen can result in pathogenic autoimmune damage of the intrahepatic biliary epithelial cells mediated by both humoral and cellular immune responses. The pathogenetic mechanism is believed to be caused by the breakdown of immunologic tolerance, resulting in cholestasis and the development of PBC. But the mechanism of initiation of immune responsiveness and the self-tolerance breakdown is unclear. The portal cellular infiltrate in PBC contained a preponderance of CD4+T cells in comparison with CD8+T cells, which indicate that CD4+T cells play important roles in the immune inflammation process. In situ nucleic acid hybridization of cytokines in primary biliary cirrhosis showed that IFN-γmRNA positive cells were detected primary around damaged bile ducts. The data indicate that Thl cells are the more prominent T cell subset in the lymphoid infiltrates in PBC.
     Interleukin-27 is a member of the IL-6/IL-12-family that consists of EBV-induced gene 3 (EBI3)2 and p28. It is the only known ligand for the gp130/WSX-1 receptor.
     Macrophages and dendritic cells are the main producers of IL-27, and the IL-27 signaling cascade includes activation of Jakl, STAT-1, STAT-3, STAT-4, and STAT-5 in T cells, STAT-1 and STAT-3 in monocytes, and STAT-3 in mast cells
     IL-27 may exert both pro-and anti-inflammatory functions It can augment T cell proliferation and enhance synthesis of IFN-γthrough the induction of T-bet and the activation of STAT-4. IL-27 can activate the transcription of T-bet independently from STAT-1, and such induction of T-bet appears to be mainly responsible for IL-27-mediated IFN-γproduction. IL-27 is critical in initial Thl differentiation via STAT1-mediated T-bet activation. IL-27 suppresses production of a group of proinflammatory cytokines by T cells. IL-27 induces IL-10 production by activated T cells for its anti-inflammatory effects.
     On the basis of status described above, in order to explore these hypothesis, four sections were included in our experiments:1) to measure the expression levels of IL-27 in PBMC from PBC patients, and observe the relationship with function of liver; 2) to explore the role of IL-27 on CD4+T in PBC patients; 3) to detect the effect of IL-27 on monocytes by Western blot, flow cytometry real-time in PBC patients.
     Partl The role of IL-27 in patients with primary biliary cirrhosis and its clinical significance
     IL-27 is a new cytokine of the IL-6/IL-12 family and play a key role in regulating T cell differentiation and function, it consists of IL-12 p40-related protein (EBI3) and a newly discovered IL-12 p35-related protein (p28), and it is the only known ligand for the IL-27 receptor complex formed by WSX-1 and gp130 subunits. IL-27 is predominantly produced by activated macrophages and dendritic cells, while IL-27 receptor complex is mainly expressed on the surfaces of T cells, NK cells, monocytes, B cells and dendritic cells. IL-27 was an early signal for the induction of Thl responses, and depending on cell type and activation state can activate Jak-STAT signal transduction pathway in a context dependent manner, More recently, some studies found that IL-27 signal pathway can provide a deeper insight into the mechanisms of immune-mediated disease and increase the chances of exploring the causes of human autoimmune diseases such as PBC. This part we detect the expression of IL-27 in PBC patients and the possible involvement of IL-27 signal pathway in PBC. This part was designed to measure the gene transcription and protein expression levels of IL-27 in patients with PBC, chronic hepatitis B(CHB) group and healthy controls(HCs) by real-time PCR, ELISA, Flow cytometry and immunohistochemistry. AST, ALP, ALT, TBIL, GGT were determined and their correlation with IL-27 was also analyzed.
     Results show that IL-27 was significantly elevated in patients with PBC and IL-27 is present in the liver tissues of patients with PBC. Expression of IL-27 on CD4+T cells was increased in patients with PBC(72.4±6.22%) and CHB(59.4±7.03%) compared with HCs(1.7±0.55%, P<0.01). Expression of IL-27 protein is increased in patients with PBC(126.25±36pg/ml) compared with CHB(51.81±23.3pg/ml, P<0.01) and HC(34.19±9.7pg/ml, P<0.01), and it was positively correlated with GGT(r=0.554, P<0.01) and TBIL(r=0.559, P<0.01), but no correlation with AST, ALT, ALP.
     In conclusion, the expression of IL-27 was elevated in peripheral blood and intrahepatic portal area of PBC patients, and the expression of IL-27 were positively correlated with liver function parameters, These fact indicated that the key role of IL-27 in the immune inflammatory reaction in patients with PBC.
     Part 2 IL-27 vigorously induces STAT1 and STAT3 in CD4+T cell from patient with PBC
     Our previous studies have shown that the gene and protein lever of IL-27 in PBC patients increased significantly than HC group, These fact indicated that the key role of IL-27 in the immune inflammatory reaction in patients with PBC. How IL-27 involved in the development of PBC? Therefore, in this part, we detected the effect of IL-27 on CD4+T cells in patients with PBC.
     Result showed that IL-27 can induced tyrosine phosphorylation of both STAT1 and STAT3 in freshly isolated CD4+T cells in patients with PBC, CHB and HCs, with phosphorylation of STAT1 and STAT3 more marked in patients with PBC, than HCs. IL-27 strongly induced the expression of T-bet and suppressed the GATA3 in patients with PBC. Besides, culture supernatant was collected and analyzed for IL-2, IFN-γand IL10 production by ELISA, and the results showed that IL-27 can promote cytokine production such as IL-2 and IFN-γ, but suppresses IL-10 production in patients with PBC. Moreover, CD4+T cells proliferation measurements were obtained by using the Cell Counting Assay Kit-8 assay technique. When CD4+T cells were stimulated with plate-coated anti-CD3 and anti-CD28 in the presence or the absence of IL-27 for 3 days, we initially noticed that cell number in the presence of IL-27 appeared to be more than absent of IL-27.
     The results showed that the important role of IL-27 is to promote the differentiation and proliferation of T cells, The CD4+T cells of PBC patients secreted larger amounts of IL-2 and IFN-y at the present of IL-27, which induced Thl cell responses, and resulted in the excessive immunological reaction and the breakdown of self-tolerance.
     Part3 IL-27 activates predominantly STAT1 and STAT3 in monocytes of patients with PBC
     Previous studies have shown that the expression of IL-27 in peripheral blood and liver of patients with PBC was higher than HC, and the IL-27 can change the differentiation of CD4+T cells. This part we tested the effect of IL-27 on monocytes. Like the resoponses of CD4+T cells, the test results showed that IL-27 induced tyrosine phosphorylation of both STAT1 and STAT3 in freshly isolated human monocytes. The production of pro-inflammatory cytokines after stimulation with IL-27 was measured using the ELISA kit. IL-27-stimulated monocytes of patients with PBC were found to produce significantly higher amounts of IL1 (P<0.01), TNF-α(P<0.01) except for IL8(P>0.05).
     In conclusion, IL27 can change the expression of inflammatory cytokines IL-1 and TNF-α, this might be involved in in the pathogenesis of PBC, This provides clues for finding a better treatment proposal.
引文
1 Takeda A, Hamano S, Yamanaka A, et al. Cutting edge:role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Thl commitment. J Immunol,2003,170(10):4886-90.
    2 Hunter CA. New IL-12-family members:IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol.2005,5:521-31.
    3 Siebler J, Wirtz S, Frenzel C, et al. Cutting Edge:A Key Pathogenic Role of IL-27 in T Cell-Mediated Hepatitis. J Immunol,2008,180(l):30-3.
    4 Yoshida H, Miyazaki Y. Interleukin 27 signaling pathways in regulation of immune and autoimmune responses. Int J Biochem Cell Biol.40(2008):2379-83.
    5 Selmi C, Mayo MJ, Bach N, et al. Primary biliary cirrhosis in monozygotic and dizygotic twins:genetics, epigenetics, and environment. Gastroenterology.2004,127:485-492.
    6 Cao Y, Doodes PD, Glant TT, et al. IL-27 Induces a Th1 Immune Response and Susceptibility to Experimental Arthritis. J Immunol,2008(2),180:922-30.
    7 Goldberg R, Zohar Y, Wildbaum G, et al. Suppression of ongoing experimental autoimmune encephalomyelitis by neutralizing the function of the p28 subunit of IL-27. J Immunol,2004,173(10):6465-71.
    8 Heathcoat EJ. Management of primary biliary cirrhosis. The American Association for the Study of Liver Diseases practice guidelines. Hepatology.31(2000):1005-13.
    9中华传染病寄生虫学分会,肝脏病学分会,病毒性肝炎防治方案[J].中华肝脏病学杂志,2000,8(6):324-329.
    10 Kaplan M M, Gershwin M E. Primary biliary cirrhosis._N Engl J Med,2005, 353(25):1261-1273.
    11 Jones DE. Pathogenesis of primary biliary cirrhosis. Clin Liver Dis,2008,12(2):305-21.
    12 Joshi S, Cauch-Dudek K, Wanless IR, et al. Primary biliary cirrhosis with additional features of autoimmune hepatitis:response to therapy with ursodeoxycholic acid. Hepatology.2002,35:409-413.
    13 Villarino AV, Larkin J, Saris CJM, et al. Positive and Negative Regulation of the IL-27 Receptor during Lymphoid Cell Activation 1. J Immunol,2005,174(12):7684-91
    14 Cao Y, Doodes PD, Glant TT, et al. IL-27 Induces a Th1 Immune Response and Susceptibility to Experimental Arthritis. J Immunol,2008,180(2):922-30.
    15 Joshi S, Cauch-Dudek K, Wanless IR, et al. Primary biliary cirrhosis with additional features of autoimmune hepatitis:response to therapy with ursodeoxycholic acid [J]. Hepatology.2002,35:409-413.
    16 Ishibashi H, Nakamura M, Shimoda S, et al. T Cell immunity and primary biliary cirrhosis [J]. Autoimmun Rev,2003,2(1):19-24.
    17 Larousserie F, Pflanz S, Coulomb2L'Hermine A, et al. Expression of IL-27 in human Th2 associated granulomatous diseases. Eur J Immunol.2004,34(5):1371-1380.
    18 Goldberg R, Wildbaum G, Zohar Y, et al. supp ression of ongoing adjuvant2induced arthritis by neutralizing the function of the p28 subunit of IL227. J Immunol,2004,173 (2):117121178.
    19 Villarino A, Stumhofer J, Saris C, et al. IL-27 limits IL-2 production during Thl differentiation. J Immunol.2006,176(1):2372247.
    20 Hamano S, Himeno K, Miyazaki Y, et al. Wsx21 is required for resistance to Trypanosoma cruzi infection by regulateon of proinflammatory cytokine production. Immunity.2003,19(5):657-667.
    21 Villarino A, Stumhofer J, Saris C, et al. IL-27 limits IL-2 production during Th1 differentiation. J Immunol.2006,176(1):237-247.
    22 Salcedo R, Stauffer JK, Lincoln E, et al. IL-27 mediates complete regression of orthotop ic p rimary and metastatic murine neuroblastoma tumors:role for CD8+T cells. J Immunol. 2004,173(12):7170-7182.
    23 Selmi C, Mayo MJ, Bach N, et al. Primary biliary cirrhosis in monozygotic and dizygotic twins:genetics, epigenetics, and environment [J]. Gastroenterology.2004,127: 485-492.
    24 Agmon-Levin N, Katz BS, Shoenfeld Y. Infection and primary biliary cirrhosis. Isr Med Assoc J. 11(2009):112-5.
    25 Juran BD, Lazaridis KN. Genetics and genomics of primary biliary cirrhosis. Clin Liver Dis.12(2008):349-65.
    26 Selmi C. Environmental factors in primary biliary cirrhosis. Hepatol Res. 7(2007):S370-6.
    27 adstrom T, Ljungh A, Willen R. Primary biliary cirrhosis and primary sclerosing cholangitis are of infectious origin. Gut.2001,49:454
    28 Shimoda S, Nakamura M, Ishibashi H, et al. HLA DRB4 0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis:evidence of molecular mimicry in human autoimmune disease. J Exp Med.1995,181:1835-1845.
    29 Shimoda S, Vae de Water J, Ansari A, et al. Identification and precursor frequency analys of a common T cell epitope motif in mitochondrial autoantigens in primary billary cirrhosis. J Clin Invest.1998,102:1831-1840.
    30 Tangye SG, Cook MC, Fulcher DA. Insights into the role of STAT3 in human lymphocyte differentiation as revealed by the hyper-IgE syndrome. J Immunol.2009, 182(1):21-8.
    31 Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity:a leading role for STAT3. Nat Rev Cancer.2009,9(11):798-809.
    32 Pfeifer AC, Timmer J, Klingmiiller U. Systems biology of JAK/STAT signalling. Essays Biochem.2008;45:109-20.
    33 Larousserie F, Pflanz S, Coulomb-L'Hermine A, Brousse N, Kastelein R, Devergne O. Expression of IL-27 in human Thl-associated granulomatous diseases. J Pathol.2004, 202:164-71
    34 Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Thl lineage commitment. Cell.100(2000):655-69.
    35 Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell.1997,89:587-96.
    36 Kamiya S, Owaki T, Morishima N, et al. An indispensable role for STAT1 in IL-27induced T-bet exp ression but not p roliferation of naive CD4+T cells. J Immunol, 2004,173 (6):3871-3877.
    37Amsen D, Spilianakis CG, Flavell RA. How are T(H)1 and T(H)2 effector cells made? Curr Opin Immunol.2009.21(2):153-60.
    38 Shinohara ML, Kim JH, Garcia VA, et al. Engagement of the type Ⅰ interferon receptor on dendritic cells inhibits T helper 17 cell development:role of intracellular osteopontin. Immunity.2008,29(1):68-78.
    39 Imamichi T, Yang J, Huang DW, et al. IL-27, a novel anti-HIV cytokine, activates multiple interferon-inducible genes in macrophages. AIDS.2008,22(1):39-45.
    40 Mudter J, Neurath MF. IL-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis.2007,13(8):1016-23.
    41 Miranda C, Fumagalli T, Anania MC, et al. Role of STAT3 in in vitro transformation triggered by TRK oncogenes. PLoS One.2010,5(3):e9446.
    42 Selmi C, Mayo MJ, Bach N, et al. Primary biliary cirrhosis in monozygotic and dizygotic twins:genetics, epigenetics, and environment [J]. Gastroenterology.2004,127: 485-492.
    43 Joshi S, Cauch-Dudek K, Wanless IR, et al. Primary biliary cirrhosis with additional features of autoimmune hepatitis:response to therapy with ursodeoxycholic acid [J]. Hepatology.2002,35:409-413.
    44 Jones DE. Pathogenesis of primary biliary cirrhosis. Postgrad Med J.84(2008):23-33.
    45 Kita H, Imawari M, Gershwin ME. Cellular immune response in primary biliary cirrhosis. Hepatol Res.2004,28:12-17.
    1 Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev.2007,3(1):30-8.
    2 Hayward P, Kalmar T, Arias AM. Wnt/Notch signalling and information processing during development. Development.2008,135(3):411-24.
    3 Laky K, Fowlkes BJ. Notch signaling in CD4 and CD8 T cell development. Curr Opin Immunol.2008,20(2):197-202.
    4 Minato Y, Yasutomo K. Regulation of acquired immune system by notch signaling. Int J Hematol.2005,82(4):302-6.
    5 Maillard I, Adler SH, Pear WS. Notch and the immune system. Immunity.2003, 19(6):781-91.
    6 Kijima M, Yamaguchi T, Ishifune C, et al. Dendritic cell-mediated NK cell activation is controlled by Jagged2-Notch interaction. Proc Natl Acad Sci U S A.2008,105(19):7010-5.
    7 Teachey DT, Seif AE, Brown VI, et al. Targeting Notch signaling in autoimmune and lymphoproliferative disease. Blood.2008,111(2):705-14.
    8 Kijima M, Iwata A, Maekawa Y. Jagged1 suppresses collagen-induced arthritis by indirectly providing a negative signal in CD8+ T cells. J Immunol.2009,182(6):3566-72.
    9 Elyaman W, Bradshaw EM, Wang Y, et al. JAGGED1 and deltal differentially regulate the outcome of experimental autoimmune encephalomyelitis. J Immunol. 2007,179(9):5990-8.
    10 Schindler C, Levy DE, Decker T. JAK-STAT signaling:from interferons to cytokines. J Biol Chem.2007,282(28):20059-63
    11 Li WX. Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol. 2008,18(11):545-51.
    12 Malemud CJ, Miller AH. Pro-inflammatory cytokine-induced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs. Expert Opin Ther Targets.2008,12(2):171-83.
    13 Walker JG, Ahern MJ, Coleman M, et al. Characterisation of a dendritic cell subset in synovial tissue which strongly expresses Jak/STAT transcription factors from patients with rheumatoid arthritis. Ann Rheum Dis.2007,66(8):992-9.
    14 Zaheer S, Wu Y, Bassett J, et al. Glia maturation factor regulation of STAT expression: a novel mechanism in experimental autoimmune encephalomyelitis. Neurochem Res.2007, 32(12):2123-31.
    15 Muthian G, Raikwar HP, Rajasingh J,et al.1,25 Dihydroxyvitamin-D3 modulates JAK-STAT pathway in IL-12/IFNgamma axis leading to Thl response in experimental allergic encephalomyelitis. J Neurosci Res.2006,83(7):1299-309.
    16 Dong J, Wang QX, Zhou CY et al. Activation of the STAT1 signalling pathway in lupus nephritis in MRL/lpr mice. Lupus.2007,16(2):101-9.
    17 Shen HM, Tergaonkar V. NFkappaB signaling in carcinogenesis and as a potential molecular target for cancer therapy. Apoptosis.2009,14(4):348-63
    18 Wong ET, Tergaonkar V. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med.2007,13(11):460-9.
    19 Hiscott J. Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev.2007,18(5-6):483-90.
    20 Roman-Blas JA, Jimenez SA. Targeting NF-kappaB:a promising molecular therapy in inflammatory arthritis. Int Rev Immunol.2008,27(5):351-74.
    21 Honda Y, Yamagiwa S, Matsuda Y. Altered expression of TLR homolog RP105 on monocytes hypersensitive to LPS in patients with primary biliary cirrhosis. J Hepatol.2007, 47(3):404-11.
    22 Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene.2008,27(48):6194-206.
    23 Jiang T, Han Z, Chen S, et al. Resistance to activation-induced cell death and elevated FLIP(L) expression of CD4+ T cells in a polyI:C-induced primary biliary cirrhosis mouse model. Clin Exp Med.2009 May 6. [Epub ahead of print]
    24 Korb A, Pavenstadt H, Pap T. Cell death in rheumatoid arthritis. Apoptosis. 2009,14(4):447-54
    25 Audo R, Combe B, Coulet B, et al. The pleiotropic effect of TRAIL on tumor-like synovial fibroblasts from rheumatoid arthritis patients is mediated by caspases. Cell Death Differ.2009 May 1.
    26 Piessevaux J, Lavens D, Peelman F, et al. The many faces of the SOCS box. Cytokine Growth Factor Rev.2008,19(5-6):371-81.
    27 Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol.2007,7(6):454-65.
    28 Puppo F, Murdaca G, Ghio M,et al. Emerging biologic drugs for the treatment of rheumatoid arthritis. Autoimmun Rev.2005,4(8):537-41.
    1 Plotz PH:The autoantibody repertoire:Searching for order. Nat Rev Immunol.2003, 3:73-78.
    2 Martinon F, Petrilli V, Mayor A, et al:Gout-associated uric acid crystals activate the NALP3 infl ammasome. Nature.2006,440:237-241.
    3 Arbuckle MR, McClain MT, Rubertone MV, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med.2003,349:1526-1533.
    4 Kubota T, Moritani S, Yoshino T, et al. Correlation of autoantibodies and CD5+B cells in ocular adnexal marginal zone B cell lymphomas. J Clin Pathol.2010,63(1):79-82.
    5 Predeteanu D, Varzaru L, Balanescu A, et al. Anti-cyclic citrullinated peptide antibodies--activity markers in rheumatoid arthritis. J Med Life.2009,2(1):36-41.
    6 Matthews AG, Li J, He C, Ott J, et al. Adjusting for HLA-DRbetal in a genome-wide association analysis of rheumatoid arthritis and related biomarkers. BMC Proc.2009, 3Suppl 7:S12.
    7 Pradhan VD, Patwardhan MM, Ghosh K. Anti-nucleosome antibodies as a disease marker in systemic lupus erythematosus and its correlation with disease activity and other autoantibodies. Indian J Dermatol Venereol Leprol.2010,76(2):145-9.
    8 McClain MT, Heinlen LD, Dennis GJ, et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med.2005,11:85-89.
    9 Chin AI, Miyahira AK, Covarrubias A,et al. Toll-like Receptor 3-Mediated Suppression of TRAMP Prostate Cancer Shows the Critical Role of Type Ⅰ Interferons in Tumor Immune Surveillance. Cancer Res.2010 Mar 16.
    10 Frisoni L, McPhie L, Colonna L, et al. Nuclear autoantigen translocation and autoantibody opsonization lead to increased dendritic cell phagocytosis and presentation of nuclear antigens:A novel pathogenic pathway for autoimmunity? J Immunol.2005, 175:2692-2701.
    11 Anderson MS, Bluestone JA. The NOD mouse:A model of immune dysregulation. Annu Rev Immunol.2005,23:447-485.
    12 Vyse TJ, Kotzin BL. Genetic susceptibility to systemic lupus erythematosus. Annu Rev Immunol.1998,16:261-292.
    13 Izcue A, Coombes JL, Powrie F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal infl animation. Immunol Rev.2006,212:256-271.
    14 Wakeland EK, Liu K, Graham RR, et al. Delineating the genetic basis of systemic lupus erythematosus. Immunity.2001,15:397-408.
    15 Palmer LJ, Cardon LR. Shaking the tree:Mapping complex disease genes with linkage disequilibrium. Lancet.2005,366:1223-1234.
    16 Kumar KR, Li L, Yan M, et al. R egulation of B cell tolerance by the lupus susceptibility gene Ly108. Science.2006,312:1665-1669.
    17 Wandstrat AE, Nguyen C, Limaye N, et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity.2004,21:769-780.
    18 Panchanathan R, Shen H, Bupp MG, et al. Female and male sex hormones differentially regulate expression of Ifi202, an interferon-inducible lupus susceptibility gene within the Nba2 interval. J Immunol.2009,183(11):7031-8.
    19 Choubey D, Panchanathan R. Interferon-inducible Ifi200-family genes in systemic lupus erythematosus. Immunol Lett.2008,119(1-2):32-41.
    20 Pisitkun P, Deane JA, Difi lippantonio MJ, et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science.2006,312:1669-1672.
    21 Subramanian S, Tus K, Li QZ, et al. A T1r7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci.2006,103:9970-9975.
    22 Christensen SR, Shupe J, Nickerson K, et al. Toll-like receptor7 and TLR9 dictate autoantibody specifi city and have opposing inflamatory and regulatory roles in a murine model of lupus. Immunity.2006,25:417-428.
    23 Hartog A, Hulsman J, Garssen J. Locomotion and muscle mass measures in a murine model of collagen-induced arthritis. BMC Musculoskelet Disord.2009,10:59
    24 Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(gamma)RIIB-defi cient mice results from strain-specific epistasis. Immunity.2000,13:277-285.
    25 Napirei M, Karsunky H, Zevnik B, et al. Features of systemic lupus erythematosus in DNASE1-defi cient mice. Nat Genet.2000,25:177-181.
    26 Yasutomo K, Horiuchi T, Kagami S, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet.2001,28:313-314.
    27 Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor Immunity.1999,11:141-151.
    28 Prokunina L, Castillejo-Lopez C, Oberg F, et al:A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet. 2002,32:666-669.
    29 Wakamatsu E, Matsumoto I, Yoshiga Y,et al. Altered peptide ligands regulate type Ⅱ collagen-induced arthritis in mice. Mod Rheumatol.2009,19(4):366-71.
    30 Gabriel D, Busso N, So A, van den Bergh H, Gurny R, Lange N. Thrombin-sensitive photodynamic agents:a novel strategy for selective synovectomy in rheumatoid arthritis. J Control Release.2009,138(3):225-34.
    31 Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science.2002,296:2225-2229.
    32 Daly M J, Rioux J D, Schaffner S F, et al:H igh-resolution haplotype structure in the human genome. Nat Genet.2001,29:229-232.
    33 Palmer LJ, Cardon LR. Shaking the tree:Mapping complex disease genes with linkage disequilibrium. Lancet.2005,366:1223-1234.
    34 Spurkland A, Sollid LM. Mapping genes and pathways in autoimmune disease. Trends Immunol.2006,27:336-342.
    35 Jawaheer D, Seldin M F, Amos C I, et al. A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am J Hum Genet.2001,68:927-936.
    36 Jawaheer D, Li W, Graham RR, et al. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am J Hum Genet. 2002,71:585-594.
    37 Onengut-Gumuscu S, Concannon P. Mapping genes for autoimmunity in humans. Type 1 diabetes as a model. Immunol Rev.2002.190,182-194.