InSAR若干关键算法及其在地表沉降监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产、地下水等资源开采引起的地面沉降已成为困扰社会和经济发展的普遍性难题。如何有效地、实时地监测地表沉降的发生,以分析沉降形成机理及演变规律、控制或减轻沉降灾害,是摆在国内外众多科研工作者面前的一个任务。本文从先进的对地观测新技术InSAR着手,首先分析了该技术用于地表沉降监测中的原理和局限性;然后对一些关键算法进行了改进和实验研究;最后利用D-InSAR、PS-DInSAR、SBAS等技术对天津市的失水沉降及某矿的开采沉陷监测进行了实验研究。本文的研究工作和成果如下:
     (1)总结了InSAR技术的研究现状,指出了国内外在InSAR及相关技术研究中的不足,阐述了SAR、InSAR、D-InSAR等技术的基本原理,分析了D-InSAR技术在沉降监测应用中的局限性。
     (2)研究了一种基于精密轨道参数、快速傅立叶变换及地面控制点的组合基线估计方法,并分析了偏斜角对基线估计精度的影响。通过对比分析不同基线组合方法生成的干涉条纹图及样本点高程值,验证了该组合基线估计方法的正确性及可行性,可在一定程度上弥补单一基线估计方法所存在的不足。
     (3)提出了结合边缘信息的DT-CWT干涉图滤波方法,并设计了相应的处理流程。该法利用DT-CWT域中层间系数的传递性和层内系数的相关性,得到干涉图的边缘及非边缘系数,并采用贝叶斯收缩或双变量贝叶斯收缩函数去噪,在去除噪声的同时,有效地保留了干涉图的边缘和细节信息。
     (4)提出了基于混合微粒群算法和改进的最小二乘相位解缠方法,并同十种常用相位解缠方法进行了实验对比分析,证明了算法的正确性。
     (5)建立了承压水位、地下水开采量同D-InSAR技术得到的沉降速率之间的关系模型,并对矿区开采沉陷进行了实验研究。为在一定程度上解决D-InSAR得到的开采沉陷下沉值小于实测值的问题,从控制点修正、多视处理两方面研究了两种针对开采沉陷应用的分析方法。
     (6)提出了基于正切函数加权的最优相干主影像选取方法,并提出了基于影像幅度和相位信噪比的双重阈值PSC识别方法,这些算法都可以作为现有方法的一个补充。
     (7)利用PS-DInSAR和SBAS方法获取了天津主城区1992-1997年间的地表下沉情况,前者共识别了18906个PS点,得到每年的最大下沉速率为16.4mm/a;后者共识别出42041个高相干点,得到每年的最大下沉速率为24.2 mm/a。利用SBAS方法初步获取了某矿1995-1998年间的地表下沉情况,共识别出380个高相干点,得到每年的最大下沉速率为45 mm/a。
     该论文有图63幅,表18个,参考文献165篇。
Land subsidence caused by coal mining, groundwater over-exploitation and so on, has become a serious problem for the development of society and economy. Therefore, many researchers are faced with a difficult task, which is how to monitor the land subsidence effectively and timely, analyze the formation mechanism and evolution law of subsidence, and provide technical support for the control of disaster. In this dissertation, a new advanced technique of earth observation, called InSAR (Interferometric Synthetic Aperture Radar), was studied in detail. Firstly, the basic principle and limitation of this technique was analyzed. Then, several improved key algorithms and experiments were studied. Finally, using the D-InSAR, PS-DInSAR and SBAS techniques, the subsidence of two experimental areas of Tianjin city and a coal mine, were obtained. The main research work and results in this dissertation are as follows:
     (1) The research statuses of InSAR technique were summarized. The insufficiency of InSAR and its related techniques studies were pointed out. The basic principles of SAR, InSAR and D-InSAR were described, and the application limitations of D-InSAR were analyzed.
     (2) A baseline estimation method based on the combination of precise orbits, the FFT (Fast Fourier Transform) and the ground control points was studied. A further research on the influence of estimation errors caused by the squint angle was analyzed. By comparing and analyzing the interferogram and sample altitudes, the correction and feasibility of the combination method are validated, and it can solve the problems of the single baseline estimation method to some extent.
     (3) An interferogram filtering method called considering the edge information based on DT-CWT was proposed, and its process flow was also designed. In the multiscale geometry transforming domain of DT-CWT, the edge coefficients were conformed by analyzing the transitivity of interscale coefficients and the correlation of intrascale coefficients. The edge and non-edge coefficients in DT-CWT domain were shrunk with different thresholds by the Bayes shrinkage function or the Bayes bivariate shrinkage function. The experimental results show that, this method restrains the interferogram noise stronger, and keeps the edges and details information of interferogram much better.
     (4) A new phase unwrapping method based on the hybrid particle swarm optimization algorithm (H-PSO) was proposed, and the least square phase unwrapping method was improved. By comparing with ten kinds of classical phase unwrapping methods, the correction of the methods studied in this dissertation is validated.
     (5) A relation model among confined water levels, exploitation quantity of groundwater, and the subsidence rate obtained by D-InSAR was established, and the experimental research on mining subsidence was also studied. In the experiment, the subsidence obtained by D-InSAR was smaller than the measured value. In order to solve this problem to some extent, two analysis methods for mining subsidence, such as the correction using control points and the multi-look process, were researched.
     (6) A method for selecting the master image called optimized coherence based on tangent function, and a double threshold algorithm based on the SNR of amplitude and phase for identifying PSC were proposed. Both of the two algorithms can be used as a supplement to existing methods.
     (7) The land subsidence of Tianjin city during 1992 and 1997 was obtained by PS-DInSAR and SBAS. 18906 and 42041 PS points were identified respectively by PS-DInSAR and SBAS. While, 16.4mm/a and 24.2mm/a of the maximal subsidence rate were obtained respectively by these two methods. Meanwhile, the subsidence during 1992 and 1997of a certain coal mine was calculated by SBAS method, and 380 PS points and 45mm/a of the maximal subsidence rate were obtained.
引文
[1]张阿根,魏子新.中国地面沉降[M].上海:上海科学技术出版社,2005.
    [2]崔振东,唐益群.国内外地面沉降现状与研究[J].西北地震学报,2007,29(3):275- 278.
    [3]邹友峰,邓喀中,马伟民.开采沉陷控制工程[M].徐州:中国矿业大学出版社,2003.
    [4]谭志祥,邓喀中.建筑物下采煤理论与实践[M].徐州:中国矿业大学出版社,2007.
    [5]舒宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社,2003.
    [6] Zebker H A, Goldstin R M. Topographic mapping from interferometric SAR observations[J]. Journal of Geophysical Research,1986,91(B5):4993-5001.
    [7]楼良盛.基于卫星编队InSAR数据处理技术[D].郑州:中国人民解放军信息工程大学,2007.
    [8] Bert K. Doris_v4.01 user manual [M]. Delft: Delft institute for Earth-oriented Space Research (DEOS) Delft University of Technology,2008.
    [9]汤晓涛.InSAR数据处理的基线估计和影像自动概略配准[J].解放军测绘学院学报,1999,12(4):260-262.
    [10] Prati C, Rocca F. Limits to the resolution of elevation maps from stereo SAR images [J]. International Journal of Remote Sensing,1990,(11):2215-2235.
    [11] Gabriel A K, Goldstein R M. Crossed orbit interferometry: theory and experimental results from SIR-B[J]. International Journal of Remote Sensing,1988,9(5):857-872.
    [12] Lin Q, Vesecky J F, Zebker H A. Registration of interferometric SAR images[C]. In: International Geoscience and Remote Sensing Symposium Proceedings,1992,2:1579-1581.
    [13] Li F K, Goldstein R M. Studies of multibaseline spaceborne interferometric synthetic aperture radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28: 88-97.
    [14] Small D, Werner C, Nuesch D. Baseline modeling for ERS-1 SAR interferometry[C]. In: International Geoscience and Remote Sensing Symposium Proceedings,1993,3:1204-1206.
    [15] Singh K, Stussi N, Keong K L. Baseline estimation in interferometric SAR[C]. In: International Geoscience and Remote Sensing Symposium Proceedings,1997,1:454-456.
    [16] Knedlik S, Lofeld O, Hein A, et al. A novel approach to accurate baseline estimation[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings,1999,1:254- 256.
    [17]唐晓青,向茂生,吴一戎.一种改进的基于干涉相位的基线估计方法[J].电子与信息学报,2008,30(12):2795-2799.
    [18] Lanari R, Fornaro G. Generation of digital elevation models by Using SIR-C/X-SARmultifrequency two-pass interferometry: the Etna case study[J]. IEEE Transactions on Geoscience and Remote Sensing,1996,34(5):1097-1114.
    [19] Lee J S, Papathanassiou K P, Ainsworth T L, et al. A new technique for noise filtering of SAR interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing,1998, 36(5):1456-1465.
    [20] Goldstein R M, Weme C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters,1998,25(21):4035-4038.
    [21] Carlos L M, Xavier F. Modeling and reduction of SAR interferometric phase noise in the wavelet domain[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(12): 2553-2566.
    [22]廖明生,林珲,张祖勋等. INSAR干涉条纹图的复数空间自适应滤波[J].遥感学报,2003,7(2):98-105.
    [23]靳国旺,徐青,秦志远. INSAR干涉图的滤波方法[J].系统仿真学报,2006,18(9):2563-2603.
    [24]汪鲁才.基于小波变换和中值滤波的InSAR干涉图像滤波方法[J].测绘学报,2005, 34(2):108-111.
    [25] Fried D L. Least-square fitting a wave-front distortion estimation to an array of phase-difference measurements[J]. Journal of the Optical Society of America,1977,67(3): 370-375.
    [26] Hudgin R H. Wave-front reconstruction for compensated imaging[J]. Journal of the Optical Society of America,1977,67(3):375-378.
    [27] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping [J]. Radio Science,1988,23(4):713-720.
    [28] Flynn T J. Consistent 2-D phase unwrapping guided by a quality map[C]. In: International Geoscience and Remote Sensing Symposium Proceedings,1996,4:2057-2059.
    [29] Wei X, Ian C. A region-growing algorithm for InSAR phase unwrapping[J]. IEEE Transaction on Geoscience and Remote Sensing,1999,37(1):124-134.
    [30] Pritt M D, Shipman J S. Least-Squares two-dimensional phase unwrapping using FFT’s[J]. IEEE Transaction on Geoscience and Remote Sensing,1994,32(3):706-708.
    [31] Ghiglia D C, Romero L A. Minimum LP-norm two-dimensional phase unwrapping[J]. Journal of the Optical Society of America,1996,13(10):1-15.
    [32] Flynn T J. Two-dimensional phase unwrapping with minimum weighted discontinuity[J]. Journal of the Optical Society of America,1997,14(10):2692-2701.
    [33] Costantini M. A novel phase unwrapping method based on network programming[J]. IEEE Transaction on Geoscience and Remote Sensing,1998,36(3):813-821.
    [34] Carballo G F, Fieguth P W. Probabilistic cost functions for network flow phase unwrapping [J]. IEEE Transaction on Geoscience and Remote Sensing,2000,38(5):2192-2201.
    [35] Collaro A, Franceschetti G, Palmieri F et al. Phase unwrapping by means of genetic algorithms[J]. Opt. Soc. Am,1998,15(2):407-418.
    [36] Abutaleb A S. Number theory and bootstrapping for phase unwrapping[J]. IEEE Transactions on Circuits and Systems,2002,49(5):632-63.
    [37]魏志强,金亚秋.基于蚁群算法的InSAR相位解缠算法[J].电子与信息学报,2008,30(3):518-523.
    [38]彭石宝,袁俊泉,向家彬.一种基于加权迭代贪婪算法的InSAR相位解缠的新方法[J].电子与信息学报,2008,30(6):1326-1330.
    [39]何儒云,王耀南,毛建旭等.基于支持向量机的InSAR干涉图相位解缠法[J].系统仿真学报,2008,20(6):1493-1496.
    [40] Massonnet D. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature,1993,364:138-142.
    [41] Zebker H A. On the derivation of coseismic displacement fields using differential radar interferometry: The landers earthquake[J]. Journal of Geophysical Research,1994,99 (B10):19617-19634.
    [42] Massonnet D, Vadon H, Rossi M. Reduction of the need for phase unwrapping in radar interferometry[J]. IEEE Transaction on Geoscience and Remote Sensing,1996,34(2),489- 497.
    [43] Ferretti A, Prati C, Rocca F. Multibaseline InSAR DEM Reconstruction: The wavelet approach[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37:705-715.
    [44] Ferretti A, Prati C, Rocca F. Permanent scatters in SAR interferometory[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(l):8-19.
    [45] Mora O, Mallorqui J J, Duro J, et al. Long-term subsidence monitoring of urban areas using differential interferometric SAR techniques[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings,2001,3:1104-1106.
    [46] Berardino P, Fornaro G, Lnanri R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
    [47] Lanari R, Mora O, Manunta M, et al. A small-baseline appproach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions onGeoscience and Remote Sensing,2004,42(7):1377-1386.
    [48] Xia Y, Kaufmann H, Guo X F. Landslide monitoring in the Three Georges area using D-InSAR and corner reflectors[J]. Photogrammetric Engineering and Remote Sensing,2004, 70(10):1167-1172.
    [49] Werner C, Wegmuller U, Strozzi T, et al. Interferometric point target analysis for deformation mapping[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings,2003,7:4362-4364.
    [50] Mora O, Mallorqui J J, Broquetas A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2243-2252.
    [51] Kampes B M, Hanssen R F. Ambiguity resolution of permanent scatterer interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(11):2446-2453.
    [52] Kampes B M. Radar interferometry persistent scatterer technique[M]. Netherlands: Springer, 2006.
    [53] Hooper A, Zebker H, Segall P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004,31, L23611:1-5.
    [54] Hooper A. Persistent scatterer radar interferometry for crustal deformation studies and modeling of volcanic deformation[D]. Palo Alto: Stanford University,2004.
    [55]王超,张红,刘智.星载合成孔径雷达干涉测量[M].科学出版社,2002.
    [56]李德仁,廖明生,王艳.永久散射体雷达干涉测量技术[J].武汉大学学报(信息科学版),2004,29(8):664-667.
    [57]陈强.基于永久散射体雷达差分干涉探测区域地表形变的研究[D].成都:西南交通大学,2006.
    [58]罗小军.永久散射体雷达差分干涉理论及在上海地面沉降监测中的应用[D].成都:西南交通大学,2007.
    [59]马德英.短时空基线PS-DInSAR理论及其算法研究[D].成都:西南交通大学,2008.
    [60]马德英,刘国祥,蔡国林等.短时空基线PS-DInSAR提取地表形变时间序列[J].西南交通大学学报,2009,44(1):77-82.
    [61]葛大庆,王艳,郭小方等.利用短基线差分干涉纹图集监测地表形变场[J].大地测量与地球动力学,2008,28(2):61-66.
    [62]黄其欢,何秀凤.附加约束条件短基线DInSAR法及其应用[J].中国矿业大学学报,2009,38(3):450-454.
    [63] Cloude S A, Papathanassiou K P. Polarimetric SAR interferometry[J]. IEEE Transactions onGeoscience and Remote Sensing,1998,36:1551-1565.
    [64] Papathanassiou K P, Cloude S A. Phase decomposition in polarimetric SAR interferometry[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings,1998,4:2184-2186.
    [65] Papathanassiou K P, Cloude S A. Single-Baseline polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2352-2363.
    [66] Neumann M, Ferro-Famil L, Reigber A. Multibaseline POLInSAR coherence modelling and optimization[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings,2007,2624-2627.
    [67] Pipia L, Aguasca A, Fabregas X, et al. Temporal decorrelation in polarimetric differential interferometry using a ground-based SAR sensor[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings,2005,6:4108-4111.
    [68] Pipia L, Fabregas X, Aguasca A, et al. Polarimetric differential SAR interferometry: First results with ground-based measurements[J]. IEEE Geoscience and Remote Sensing Letters,2009,6(1):167-171.
    [69]杨震,杨汝良.极化合成孔径雷达干涉技术[J].遥感技术与应用,2001,16(3):139-143.
    [70]郭华东,李新武,王长林等.极化干涉雷达遥感机制及应用[J].遥感学报,2002,6(6):401-401.
    [71]李新武.极化干涉SAR信息提取方法及其应用研究[D].北京:中科院遥感应用研究所,2002.
    [72]张红. D-InSAR与POLinSAR的方法及应用研究[D].北京:中科院遥感应用研究所,2002.
    [73]杨磊,赵拥军,王志刚.基于功率和相位联合估计TLS-ESPRIT算法的极化干涉SAR数据分析[J].测绘学报,2007,36(2):163-168.
    [74]张晓玲,韦顺军,韩迪.结合相干系数的极化干涉SAR植被高度估计方法研究[J].电子科技大学学报,2009,38(3):321-324.
    [75] Gabriel A K, Zebker H A, Goldstein R M. Mapping small elevation changes over large areas: Differential radar interferometry[J]. Journal of Geophysical Research,1989,94(B7): 9183-9191.
    [76] Wegmuller U, Strozzi, T, Werner, C. Land subsidence in the Po river valley, Italy[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings,1998,3: 1376-1378.
    [77] Ge L L, Chris R, Han S W, Zebker H. Mining subsidence monitoring using the combinedInSAR and GPS approach[C]. In: The 10th FIG International Symposium on Deformation Measurements, Published on CDROM,2001.
    [78] Hoffmann J. The application of satellite radar interferometry to study of land subsidence over developed aquifer systems [D]. Palo Alto: Stanford University,2003.
    [79] Kircher M, Hoffmann J, Roth A, et al. Application of Permanent Scatterers on mining-induced subsidence[C]. In: Proceedings of the FRINGE Workshop, Published on CDROM,2003.
    [80] Rabus B, Werner C, Wegmueller U, et al. Interferometric point target analysis of RADARSAT-1 data for deformation monitoring at the Belridge/Lost Hills oil fields[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings,2004,4: 2611-2613.
    [81] Colesanti C, Mouelie S L, Bennani M, et al. Detection of mining related ground instabilities using the permanent scatters technique-A case study in the east of France[J]. International Journal of Remote Sensing,2005,26(1):201-207.
    [82] Chul H J, Min K D. Observing coal mining subsidence from JERS-1 permanent scatter analysis[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings, 2005,7:4578-4581.
    [83] Strzelczyk J, Porzycka S, Lesniak A. Analysis of ground deformations based on parallel geostatistical computations of PSInSAR data[C]. In: The 17th International Conference on Geoinformatics,2009.
    [84] Perissin D, Prati C, Rocca F, et al. PSInSAR analysis over the Three Gorges Dam and urban areas in China[C]. In: Proceedings of 2009 Joint Remote Sensing Event,2009.
    [85]刘国祥,丁晓利,陈永奇等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场[J].科学通报,2001,46(14):1224-122.
    [86]路旭,匡绍君,贾有良等.用INSAR作地面沉降监测的实验研究[J].大地测量与地球动力学,2002,22(4):66-70.
    [87]吴立新,高均海,葛大庆等.工矿区地表沉陷D-InSAR监测实验研究[J].东北大学学报(自然科学版),2005,26(8):778-782.
    [88]汤益先,张红,王超.基于永久散射体雷达干涉测量的苏州地区沉降研究[J].自然科学进展,2006,16(8):1015-1020.
    [89]陈强,刘国祥,丁晓利等.永久散射体雷达差分干涉应用于区域地表沉降探测[J].地球物理学报,2007,50(3):737-743.
    [90]董玉森, Ge L L,Chang H C等.基于差分雷达干涉测量的矿区地面沉降监测研究[J].武汉大学学报·信息科学版,2007,32(10):888-891.
    [91]卢丽君,廖明生,王腾等.一种在长时间序列SAR影像上提取稳定目标点的多级探测法[J].遥感学报,2008,12(4):561-566.
    [92]罗海滨.综合GPS和InSAR监测地表形变的理论方法和应用研究[D].南京:河海大学,2008.
    [93] Wang F, Huang Z Q, Zhang D R. A study of land subsidence with PS-InSAR method based on wavelet phase analysis[C]. In: Proceedings of 2009 Joint Remote Sensing Event,2009.
    [94]廖明生,林珲.雷达干涉测量—原理与信号处理基础[M].北京:测绘出版社,2003.
    [95]戴昌达,姜小光,唐伶俐.遥感图像应用处理与分析[M].北京:清华大学出版社,2004.
    [96]张澄波.合成孔径雷达[M].北京:测绘出版社,1989.
    [97]肖国超,朱彩英.雷达摄影测量[M].北京:地震出版社,2001.
    [98]范洪冬.机载SAR立体影像对提取DEM方法研究[D].徐州:中国矿业大学,2007.
    [99]岳昔娟.稀少(无)控制条件下机载SAR高精度定位技术研究[D].武汉:武汉大学,2009.
    [100]卢丽君.基于时序SAR影像地表形变检测方法及应用[D].武汉:武汉大学,2008.
    [101]汪鲁才.星载合成孔径雷达干涉测量成像技术研究[D].长沙:湖南大学,2006.
    [102]蔡国林.星载InSAR数据处理中的几个关键问题研究[D].成都:西南交通大学,2009.
    [103]何儒云.星载合成孔径雷达干涉测量处理技术研究[D].长沙:湖南大学,2007.
    [104]彭曙蓉.高分辨率合成孔径雷达干涉测量技术及其应用研究[D].长沙:湖南大学,2009.
    [105]靳国旺. InSAR获取高精度DEM关键处理技术研究[D].郑州:中国人民解放军信息工程大学,2007.
    [106]王志勇.星载雷达干涉测量技术在地面沉降监测中的应用[D].青岛:山东科技大学,2007.
    [107] Rosen P A, Hensley S, Joughin I R. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE,2000, 88(3): 333-382.
    [108] Scharroo R, Visser P N A M, Mets G J. Precise orbit determination and gravity field improvement for the ERS satellites [J]. Journal of Geophysical Research,1998,103(4): 8113-8127.
    [109] Wu J, Lin D C. Radargrammetric parameter evaluation of an airborne SAR image[J]. Photogrammetric Engineering and Remote Sensing,2000, 66(1): 41-47.
    [110] Chen P H, Dowman I J. A weighted least squares solution for space intersection of spaceborne stereo SAR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2):233-240.
    [111]林卉,赵长胜,杜培军等.InSAR干涉图滤波方法研究[J].测绘学报,2005,34(2): 113-117.
    [112]靳国旺,韩晓丁,贾博等. InSAR干涉图的矢量分离式小波滤波[J].武汉大学学报·信息科学版,2008,33(2):132-135.
    [113]汪沛,王岩飞,张冰尘等.基于贝叶斯门限的静态小波域干涉相位图滤波[J].电子与信息学报2007,29(11):2706-2710.
    [114] Selenick I W, Baraniuk R G, Kingsbury N G. The dual-tree complex wavelet transform [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2005,22(6):123-151.
    [115]焦李成,张向容,侯彪等.智能SAR图像处理与解译[M].北京:科学出版社,2008.
    [116] Kingsbury N G. The Dual-tree Complex Wavelet Transform: A new technique for shift invariance and directional filters[C]. In: Proceedings 8th IEEE DSP Workshop,1998.
    [117] Kingsbury N G. The Dual-tree Complex Wavelet Transform: A new efficient tool for image restoration and enhancement[C]. In: Proceedings IEEE Conference on Image Processing,1998.
    [118] Kingsbury N G. Complex wavelets for shift invariant analysis and filtering of signals [J]. Applied Computational and Harmonic Analysis,2000, 10(3): 234-253.
    [119] Carlos L M, Xavier F. Modeling and reduction of SAR interferometric phase noise in the wavelet domain[J]. IEEE Trans. Geoscience and Remote Sensing,2002,40(12):2553-2566.
    [120] Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory,1995,41 (5):613-627.
    [121] Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency[J]. IEEE Transactions on Signal Processing,2002,50(11): 2744-2756.
    [122] Helmy A k, El-Deib H, Onsi H M et al. Dual tree complex wavelet transform for adaptive interferogram residual reduction[J]. International Journal Of Computer Vision, Graphic and Image Processing,2005,(4):33-36.
    [123] Li Z L, Zou W B, Ding X L, et al. A quantitative measure for the quality of INSAR interferograms based on phase differences[J]. Photogrammetric Engineering and Remote Sensing,2004,70(10):1131-1137.
    [124] Ghiglia D C, Pritt M D. Two-dimensional phase unwrapping:theory, algorithm,and software [M]. USA: John Wiley&Sons.Inc,1998.
    [125] Wei Z Q, Xu F, Jin Y Q. Phase unwrapping for SAR interferometry based on an ant colony optimization algorithm [J]. International Journal of Remote Sensing,2008,29(3): 711-725.
    [126]李平湘,杨杰.雷达干涉测量原理与应用[M].北京:测绘出版社,2006.
    [127] Kennedy J, Eberhart R. C. Particle Swarm Optimization[C]. In: Proceedings of the IEEE International Conference on Neural Networks,1995,1942-1948.
    [128]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008.
    [129]高尚,韩斌,吴小俊等.求解旅行商问题的混合粒子群优化算法[J].控制与决,2004,19(11):1286-1289.
    [130]云日升,彭海良.基于局部最小生成树的干涉SAR二维相位展开[J].电子与信息学报,2004,26(2):194-199.
    [131] Huntley J M. Noise-immune phase unwrapping algorithm [J]. Applied Optics,1989,28(15): 3268-3270.
    [132]刘保伟,张廷新,欧祥荣. InSAR最小二乘相位解缠算法[J].空间电子技术,2008(1): 17-22.
    [133]杨杰.星载SAR影像定位和从星载InSAR影像自动提取高程信息的研究[D].武汉:武汉大学,2004.
    [134] Liu G X. Mapping of earth deformations with satellite radar interferometry: a study of its accuracy and reliability performances[D]. Hong Kong: The Hong Kong Polytechnic University,2003.
    [135]姚宁. D-InSAR监测开采沉陷的实验研究[D].徐州:中国矿业大学,2009.
    [136]孙建宝,梁芳,徐锡伟等.升降轨道ASAR雷达干涉揭示的巴姆地震(Mw6.5)3D同震形变场[J].遥感学报,2006,10(4):489-496.
    [137]刘国祥. InSAR基本原理[J].四川测绘,2006,27(4):187-190.
    [138] Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30:950-959.
    [139]赵超英.差分干涉雷达技术用于不连续形变的监测研究[D].西安:长安大学,2009.
    [140] Gatelli F, Guarnieri A M, Parizzi F et al. The wavenumber shift in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,1994,32(4):855-865.
    [141] Just D, Bamler R. Phase statistics of interferograms with applications to synthetic aperture radar[J]. Applied Optics,1994,(33):4361-4368.
    [142] Rosen P A, Hensley S, Zebker H A et al. Surface deformation and coherence measurements of Kilauea volcano, Hawaii, from SIR-C radar interferometry[J]. Journal of Geophysical Research,1996,101(E10):109-230.
    [143]李小凡,李颖,曾琪明等.应用与ASAR同步的MERIS对重复轨道InSAR进行大气校正[J].北京大学学报(自然科学版),2009,45(6):1012-1018.
    [144] Massonnet D, Feigl K L. Radar interferometry and its application to changes in the Earth’s surface[J]. Reviews of Geophysics, 1998,36:441-500.
    [145]蒋弥,李志伟,丁晓利等. InSAR可检测的最大最小变形梯度的函数模型研究[J].地球物理学报,2009,52(7):1715-1724.
    [146] Feng Q Y, Liu G J, Meng L et al. Land subsidence induced by groundwater extraction and building damage level assessment-a case study of Datun, China[J]. Journal of University ofMining & Technology,2008,18(4):556-560.
    [147]邓喀中,姚宁,卢正等. D-InSAR监测开采沉陷的实验研究[J].金属矿山,2009(12): 25-27.
    [148]蒋弥. D-InSAR可检测的最大最小形变梯度的函数模型研究[D].长沙:中南大学,2008.
    [149] Usai S. A new approach for long term monitoring of deformations by differential SAR interferometry[D]. Delft: Delft University of Technology,2001.
    [150] Lanari R, Mora O, Manunta M, et al. A small-baseline approach for investigating deformations on full resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(7):1377-1386.
    [151]张红,王超,吴涛等.基于相干目标的DInSAR方法研究[M].北京:科学出版社,2009.
    [152] Hooper A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters,2008, (35):L16302-L16307.
    [153]黄其欢.短基线DInSAR方法及其在地表沉降监测中的应用研究[D].南京:河海大学,2009.
    [154]罗小军,黄丁发,刘国祥.时序差分雷达干涉中永久散射体的自动探测[J].西南交通大学学报,2007,42(12):414-418.
    [155]姜文亮. PS-InSAR技术监测断层活动性应用研究[D].北京:中国地震局地壳应力研究所,2007.
    [156] Mark A R著.刑孟道,王彤,李真芳等译.雷达信号处理基础[M].北京:电子工业出版社,2008.
    [157] Adam N, Kamps B, Eineder M. Development of a scientific permanent scatterer system: modifications for mixed ERS/ENVISAT time series[C]. ERS-ENVISAT Symposium,2004.
    [158]白俊.干涉雷达中的永久散射体和交叉干涉技术的研究与应用[D].北京:中国科学院,2005.
    [159]孙倩,朱建军,李志伟等.基于信噪比的InSAR干涉图自适应滤波[J].测绘学报,2009,38(5):437-4442.
    [160] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
    [161]潘云,潘建刚,宫辉力等.天津市区地下水开采与地面沉降关系研究[J].地球与环境,2004,32(2):36-39.
    [162]董克刚,王威,于强等.天津市地面沉降防治历史的调查研究及启示[J].中国地质灾害与防治学报,2008,19(3):54-59.
    [163] Li T, Liu J N, Liao M S, et al. Monitoring city subsidence by D-InSAR in Tianjin[C]. Proceedings of IGARSS’2004[C]. In: IEEE International Geoscience and Remote Sensing Symposium Proceedings,2004,5:3333-3336.
    [164]范景辉,郭华东,郭小方等.基于相干目标的干涉图叠加方法监测天津地区地面沉降[J].遥感学报,2008,12(1):111-118.
    [165] Hooper A. StaMPS/MTI Manual Version3.1[M]. Netherlands: Delft Institute of Earth Observation and SpaceSystems, Delft University of Technology, 2009.