微囊藻毒素-LR暴露标志物及凋亡效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分微囊藻毒素-LR暴露生物标志物的研究
     目的:通过检测动物血液和组织中微囊藻毒素-LR单体及复合物,结合筛查血液细胞可能发生的形态、功能和分子生物学的变化及血液生化指标改变,初步确立能够反映机体暴露藻类毒素污染的生物负荷和生物效应指标,为环境藻类毒素污染与健康评价提供科学实验方法和手段。
     方法:SPF级雄性昆明小鼠,体重在20~25g之间,用随机数字表法分为5组,每组7只。对照组、低剂量组、中低剂量组、中高剂量组、高剂量组,分别以生理盐水、3.125、6.250、12.500、25.000μg/(kg·d)剂量微囊藻毒素-LR给予腹腔注射染毒。染毒7天后,进行血液生化和血液细胞分析,检测血清细胞因子, KCl-SDS沉淀法检测淋巴细胞DNA-蛋白质交联,流式细胞仪检测单核细胞吞噬功能及单核细胞和淋巴细胞的活性氧,高效液相色谱-质谱联用技术检测血液及组织中的微囊藻毒素-LR,并分析其变化情况。
     结果:本研究中各项指标对于微囊藻毒素-LR暴露的敏感度从高至低依次为:肝脏中检测到的微囊藻毒素-LR,巨噬细胞吞噬功能和白细胞活性氧;白细胞介素-6,碱性磷酸酶和乳酸脱氢酶;丙氨酸氨基转移酶和血液中检测到的微囊藻毒素-LR;天门冬氨酸氨基转移酶和肿瘤坏死因子-α。3.125、6.250、12.500、25.000μg/(kg·d)染毒组肝脏中均检测到微囊藻毒素-LR(分别为0.1529±0.0296,0.3047±0.0648,0.6006±0.1105,0.9899±0.2261μg/g肝脏)。同样剂量染毒组淋巴细胞DCF荧光强度(依次为3299.37±120.54,3281.38±58.34,3308.06±136.12,3346.92±108.69)均低于对照组(3770.81±131.39)(P <0.05);单核细胞DCF荧光强度(依次为3271.51±140.79,3270.05±117.92,3326.90±114.39,3292.49±145.97)均低于对照组(3841.72±130.92)(P <0.05)。6.250、12.500、25.000μg/(kg·d)染毒组小鼠白细胞介素-6(分别为346.837±25.536,360.847±37.886,434.245±35.858pg/mL)均高于对照组(232.775±32.816pg/mL)(P <0.05);而只有最高剂量25.000μg/(kg·d)染毒组肿瘤坏死因子-α(10.782±0.966fmol/mL)低于对照组(16.878±3.378fmol/mL)(P <0.05)。血清碱性磷酸酶和乳酸脱氢酶在6.250μg/(kg·d)即高于阴性对照组,差异有统计学意义(P <0.05)。
     结论:本研究对今后的流行病学调查有一定的参考价值,血液和肝脏中检测到微囊藻毒素-LR是暴露的确证标志物,结合血液生化分析、活性氧、细胞因子等的改变可综合分析机体的暴露情况,为微囊藻毒素的研究提供更详细全面的资料。
     第二部分微囊藻毒素-LR对肝细胞凋亡及Caspase-3、凋亡诱导因子、核酸内切酶G mRNA表达的影响
     目的:通过观察微囊藻毒素-LR对肝细胞凋亡及Caspase-3、凋亡诱导因子、核酸内切酶G mRNA表达的影响,探讨微囊藻毒素-LR对肝细胞凋亡的影响,丰富微囊藻毒素-LR的凋亡诱导机制。
     方法:SPF级雄性昆明小鼠,体重在20~25g之间,用随机数字表法分为5组,每组7只。对照组、低剂量组、中低剂量组、中高剂量组、高剂量组,分别以生理盐水、3.125、6.250、12.500、25.000μg/(kg·d)剂量微囊藻毒素-LR给予腹腔注射染毒。染毒7天后,HE染色观察肝脏病理变化,TUNEL染色观察肝细胞凋亡情况,荧光定量PCR检测Caspase-3、凋亡诱导因子、核酸内切酶G mRNA表达变化。
     结果:小剂量微囊藻毒素-LR暴露导致肝脏细胞出现较轻的损伤和严重的凋亡;随着染毒剂量增加,肝细胞损伤逐渐加重,但肝细胞凋亡并未随染毒剂量升高而增加。3.125、6.250、12.500、25.000μg/(kg·d)微囊藻毒素-LR染毒组肝脏组织细胞凋亡指数(分别为46.51±4.69,11.08±3.18,10.72±3.36,10.44±3.48)均高于阴性对照组(3.00±0.60)(P <0.05)。随着微囊藻毒素-LR染毒剂量的增加,肝细胞Caspase-3、凋亡诱导因子mRNA表达下降;3.125、6.250、12.500、25.000μg/(kg·d)染毒组Caspase-3mRNA表达(分别为0.8214±0.1150,0.5594±0.1800,0.3842±0.0745,0.3158±0.1307)均低于阴性对照组(1.000)(P <0.05)。本研究微囊藻毒素-LR染毒剂量不影响肝细胞核酸内切酶G mRNA表达。
     结论:微囊藻毒素-LR的促肿瘤作用可能与Caspase-3、凋亡诱导因子mRNA表达异常有关。
Part1: Biomarkers of Expoure to Microcystin-LR in Mice
     Objective: In order to investigate the response indices to toxic microcystin-LR in blood ofmice, concentrations of free and total microcystin-LR in blood and tissues, accompanied byserous parameters in series, including some enzymatic activities, hematology and thefunction of leukocytes, were determined.
     Methods: SPF(specific pathogen free) Kunming male mice, weighting20~25g, wererandomly divided into5groups,7mice for each group. The mice in5groups were exposedto microcystin-LR through intraperitoneal injection at0.000,3.125,6.250,12.500and25.000μg/kg body weight respectively for7days. Then the blood samples wereautomatically analyzed by the instrument for the serum biochemical indices and thehematological investigations; cytokine levels in the serum were measured byradioimmunoassay; the measurement of DNA-protein crosslinks was performed using theSDS/KCl precipitation technique; the phagocytosis and reactive oxygen species ofleukocytes was detected by flow cytometry; and the concentrations of free and totalmicrocystin-LR in blood and tissues were determined by the liquid chromatography-massspectrometry method.
     Results: The positive and sensitive findings in this experiment could be divided into fourgroups. The most sensitive indices were total microcystin-LR in the liver, phagocytic indexand reactive oxygen species. The toxin in the liver was reliable and powerful, phagocyticindex was affected by some subject factors and reactive oxygen species lacked a dose-effect relationship. The second sensitive indices were interleukin-6, alkaline phosphatase andlactate dehydrogenase, all of which showed good dose-effect results. The third were alanineaminotransferase and free microcystin-LR in the blood, of which the former was relativelyless sensitive and specific, and the latter was specific and reliable but less sensitivecompared with the toxins in the liver. The least sensitive indices were aspartate transaminaseand tumor necrosis factor-α. The total microcystin-LR in the four dose-treated groups were0.1529±0.0296,0.3047±0.0648,0.6006±0.1105and0.9899±0.2261μg/g liver weight,respectively. The reactive oxygen species levels of lymphocytes (3299.37±120.54,3281.38±58.34,3308.06±136.12and3346.92±108.69, respectively) in the4treated groupswere significantly lower than those in the control group (P <0.05); and the reactive oxygenspecies levels of monocytes (3271.51±140.79,3270.05±117.92,3326.90±114.39and3292.49±145.97, respectively) in the4treated groups also decreased significantly comparedwith the control group (P <0.05). The levels of interleukin6(346.837±25.536,360.847±37.886and434.245±35.858pg/mL, respectively) in the6.250,12.500and25.000μg/(kg·d) dose group rose in proportion, higher than those in the control group (P <0.05);while the levels of tumor necrosis factor-alpha (10.782±0.966fmol/mL) in25.000μg/(kg·d)dose group were statistically lower than those in the control group (P <0.05). The levels ofalanine aminotransferase (187.99±53.00and381.54±89.23U/L, respectively) in the12.500and25.000μg/(kg·d) dose group were on the significant rise, higher than those in the controlgroup (P <0.05). The levels of aspartate transaminase (473.10±168.07U/L) in the25.000μg/(kg·d) dose group were significantly higher than those in the control group (P <0.05).Thelevels of alkaline phosphatase (128.54±21.46,170.43±22.11and223.26±66.35U/L,respectively) and lactate dehydrogenase (690.50±112.11U/L,769.00±136.92U/L and952.53±169.73U/L, respectively) in the6.250,12.500and25.000μg/(kg·d) dose groupwere all above the control group, showing statistical differences (P <0.05).Conclusion: The results of the studies suggest that measurement of microcystin-LR in bloodis powerful and clear evidence to indicate that the subjects have been exposed tomicrocystin-LR and can be used to discriminate from other causes leading to hepatic lesionsalthough the microcystin-LR in blood is not as sensitive as other indices that are usually lessspecific but are useful complements to reflect the liver function.
     Part2: The Role of Microcystin-LR in Inducing Apoptosisof Liver Cells and its Relationship with the mRNAExpressions of Caspase-3, Apoptosis Inducing Factor andEndonuclease G
     Objective: The main purpose of this study was to investigate the apoptotic effects caused bymicrocystin-LR and its possible influence on the mRNA expressions of caspase-3, apoptosisinducing factor and Endonuclease G in mice liver.
     Methods: SPF(specific pathogen free) Kunming male mice, weighting20~25g, wererandomly divided into5groups,7mice for each group. The mice in5groups were exposedto microcystin-LR through intraperitoneal injection at0.000,3.125,6.250,12.500and25.000μg/kg body weight respectively for7days. HE staining, TUNEL and real time PCRwere used to detect the histopathological changes, cell apoptosis as well as the mRNAexpression of caspase-3, apoptosis inducing factor and Endonuclease G in mice liver.
     Results: Compared to the control group, severe histopathological changes and significantdifferences in cell apoptosis were observed in3.125,6.250,12.500and25.000μg/(kg·d)dose groups. And further examinations showed that the mRNA expressions of caspase-3andapoptosis inducing factor were decreased in a dose-response relationship. There was nosignificant difference in the mRNA expressions of Endonuclease G among the5dose groups.The levels of apoptosis index by TUNEL assay(46.51±4.69,11.08±3.18,10.72±3.36and10.44±3.48, respectively) in the3.125,6.250,12.500and25.000μg/(kg·d) dose group weresignificantly higher than those in the control group (P <0.05). And the mRNA expressionsof Caspase-3(0.8214±0.1150,0.5594±0.1800,0.3842±0.0745and0.3158±0.1307,respectively) in the3.125,6.250,12.500and25.000μg/(kg·d) dose group were significantlylower than those in the control group (P <0.05).
     Conclusion: The present study has demonstrated that microcystin-LR has relevance to theabnormal mRNA expressions of caspase-3and apoptosis inducing factor in the liver.
引文
[1] Frazier, K, Colvin, B, Styer, E, Hullinger, G&Garcia, R. Microcystin toxicosis incattle due to overgrowth of blue-green algae. Veterinary and human toxicology40,23-24(1998).
    [2] Oberholster, Paul J, Myburgh, Jan G, Govender, Danny, Bengis, Roy&Botha,Anna-Maria. Identification of toxigenic Microcystis strains after incidents of wildanimal mortalities in the Kruger National Park, South Africa. Ecotoxicology andenvironmental safety72,1177-1182(2009).
    [3] Sangolkar, Lalita N, Maske, Sarika S&Chakrabarti, Tapan. Methods fordetermining microcystins (peptide hepatotoxins) and microcystin-producingcyanobacteria. Water research40,3485-3496(2006).
    [4] Msagati, Titus AM, Siame, Bupe A&Shushu, Deborah D. Evaluation of methodsfor the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquatictoxicology78,382-397(2006).
    [5] Svircev, Zorica, Kratic, Svetislav, Miladinov-Mikov, Marica, Baltic, Vladimir&Vidovic, Milka. Freshwater cyanobacterial blooms and primary liver cancerepidemiological studies in Serbia. Journal of Environmental Science and Health PartC27,36-55(2009).
    [6]中华人民共和国为卫生部,中国国家标准化委员会。生活饮用水卫生标准(GB5749-2006)
    [7] Azevedo, Sandra MFO, Carmichael, Wayne W, Jochimsen, Elise M, Rinehart,Kenneth L, Lau, Sharon, Shaw, Glen R&Eaglesham, Geoff K. Human intoxicationby microcystins during renal dialysis treatment in Caruaru—Brazil. Toxicology181,441-446(2002).
    [8] Chen, Jun, Zhang, Dawen, Xie, Ping, Wang, Qing&Ma, Zhimei. Simultaneousdetermination of microcystin contaminations in various vertebrates (fish, turtle, duckand water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxicMicrocystis blooms. Science of the Total Environment407,3317-3322(2009).
    [9] Magalhaes, VF, Marinho, MM, Domingos, P, Oliveira, AC, Costa, SM, Azevedo,LO&Azevedo, SMFO. Microcystins (cyanobacteria hepatotoxins) bioaccumulationin fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon42,289-295(2003).
    [10] Wood, SA, Briggs, LR, Sprosen, J, Ruck, JG, Wear, RG, Holland, PT&Bloxham, M.Changes in concentrations of microcystins in rainbow trout, freshwater mussels, andcyanobacteria in Lakes Rotoiti and Rotoehu. Environmental toxicology21,205-222(2006).
    [11] Freitas de Magalh es, Valéria, Moraes Soares, Raquel&Azevedo, Sandra MFO.Microcystin contamination in fish from the JacarepaguáLagoon (Rio de Janeiro,Brazil): ecological implication and human health risk. Toxicon39,1077-1085(2001).
    [12] Organization, World Health. Cyanobacterial toxins: microcystin-LR indrinking-water. Background document for development of WHO Guidelines forDrinking-water Quality. Geneva, Switzerland.(WHO/SDE/WSH/03.04/57,2003).
    [13] Yoshida, Toshinori, Makita, Yuki, Nagata, Satoshi, Tsutsumi, Tomoaki, Yoshida,Fuyuko, Sekijima, Masaru, Tamura, Shin‐ichi&Ueno, Yoshio. Acute oral toxicityof microcystin‐LR, a cyanobacterial hepatotoxin, in mice. Natural toxins5,91-95(1997).
    [14] Ito, Emiko, Kondo, Fumio, Terao, Kiyoshi&Harada, Ken-Ichi. Neoplastic nodularformation in mouse liver induced by repeated intraperitoneal injections ofmicrocystin-LR. Toxicon35,1453-1457(1997).
    [15] Carmichael, WW. Toxic Microcystis and the environment. Toxic microcystis,1-11(1996).
    [16] Hilborn, Elizabeth D, Carmichael, Wayne W, Yuan, Moucun&Azevedo, SandraMFO. A simple colorimetric method to detect biological evidence of human exposureto microcystins. Toxicon46,218-221(2005).
    [17] Chen, Jun, Xie, Ping, Li, Li&Xu, Jun. First identification of the hepatotoxicmicrocystins in the serum of a chronically exposed human population together withindication of hepatocellular damage. Toxicological sciences108,81-89(2009).
    [18] Zhang, X., Xie, P., Li, D., Shi, Z., Wang, J., Yuan, G., Zhao, Y.&Tang, R. Anemiainduced by repeated exposure to cyanobacterial extracts with explorations ofunderlying mechanisms. Environ Toxicol26,472-479, doi:10.1002/tox.20583(2011).
    [19] Zhou, W., Zhang, X., Xie, P.&Liang, H. The suppression of hematopoiesis functionin Balb/c mice induced by prolonged exposure of microcystin-LR. Toxicol Lett219,194-201, doi:10.1016/j.toxlet.2013.02.011(2013).
    [20] Organization, World Health. Guidelines for Safe Recreational Water Environments,Volume1: Coastal and Fresh Waters.(World Health Organization,2003).
    [21] Gupta, Nidhi, Pant, SC, Vijayaraghavan, R&Rao, PV. Comparative toxicityevaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR)in mice. Toxicology188,285-296(2003).
    [22] Zhitkovich, Anatoly. A simple, sensitive assay to detect DNA–protein cromlinks inintact cells and in vivo. Carcinogenesis13,1485-1489(1992).
    [23] Kuykendall, Jim R, Trela, Bruce A&Bogdanffy, Matthew S. DNA-protein crosslinkformation in rat nasal epithelial cells by hexamethylphosphoramide and itscorrelation with formaldehyde production. Mutation Research/Genetic Toxicology343,209-218(1995).
    [24] Chakrabarti, Saroj K, Bai, Chengjiang&Subramanian, Kunnath S. DNA–proteincrosslinks induced by nickel compounds in isolated rat renal cortical cells and itsantagonism by specific amino acids and magnesium ion. Toxicology and appliedpharmacology154,245-255(1999).
    [25] Liu, Yingshuai, Li, Chang M, Lu, Zhisong, Ding, Shumao, Yang, Xu&Mo, Jianwei.Studies on formation and repair of formaldehyde-damaged DNA by detection ofDNA-protein crosslinks and DNA breaks. Front Biosci11,991-997(2006).
    [26] Chakrabarti, Saroj K, Bai, Chengjiang&Subramanian, Kunnath S. DNA–proteincrosslinks induced by nickel compounds in isolated rat lymphocytes: role of reactiveoxygen species and specific amino acids. Toxicology and applied pharmacology170,153-165(2001).
    [27] B yum, A. Isolation of lymphocytes, granulocytes and macrophages. ScandinavianJournal of Immunology5,9-15(1976).
    [28]汤城,薛雅蓉,余飞等.一种检测巨噬细胞吞噬鸡红细胞活性新方法的建立.畜牧与兽医37,47-50(2005).
    [29]黄琼,李志,杨杏芬等.流式细胞术检测小鼠腹腔巨噬细胞吞噬功能.中国药理学与毒理学杂志21,140-146(2007).
    [30] Zhang, Weiyun, Wang, Yong&Hou, Yayi. Effects of Chinese medicinal funguswater extract on tumor metastasis and some parameters of immune function.International immunopharmacology4,461-468(2004).
    [31]朱兆玲,周红,李美玉等.吞噬细胞吞噬作用实验方法的改进.临床医学工程19,524-526(2012).
    [32]张华,曲震寰,王莹等.小鼠腹腔巨噬细胞的分离培养与吞噬功能测定.黑龙江医药科学30,9-10(2007).
    [33] Marée, Athanasius FM, Komba, Mitsuhiro, Dyck, Cheryl, ab cki, Marek, Finegood,Diane T&Edelstein-Keshet, Leah. Quantifying macrophage defects in type1diabetes. Journal of theoretical biology233,533-551(2005).
    [34] Zielinska, M&Fenrych, W. The application of a flow cytometric assay forevaluation of phagocytosis of neutrophils. Acta Biochimica Polonica-EnglishEndition44,121-126(1997).
    [35] Gon alves, Elsa Alidia Petry, Dalboni, Maria Aparecida, Peres, Aline Trevisan,Manfredi, Ana Paula, Manfredi, Silvia Regina, Azevedo, Sandra Maria, Magalh es,Valéria F, Draibe, Sergio, Canziani, Maria Eugenia F&Cendoroglo, Miguel. Effectof microcystin on leukocyte viability and function. Toxicon47,774-779(2006).
    [36] Rothe, Gregor&Valet, Günter. Flow cytometric analysis of respiratory burst activityin phagocytes with hydroethidine and2',7'-dichlorofluorescin. Journal of LeukocyteBiology47,440-448(1990).
    [37] Vowells, SJ, Sekhsaria, S, Malech, HL, Shalit, M&Fleisher, TA. Flow cytometricanalysis of the granulocyte respiratory burst: a comparison study of fluorescentprobes. Journal of immunological methods178,89-97(1995).
    [38] Bonini, Marcelo G, Rota, Cristina, Tomasi, Aldo&Mason, Ronald P. The oxidationof2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy?Free Radical Biology and Medicine40,968-975(2006).
    [39] LeBel, Carl P, Ischiropoulos, Harry&Bondy, Stephen C. Evaluation of the probe2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation andoxidative stress. Chemical research in toxicology5,227-231(1992).
    [40] Richardson, MP, Ayliffe, MJ, Helbert, M&Davies, EG. A simple flow cytometryassay using dihydrorhodamine for the measurement of the neutrophil respiratoryburst in whole blood: comparison with the quantitative nitrobluetetrazolium test.Journal of immunological methods219,187-193(1998).
    [41] Vuorte, Juha, Jansson, S‐E&Repo, Heikki. Evaluation of red blood cell lysingsolutions in the study of neutrophil oxidative burst by the DCFH assay. Cytometry43,290-296(2001).
    [42] Neffling, Milla-Riina, Lance, Emilie&Meriluoto, Jussi. Detection of free andcovalently bound microcystins in animal tissues by liquid chromatography–tandemmass spectrometry. Environmental Pollution158,948-952(2010).
    [43] Yuan, Moucun, Carmichael, Wayne W&Hilborn, Elizabeth D. Microcystin analysisin human sera and liver from human fatalities in Caruaru, Brazil1996. Toxicon48,627-640(2006).
    [44] Lemieux, RU&Rudloff, E von. Periodate-permanganate oxidations: I. Oxidation ofolefins. Canadian Journal of Chemistry33,1701-1709(1955).
    [45] Shimojo, Tadashi, Abe, Masao&Ohta, Masaru. A method for determination ofsaturated phosphatidylcholine. Journal of lipid research15,525-527(1974).
    [46] Sano, T, Nohara, K, Shiraishi, F&Kaya, K. A method for micro-determination oftotal microcystin content in waterblooms of cyanobacteria (blue-green algae).International journal of environmental analytical chemistry49,163-170(1992).
    [47] Codd, Geoffrey A. Cyanobacterial toxins, the perception of water quality, and theprioritisation of eutrophication control. Ecological engineering16,51-60(2000).
    [48] Harada, Ken-Ichi, Murata, Hideaki, Qiang, Zhang, Suzuki, Makoto&Kondo, Fumio.Mass spectrometric screening method for microcystins in cyanobacteria. Toxicon34,701-710(1996).
    [49] Kaya, Kunimitsu&Sano, Tomoharu. Total microcystin determination usingerythro-2-methyl-3-(methoxy-d3)-4-phenylbutyric acid (MMPB-d3) as the internalstandard. Analytica Chimica Acta386,107-112(1999).
    [50] Williams, David E, Dawe, Sheila C, Kent, Michael L, Andersen, Raymond J, Craig,Marcia&Holmes, CF. Bioaccumulation and clearance of microcystins from saltwater mussels, Mytilus edulis, and in vivo evidence for covalently boundmicrocystins in mussel tissues. Toxicon: official journal of the International Societyon Toxinology35,1617-1625(1997).
    [51] Orr, Philip T, Jones, Gary J, Hunter, Robert A&Berger, Kerry. Exposure of beefcattle to sub-clinical doses of Microcystis aeruginosa: toxin bioaccumulation,physiological effects and human health risk assessment. Toxicon41,613-620(2003).
    [52] Tsuji, Kiyomi, Masui, Hiroaki, Uemura, Hitoshi, Mori, Yasuaki&Harada, Ken-ichi.Analysis of microcystins in sediments using MMPB method. Toxicon39,687-692(2001).
    [53] Ott, Jennifer L&Carmichael, Wayne W. LC/ESI/MS method development for theanalysis of hepatotoxic cyclic peptide microcystins in animal tissues. Toxicon47,734-741(2006).
    [54] Williams, David E, Craig, Marcia, Dawe, Sheila C, Kent, Michael L, Holmes,Charles FB&Andersen, Raymond J. Evidence for a covalently bound form ofmicrocystin-LR in salmon liver and dungeness crab larvae. Chemical research intoxicology10,463-469(1997).
    [55]王心如.毒理学基础.第五版.北京.人民卫生出版社.280-291(2003).
    [56]许川,舒为群,周世明等.三峡库区次级河流回水区水华藻类提取物急性肝脏毒性研究.环境与健康杂志25,976-978(2008).
    [57]郑必霞,陈慧梅,徐力致等.微囊藻毒素MC-LR对小鼠糖脂代谢影响的初步研究.环境与健康杂志28,864-867(2011).
    [58] Fawell, JK, Mitchell, RE, Everett, DJ&Hill, RE. The toxicity of cyanobacterialtoxins in the mouse: I microcystin-LR. Human&experimental toxicology18,162-167(1999).
    [59] Chorus, Edited Ingrid&Bartram, Jamie. Toxic cyanobacteria in water: a guide totheir public health consequences, monitoring and management. WHO (1999).
    [60] Wolf, Hans Uwe&Frank, Christian. Toxicity assessment of cyanobacterial toxinmixtures. Environmental toxicology17,395-399(2002).
    [61] Malbrouck, Christelle&Kestemont, Patrick. Effects of microcystins on fish.Environmental Toxicology and Chemistry25,72-86(2006).
    [62] Andersen, Donald E, Reid, Scott D, Moon, Thomas W&Perry, Steve F. Metaboliceffects associated with chronically elevated cortisol in rainbow trout (Oncorhynchusmykiss). Canadian Journal of Fisheries and Aquatic Sciences48,1811-1817(1991).
    [63] Yoo, R Scott. Cyanobacterial (blue-green algal) toxins: a resource guide. AmericanWater Works Association (1995).
    [64] Cantor, GH, Beckonert, O, Bollard, ME, Keun, HC, Ebbels, TMD, Antti, H,Wijsman, JA, Bible, RH, Breau, AP&Cockerell, GL. Integrated histopathologicaland urinary metabonomic investigation of the pathogenesis of microcystin-LRtoxicosis. Veterinary Pathology Online50,159-171(2013).
    [65] Guzman, R. E.&Solter, P. F. Hepatic oxidative stress following prolonged sublethalmicrocystin LR exposure. Toxicol Pathol27,582-588(1999).
    [66] Pouria, Shideh, De Andrade, A, Barbosa, J, Cavalcanti, RL, Barreto, VTS, Ward, CJ,Preiser, W, Poon, Grace K, Neild, GH&Codd, GA. Fatal microcystin intoxication inhaemodialysis unit in Caruaru, Brazil. The Lancet352,21-26(1998).
    [67] K prücü, S, K prücü, K&Ural, MS. Acute Toxicity of the Synthetic PyrethroidDeltamethrin to Fingerling European Catfish, Silurus glanis L. Bulletin ofenvironmental contamination and toxicology76,59-65(2006).
    [68] McCloskey, John T&Oris, James T. Effect of anthracene and solar ultravioletradiation exposure on gill ATPase and selected hematologic measurements m thebluegill sunfish (Lepomis macrochirus). Aquatic toxicology24,207-217(1993).
    [69] Watanabe, Mariyo F. Toxic microcystis. CRC PressI Llc.(1996).
    [70]杨柳,李一经,韩凌霞.白细胞介素-10研究进展.动物医学进展33,111-113(2012).
    [71]任蕴芳,唐佩弦.白细胞介素-6研究进展.解放军医学情报6,195-195(1992).
    [72] Lankoff, Anna, Carmichael, Wayne W, Grasman, Keith A&Yuan, Moucun. Theuptake kinetics and immunotoxic effects of microcystin-LR in human and chickenperipheral blood lymphocytes in vitro. Toxicology204,23-40(2004).
    [73] Shi, Q, Cui, J, Zhang, J, Kong, FX, Hua, ZC&Shen, PP. Expression modulation ofmultiple cytokines in vivo by cyanobacteria blooms extract from Taihu Lake, China.Toxicon44,871-879(2004).
    [74] Coogan, Timothy P, Squibb, Katherine S, Motz, Joan, Kinney, Patrick L&Costa,Max. Distribution of chromium within cells of the blood. Toxicology and appliedpharmacology108,157-166(1991).
    [75] Lucier, George W&Thompson, Claudia L. Issues in biochemical applications to riskassessment: When can lymphocytes be used as surrogate markers? Environmentalhealth perspectives76,187-191(1987).
    [76] Oleinick, Nancy L, Chiu, SM, Ramakrishnan, Narayani&Xue, L Yan. Theformation, identification, and significance of DNA-protein cross-links in mammaliancells. The British journal of cancer. Supplement8,135-140(1987).
    [77] Gehringer, Michelle M. Microcystin-LR and okadaic acid-induced cellular effects: adualistic response. FEBS letters557,1-8(2004).
    [78] Biaglow, John E, Varnes, Marie E, Tuttle, Steven W, Oleinick, Nancy L, Glazier,Karen, Clark, Edward P, Epp, Edward R&Dethlefsen, Lyle A. The effect ofL-buthionine sulfoximine on the aerobic radiation response of A549human lungcarcinoma cells. International Journal of Radiation Oncology*Biology*Physics12,1139-1142(1986).
    [79] Miller3rd, CA&Costa, M. Analysis of proteins cross-linked to DNA after treatmentof cells with formaldehyde, chromate, and cis-diamminedichloroplatinum (II).Molecular toxicology2,11-26(1989).
    [80] Coogan, Timothy P, Latta, Dorothy M, Snow, Elizabeth T, Costa, Max&Lawrence,A. Toxicity and carcinogenicity of nickel compounds. CRC Critical reviews intoxicology19,341-384(1989).
    [81] Klein, Catherine B, Frenkel, Krystyna&Costa, Max. The role of oxidative processesin metal carcinogenesis. Chemical research in toxicology4,592-604(1991).
    [82] Fornace Jr, Albert J&Little, John B. DNA crosslinking induced by X-rays andchemical agents. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and ProteinSynthesis477,343-355(1977).
    [83] Chiu, Song-Mao, Friedman, Libby R, Xue, Liang-Yan&Oleinick, Nancy L.Modification of DNA damage in transcriptionally active vs. bulk chromatin.International Journal of Radiation Oncology*Biology*Physics12,1529-1532(1986).
    [84] Sugiyama, MASAYASU, Patierno, SR, Cantoni, ORAZIO&Costa, M.Characterization of DNA lesions induced by CaCrO4in synchronous andasynchronous cultured mammalian cells. Molecular pharmacology29,606-613(1986).
    [85]张占英,俞顺章&陈传炜.微囊藻毒素LR对DNA和自然杀伤细胞的损伤效应研究.中华预防医学杂志35,75-78(2001).
    [86] Lankoff, Anna, Krzowski, ukasz, G ab, Joanna, Banasik, Anna, Lisowska, Halina,Kuszewski, Tomasz, Gó d, Stanislaw&Wójcik, Andrzej. DNA damage and repairin human peripheral blood lymphocytes following treatment with microcystin-LR.Mutation research559,131-142(2004).
    [87] Mankiewicz, Joanna, Walter, Zofia, Tarczynska, Malgorzata, Palyvoda, Olena,Wojtysiak‐Staniaszczyk, Magdalena&Zalewski, Maciej. Genotoxicity ofcyanobacterial extracts containing microcystins from Polish water reservoirs asdetermined by SOS chromotest and comet assay. Environmental toxicology17,341-350(2002).
    [88]董玲,段丽菊,张慧珍等.微囊藻毒素-LR致小鼠肝,肾和睾丸细胞DNA-蛋白质交联的研究.卫生研究37,144-146(2008).
    [89]陈铁晖,谢建忠,陈华.福建水华微囊藻毒素对小鼠免疫细胞影响的体外实验研究.海峡预防医学杂志14,3-5(2008).
    [90]陈铁晖,谢建忠,汪家梨等.福建水华微囊藻毒素免疫毒性整体动物试验.毒理学杂志24,148-150(2010).
    [91]孙露,沈萍萍,周莹等.太湖水华微囊藻毒素对小鼠免疫功能的影响.中国药理学与毒理学杂志16,226-230(2002).
    [92]梁艳,卢彦,沈萍萍.微囊藻毒素-LR对小鼠巨噬细胞吞噬功能及活性氧水平的影响.中国药理学与毒理学杂志21,55-58(2007).
    [93] Mereish, Kay A&Solow, Rikki. Effect of antihepatotoxic agents againstmicrocystin-LR toxicity in cultured rat hepatocytes. Pharmaceutical research7,256-261(1990).
    [94] egura, Bojana, Sedmak, Bojan&Filipi, Metka. Microcystin-LR induces oxidativeDNA damage in human hepatoma cell line HepG2. Toxicon41,41-48(2003).
    [95] Ding, Wen‐Xing, Shen, Han‐Ming&Ong, Choon‐Nam. Critical Role ofReactive Oxygen Species and Mitochondrial Permeability Transition inMicrocystin‐Induced Rapid Apoptosis in Rat Hepatocytes. Hepatology32,547-555(2000).
    [96] Boua cha, Noureddine&Maatouk, Imed. Microcystin-LR and nodularin induceintracellular glutathione alteration, reactive oxygen species production and lipidperoxidation in primary cultured rat hepatocytes. Toxicology letters148,53-63(2004).
    [97] Vanholder, Raymond, De Smet, Rita, Waterloos, Marie-Anne, Van Landschoot,Nadine, Vogeleere, Pascale, Hoste, Eric&Ringoir, Severin. Mechanisms of uremicinhibition of phagocyte reactive species production: characterization of the role ofp-cresol. Kidney international47,510-517(1995).
    [98] Robinson, Nancy A, Pace, Judith G, Matson, Charles F, Miura, George A&Lawrence, Wade B. Tissue distribution, excretion and hepatic biotransformation ofmicrocystin-LR in mice. Journal of Pharmacology and Experimental Therapeutics256,176-182(1991).
    [99] Brooks, WP&Codd, GA. Distribution of Microcystis aeruginosa peptide toxin andinteractions with hepatic microsomes in mice. Pharmacology&toxicology60,187-191(1987).
    [100] Backer, Lorraine C, Carmichael, Wayne, Kirkpatrick, Barbara, Williams, Christopher,Irvin, Mitch, Zhou, Yue, Johnson, Trisha B, Nierenberg, Kate, Hill, Vincent R&Kieszak, Stephanie M. Recreational exposure to low concentrations of microcystinsduring an algal bloom in a small lake. Marine Drugs6,389-406(2008).
    [101] Backer, Lorraine C, McNeel, Sandra V, Barber, Terry, Kirkpatrick, Barbara,Williams, Christopher, Irvin, Mitch, Zhou, Yue, Johnson, Trisha B, Nierenberg, Kate&Aubel, Mark. Recreational exposure to microcystins during algal blooms in twoCalifornia lakes. Toxicon55,909-921(2010).
    [102]胡颖,许凯黎.细胞凋亡机制研究的新进展.肿瘤21,389-391(2001).
    [103]方敏,王晓东.细胞凋亡的线粒体通路.北京大学学报(医学版)34,1-10(2002).
    [104] McCarthy, Nicola J, Whyte, Moira KB, Gilbert, Christopher S&Evan, Gerard I.Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced byoncogenes, DNA damage, or the Bcl-2homologue Bak. The Journal of cell biology136,215-227(1997).
    [105] Déas, Olivier, Dumont, Céline, MacFarlane, Marion, Rouleau, Matthieu, Hebib,Chafika, Harper, Francis, Hirsch, Fran ois, Charpentier, Bernard, Cohen, Gerald M&Senik, Anna. Caspase-independent cell death induced by anti-CD2orstaurosporine in activated human peripheral T lymphocytes. The Journal ofImmunology161,3375-3383(1998).
    [106] Dong, Zheng, Saikumar, Pothana, Griess, Gary A, Weinberg, Joel M&Venkatachalam, Manjeri A. Intracellular Ca2+thresholds that determine survival ordeath of energy-deprived cells. The American journal of pathology152,231-240(1998).
    [107] Candé, Céline, Cohen, Isabelle, Daugas, Eric, Ravagnan, Luigi, Larochette,Nathanael, Zamzami, Naoufal&Kroemer, Guido. Apoptosis-inducing factor (AIF):a novel caspase-independent death effector released from mitochondria. Biochimie84,215-222(2002).
    [108] Ikai, Takamichi, Akao, Yukihiro, Nakagawa, Yoshihito, Ohguchi, Kenji, Sakai,Yoshimichi&Nozawa, Yoshinori. Magnolol-induced apoptosis is mediated via theintrinsic pathway with release of AIF from mitochondria in U937cells. Biologicaland Pharmaceutical Bulletin29,2498-2501(2006).
    [109] Susin, Santos A, Lorenzo, Hans K, Zamzami, Naoufal, Marzo, Isabel, Snow, Bryan E,Brothers, Greg M, Mangion, Joan, Jacotot, Etienne, Costantini, Paola&Loeffler,Markus. Molecular characterization of mitochondrial apoptosis-inducing factor.Nature397,441-446(1999).
    [110] Candé, Céline, Cecconi, Francesco, Dessen, Philippe&Kroemer, Guido.Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathwaysof cell death? Journal of cell science115,4727-4734(2002).
    [111] Joza, Nicholas, Susin, Santos A, Daugas, Eric, Stanford, William L, Cho, Sarah K, Li,Carol YJ, Sasaki, Takehiko, Elia, Andrew J, Cheng, H-Y Mary&Ravagnan, Luigi.Essential role of the mitochondrial apoptosis-inducing factor in programmed celldeath. Nature410,549-554(2001).
    [112] Yu, Seong-Woon, Wang, Hongmin, Poitras, Marc F, Coombs, Carmen, Bowers,William J, Federoff, Howard J, Poirier, Guy G, Dawson, Ted M&Dawson, Valina L.Mediation of poly (ADP-ribose) polymerase-1-dependent cell death byapoptosis-inducing factor. Science Signaling297,259-263(2002).
    [113] Daugas, Eric, Susin, Santos A, Zamzami, Naoufal, Ferri, Karine F, Irinopoulou,Theano, Larochette, Nathanael, Prevost, Marie-Christine, Leber, Brian, Andrews,David&Penninger, Josef. Mitochondrio-nuclear translocation of AIF in apoptosisand necrosis. The FASEB Journal14,729-739(2000).
    [114] Van Gurp, Maria, Festjens, Nele, van Loo, Geert, Saelens, Xavier&Vandenabeele,Peter. Mitochondrial intermembrane proteins in cell death. Biochemical andbiophysical research communications304,487-497(2003).
    [115] Tsujimoto, Yoshihide. Cell death regulation by the Bcl-2protein family in themitochondria. Journal of cellular physiology195,158-167(2003).
    [116] Li, Lily Y, Luo, Xu&Wang, Xiaodong. Endonuclease G is an apoptotic DNasewhen released from mitochondria. Nature412,95-99(2001).
    [117] Cote, Jacques&Ruiz-Carrillo, Adolf. Primers for mitochondrial DNA replicationgenerated by endonuclease G. Science261,765-769(1993).
    [118] McDermott, CM, Nho, CW, Howard, W&Holton, B. The cyanobacterial toxin,microcystin-LR, can induce apoptosis in a variety of cell types. Toxicon36,1981-1996(1998).
    [119] Yoshida, Toshinori, Makita, Yuki, Tsutsumi, Tomoaki, Nagata, Satoshi, Tashiro,Fumio, Yoshida, Fuyuko, Sekuima, Masaru, Tamura, Shin-Ichi, Harada, Takanori&Maita, Keizo. Immunohistochemical localization of microcystin-LR in the liver ofmice: a study on the pathogenesis of microcystin-LR-induced hepatotoxicity.Toxicologic pathology26,411-418(1998).
    [120] Baker, David J&Hepple, Russell T. Elevated caspase and AIF gene expressioncorrelate with progression of sarcopenia during aging in male F344BN rats.Experimental gerontology41,1149-1156(2006).
    [121] Nielsen, Marianne, Lambertsen, Kate Lykke, Clausen, Bettina Hjelm, Meldgaard,Michael, Diemer, Nils Henrik, Zimmer, Jens&Finsen, Bente. Nuclear translocationof endonuclease G in degenerating neurons after permanent middle cerebral arteryocclusion in mice. Experimental brain research194,17-27(2009).
    [122] Macías-Silva, Marina&García-Sáinz, J Adolfo. Inhibition of hormone-stimulatedinositol phosphate production and disruption of cytoskeletal structure. Effects ofokadaic acid, microcystin, chlorpromazine, W7and nystatin. Toxicon32,105-112(1994).
    [123] Guzman, RE&Solter, PF. Characterization of sublethal microcystin-LR exposure inmice. Veterinary Pathology Online39,17-26(2002).
    [124]胡志坚,陈华,孙昌盛等.微囊藻毒素促肝癌过程中肝细胞bcl-2及bax基因表达研究.中华预防医学杂志36,293-242(2002).
    [125]赵金明,朱惠刚.藻毒素对los, jun基因表达及细胞周期的影响.中华预防医学杂志37,23-25(2003).
    [126] Fu, Wen-yu, Chen, Jia-ping, Wang, Xiu-min&Xu, Li-hong. Altered expression ofp53, Bcl-2and Bax induced by microcystin-LR in vivo and in vitro. Toxicon46,171-177(2005).
    [127] Bulera, Steven J, Eddy, Susan M, Ferguson, Erika, Jatkoe, Timothy A, Reindel,James F, Bleavins, Michael R&De La Iglesia, Felix A. RNA expression in the earlycharacterization of hepatotoxicants in Wistar rats by high‐density DNA microarrays.Hepatology33,1239-1258(2001).
    [128]傅文字,陈加平,徐立红. Caspase-3在微囊藻毒素诱导的细胞凋亡中的作用[J].中国环境科学24,6-8(2004).
    [1] Chorus, Edited Ingrid&Bartram, Jamie. Toxic cyanobacteria in water: a guide totheir public health consequences, monitoring and management. WTO (1999).
    [2] Yoshida, Toshinori, Takeda, Makio, Tsutsumi, Tomoaki, Nagata, Satoshi, Yoshida,Fuyuko, Maita, Keizo, Harada, Takanori&Ueno, Yoshio. Tumor Necrosis Factor-.ALPHA. Expression and Kupffer Cell Activation in Hepatotoxicity Caused byMicrocystin-LR in Mice. Journal of Toxicologic Pathology14,259-265(2001).
    [3] YU, SHUN‐ZHANG. Primary prevention of hepatocellular carcinoma. Journal ofgastroenterology and hepatology10,674-682(1995).
    [4] Ueno, Yoshio, Nagata, Satoshi, Tsutsumi, Tomoaki, Hasegawa, Akihiro, Watanabe,Mariyo F, Park, Ho-Dong, Chen, Gong-Chao, Chen, Gang&Yu, Shun-Zhang.Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampledin Haimen and Fusui, endemic areas of primary liver cancer in China, by highlysensitive immunoassay. Carcinogenesis17,1317-1321(1996).
    [5] Svircev, Zorica, Krstic, Svetislav, Miladinov-Mikov, Marica, Baltic, Vladimir&Vidovic, Milka. Freshwater cyanobacterial blooms and primary liver cancerepidemiological studies in Serbia. Journal of Environmental Science and Health PartC27,36-55(2009).
    [6] Yu, Shun-zhang, Zhao, Ning&Zi, Xiaolin. The relationship between cyanotoxin(microcystin, MC) in pond-ditch water and primary liver cancer in China. Zhonghuazhong liu za zhi [Chinese journal of oncology]23,96-99(2001).
    [7] Sekijima, Masaru, Tsutsumi, Tomoaki, Yoshida, Toshinori, Harada, Takanori,Tashiro, Fumio, Chen, Gang, Yu, Shun-Zhang&Ueno, Yoshio. Enhancement ofglutathione S-transferase placental-form positive liver cell foci development bymicrocystin-LR in aflatoxin B1-initiated rats. Carcinogenesis20,161-165(1999).
    [8] McGlynn, Katherine A, Tsao, Lilian, Hsing, Ann W, Devesa, Susan S&Fraumeni,Joseph F. International trends and patterns of primary liver cancer. InternationalJournal of Cancer94,290-296(2001).
    [9] Hu, Z, Chen, H, Li, Y, Gao, L&Sun, C. The expression of bcl-2and bax genesduring microcystin induced liver tumorigenesis. Zhonghua yu fang yi xue za zhi[Chinese journal of preventive medicine]36,239-242(2002).
    [10] Weng, Dan, Lu, Yan, Wei, Yinna, Liu, Ying&Shen, Pingping. The role of ROS inmicrocystin-LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology232,15-23(2007).
    [11] Humpage, Andrew R, Hardy, Stephen J, Moore, Emma J, Froscio, Suzanne M&Falconer, Ian R. Microcystins (cyanobacterial toxins) in drinking water enhance thegrowth of aberrant crypt foci in the mouse colon. Journal of Toxicology andEnvironmental Health Part A61,155-165(2000).
    [12] egura, Bojana, Vol i, Meta, Lah, Tamara T&Filipi, Metka. Differentsensitivities of human colon adenocarcinoma (CaCo-2), astrocytoma (IPDDC-A2)and lymphoblastoid (NCNC) cell lines to microcystin-LR induced reactive oxygenspecies and DNA damage. Toxicon52,518-525(2008).
    [13] Milutinovi, A, Zorc-Pleskovi, R, Petrovi, D, Zorc, M&uput, D.Microcystin-LR induces alterations in heart muscle. Folia Biologica (Praha)52,116-118(2006).
    [14] Li, Huiying, Xie, Ping, Li, Guangyu, Hao, Le&Xiong, Qian. In vivo study on theeffects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos,c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected iv with toxins.Toxicon53,169-175(2009).
    [15] Nishiwaki-Matsushima, Rie, Ohta, Tetsuya, Nishiwaki, Shinji, Suganuma, Masami,Kohyama, Kiyomi, Ishikawa, Takatoshi, Carmichael, Wayne W&Fujiki, Hirota.Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR.Journal of cancer research and clinical oncology118,420-424(1992).
    [16] Carmichael, WW. Cyanobacteria secondary metabolites—the cyanotoxins. Journal ofApplied Microbiology72,445-459(1992).
    [17] Ingested nitrate and nitrite, and cyanobacterial peptide toxins. WTO.(2006)
    [18] Ito, Emiko, Kondo, Fumio, Terao, Kiyoshi&Harada, Ken-Ichi. Neoplastic nodularformation in mouse liver induced by repeated intraperitoneal injections ofmicrocystin-LR. Toxicon35,1453-1457(1997).
    [19] Ding, Wen-Xing, Shen, Han-Ming, Zhu, Hui-Gang, Lee, Bee-Lan&Ong,Choon-Nam. Genotoxicity of microcystic cyanobacteria extract of a water source inChina. Mutation Research/Genetic Toxicology and Environmental Mutagenesis442,69-77(1999).
    [20] Abdel-Hamid, Nabil. Update to risk factors for hepatocellular carcinoma.International Journal of Medicine and Medical Science1,38-43(2009).
    [21] egura, Bojana, Zajc, Irena, Lah, Tamara T&Filipi, Metka. Patterns ofmicrocystin-LR induced alteration of the expression of genes involved in response toDNA damage and apoptosis. Toxicon51,615-623(2008).
    [22] Chen, Ting, Wang, Qingsong, Cui, Jun, Yang, Wei, Shi, Qian, Hua, Zichun, Ji,Jianguo&Shen, Pingping. Induction of apoptosis in mouse liver by microcystin-LRa combined transcriptomic, proteomic, and simulation strategy. Molecular&CellularProteomics4,958-974(2005).
    [23] Billam, Madhavi, Mukhi, Sandeep, Tang, Lili, Gao, Weimin&Wang, Jia-Sheng.Toxic response indicators of microcystin-LR in F344rats following a single-dosetreatment. Toxicon51,1068-1080(2008).
    [24] Li, Xiaoyu, Liu, Yongding, Song, Lirong&Liu, Jiantong. Responses of antioxidantsystems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity ofmicrocystin-LR. Toxicon42,85-89(2003).
    [25] Brooks, WP&Codd, GA. Distribution of Microcystis aeruginosa peptide toxin andinteractions with hepatic microsomes in mice. Pharmacology&toxicology60,187-191(1987).
    [26] Robinson, Nancy A, Matson, Charles F&Pace, Judith G. Association ofmicrocystin‐LR and its biotransformation product with a hepatic‐cytosolic protein.Journal of biochemical toxicology6,171-180(1991).
    [27] Kondo, Fumio, Matsumoto, Hiroshi, Yamada, Seiji, Ishikawa, Naohisa, Ito, Emiko,Nagata, Satoshi, Ueno, Yoshio, Suzuki, Makoto&Harada, Ken-ichi. Detection andidentification of metabolites of microcystins formed in vivo in mouse and rat livers.Chemical research in toxicology9,1355-1359(1996).
    [28] Gehringer, Michelle M, Shephard, Enid G, Downing, Tim G, Wiegand, Claudia&Neilan, Brett A. An investigation into the detoxification of microcystin-LR by theglutathione pathway in Balb/c mice. The international journal of biochemistry&cellbiology36,931-941(2004).
    [29] Robinson, Nancy A, Pace, Judith G, Matson, Charles F, Miura, George A&Lawrence, Wade B. Tissue distribution, excretion and hepatic biotransformation ofmicrocystin-LR in mice. Journal of Pharmacology and Experimental Therapeutics256,176-182(1991).
    [30] Ito, Emiko, Takai, Akira, Kondo, Fumio, Masui, Hiroaki, Imanishi, Susumu&Harada, Ken-ichi. Comparison of protein phosphatase inhibitory activity andapparent toxicity of microcystins and related compounds. Toxicon40,1017-1025(2002).
    [31] Hamm-Alvarez, Sarah F&Sheetz, Michael P. Microtubule-dependent vesicletransport: modulation of channel and transporter activity in liver and kidney.Physiological reviews78,1109-1129(1998).
    [32] Corwin, E.J. Handbook of Pathophysiology. Wolters Kluwer Health/LippincottWilliams&Wilkins.(2008).
    [33] Fu, Wen-yu, Xu, Li-hong&Yu, Ying-nian. Proteomic analysis of cellular responseto microcystin in human amnion FL cells. Journal of proteome research4,2207-2215(2005).
    [34] Hiraga, Akira&Tamura, Shinri. Protein phosphatase2A is associated in an inactivestate with microtubules through2A1-specific interaction with tubulin. BiochemicalJournal346,433-439(2000).
    [35] Kumar, V., Abbas, A.K., Fausto, N.&Aster, J.C. Robbins&Cotran PathologicBasis of Disease. Elsevier Health Sciences.(2009).
    [36] Runnegar, Maria T, Wei, Xinhua&Hamm-Alvarez, Sarah F. Increased proteinphosphorylation of cytoplasmic dynein results in impaired motor function.Biochemical Journal342,1-6(1999).
    [37] Alverca, Elsa, Andrade, Mariana, Dias, Elsa, Sam Bento, Filomena, Batoréu, MCC,Jordan, Peter, Silva, Maria Jo o&Pereira, Paulo. Morphological and ultrastructuraleffects of microcystin-LR from Microcystis aeruginosa extract on a kidney cell line.Toxicon54,283-294(2009).
    [38] Guzman, RE&Solter, PF. Characterization of sublethal microcystin-LR exposure inmice. Veterinary Pathology Online39,17-26(2002).
    [39] Hong, Waun Ki, Hait, William N, Kufe, Donald W&Pollock, Raphael E.Holland-Frei Cancer Medicine8. Vol.8. Pmph-usa.(2010).
    [40] Tan, Xiang-Wen, Xia, Hong, Xu, Jin-Hua&Cao, Jian-Guo. Induction of apoptosis inhuman liver carcinoma HepG2cell line by5-allyl-7-gen-difluoromethylenechrysin.世界胃肠病学杂志(英文版)15,2234-2239, doi:10.3748/wjg.15.2234(2009).
    [41] Fu, Wen-yu, Chen, Jia-ping, Wang, Xiu-min&Xu, Li-hong. Altered expression ofp53, Bcl-2and Bax induced by microcystin-LR in vivo and in vitro. Toxicon46,171-177(2005).
    [42] Boua cha, Noureddine, Maatouk, Imed, Plessis, Marie‐José&Perin, Francois.Genotoxic potential of Microcystin‐LR and nodularin in vitro in primary culturedrat hepatocytes and in vivo in rat liver. Environmental toxicology20,341-347(2005).
    [43] Billam, Madhavi. Development and validation of microcystin biomarkers forexposure studies, Texas Tech University,(2006).
    [44] Shen, Chwan-Li, Song, Woosun&Pence, Barbara C. Interactions of seleniumcompounds with other antioxidants in DNA damage and apoptosis in human normalkeratinocytes. Cancer Epidemiology Biomarkers&Prevention10,385-390(2001).
    [45] egura, Bojana, Sedmak, Bojan&Filipi, Metka. Microcystin-LR induces oxidativeDNA damage in human hepatoma cell line HepG2. Toxicon41,41-48(2003).
    [46] Rao, PV&Bhattacharya, R. The cyanobacterial toxin microcystin-LR induced DNAdamage in mouse liver in vivo. Toxicology114,29-36(1996).
    [47] Honma, Masamitsu, Momose, Maki, Tanabe, Hideyuki, Sakamoto, Hiroko, Yu,Yongjia, Little, John B, Sofuni, Toshio&Hayashi, Makoto. Requirement of wild‐type p53protein for maintenance of chromosomal integrity. Molecularcarcinogenesis28,203-214(2000).
    [48] Zhan, Li, Sakamoto, Hiroko, Sakuraba, Mayumi, Wu, De-Sheng, Zhang, Li-Shi,Suzuki, Takayoshi, Hayashi, Makoto&Honma, Masamitsu. Genotoxicity ofmicrocystin-LR in human lymphoblastoid TK6cells. Mutation Research/GeneticToxicology and Environmental Mutagenesis557,1-6(2004).
    [49] Suzuki, H, Watanabe, MF, Wu, Y, Sugita, T, Kita, K, Sato, T, Wang, X, Tanzawa, H,Sekiya, S&Suzuki, N. Mutagenicity of microcystin-LR in human RSa cells.International journal of molecular medicine2,109-112(1998).
    [50]徐立红,张甬元.微囊藻毒素分子致毒机理研究近况.水生生物学报17,365-374(1993).
    [51] Falconer, Ian R. Tumor promotion and liver injury caused by oral consumption ofcyanobacteria. Environmental toxicology and water quality6,177-184(1991).
    [52] Falconer, Ian R, Burch, Michael D, Steffensen, Dennis A, Choice, Mandy&Coverdale, O Robert. Toxicity of the blue‐green alga (cyanobacterium) Microcystisaeruginosa in drinking water to growing pigs, as an animal model for human injuryand risk assessment. Environmental toxicology and water quality9,131-139(1994).
    [53]俞顺章,赵宁,资晓林等.饮水中微囊藻毒素与我国原发性肝癌关系的研究.中华肿瘤杂志23,96-99(2001).
    [54]陈艳,俞顺章,杨坚波等.太湖地区城市饮用水微囊藻毒素与恶性肿瘤死亡率的关系.中国癌症杂志12,485-488(2002).
    [55] Gehringer, Michelle M. Microcystin-LR and okadaic acid-induced cellular effects: adualistic response. FEBS letters557,1-8(2004).
    [56] Toivola, DM&Eriksson, JE. Toxins affecting cell signalling and alteration ofcytoskeletal structure. Toxicology in vitro13,521-530(1999).
    [57] Deng, Xingming, Ito, Takahiko, Carr, Boyd, Mumby, Marc&May, W Stratford.Reversible phosphorylation of Bcl2following interleukin3or bryostatin1ismediated by direct interaction with protein phosphatase2A. Journal of BiologicalChemistry273,34157-34163(1998).
    [58] Nishizuka, Yasutomi. Intracellular signaling by hydrolysis of phospholipids andactivation of protein kinase C. Science258,607-614(1992).
    [59] Komatsu, Masaharu, Furukawa, Tatsuhiko, Ikeda, Ryuji, Takumi, Shota, Nong,Qingqing, Aoyama, Kohji, Akiyama, Shin-ichi, Keppler, Dietrich&Takeuchi, Toru.Involvement of mitogen-activated protein kinase signaling pathways inmicrocystin-LR–induced apoptosis after its selective uptake mediated by OATP1B1and OATP1B3. Toxicological sciences97,407-416(2007).
    [60] Wei, Yinna, Weng, Dan, Li, Feng, Zou, Xiao, Young, D Owen, Ji, Jianguo&Shen,Pingping. Involvement of JNK regulation in oxidative stress-mediated murine liver
    injury by microcystin-LR. Apoptosis13,1031-1042(2008).