新疆家蚕抗菌肽结构与功能的关系及抗菌作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室已经从新疆家蚕克隆获得抗菌肽基因Cecropin-XJ,通过原核系统和真核系统表达获得了抗菌肽,并对抗菌肽的抗菌特性进行了研究。研究表明,新疆家蚕抗菌肽具有很强的热稳定性、能够杀灭氨苄青霉素抗性菌、对酸碱盐、人造胃酸有一定的耐受性,抗菌谱广,能够不同程度地杀灭革兰氏阳性菌和革兰氏阴性菌。虽然已对新疆家蚕抗菌肽的特性进行了研究,但其结构与功能的关系及抗菌机理还没有完全揭示,本研究采用PCR扩增和人工合成基因的方法,对新疆家蚕抗菌肽基因进行修饰,进行体内抑菌实验与原核表达蛋白的抑菌活性研究,探讨其结构与活性的关系,同时研究了新疆家蚕抗菌肽对南宁麻花雏鸡促进生长及对血清激素水平、生理生化指标的影响:利用紫外光谱及以溴化乙锭为荧光探针的荧光光谱方法研究抗茵肽Cecropin-XJ与金黄色葡萄球菌(Staphylococcus aureus)DNA在体外的相互作用,通过紫外分光光度法研究抗菌肽的抑菌动力学,并采用扫描电镜和透射电镜观察抗菌肽作用于金黄色葡萄球菌后的超微结构;通过核酸免疫法制备了鼠抗新疆家蚕抗菌肽的抗体,结合免疫胶体金技术和透射电镜技术观察抗菌肽在细菌体内的定位情况,探讨新疆家蚕抗菌肽的作用机理。主要研究结果如下:
     (1)抗菌肽的α-螺旋、两亲性、疏水性、净正电荷数、关键氨基酸的替换等参数是相互依赖、相互影响,协同发挥作用,任何一个参数的改变都会影响抗菌肽整体的活性。α-螺旋是抗菌肽功能有效性的结构基础,但其所处的位置并不影响抗菌活性;两亲性结构,是抗菌肽与生物膜相互作用的重要结构;疏水性程度必须保持在一定的范围内;在一定范围内增加抗菌肽的阳离子能够增加抗菌活性,但正电荷数和抗菌活性之间无绝对正相关性;色氨酸的存在及抗菌肽的C-末端酰胺化有利于增强抗菌肽的抗菌活性。
     (2)与对照组相比,1.5、3.5 mL/L添加抗菌肽的试验组雏鸡增重效果显著(P<0.05),试验组血清总蛋白浓度差异不显著(P>0.05),尿素氮水平下降显著(P<0.05),血清胰岛素样生长因子-1(IGF-1)水平显著升高(P<0.05)。在28日龄,试验组的三碘甲状腺原氨酸(T3)浓度高于对照组,差异不显著(P>0.05),甲状腺素(T4)水平下降显著(P<0.05);在56日龄,试验组的T3水平显著降低(P<0.05),但T4水平高于对照组,差异显著(P<0.05)。
     (3)真核表达载体pcDNA3/Cecropin-XJ和peDNA3/Ceeropin-XJ4R在小鼠肝脏内能获得有效表达。所制备的鼠抗新疆家蚕抗菌肽的抗血清具有较高的免疫反应性和特异性;实验组血清抗体水平显著高于对照组(P<0.05),pcDNA3/Cecropin-XJ4R组的抗体水平高于pcDNA3/Cecropin-XJ组,但差异不显著。
     (4)利用紫外光谱及以溴化乙锭为荧光探针的荧光光谱方法研究抗菌肽Cecropin-XJ与金黄色葡萄球菌DNA在体外的相互作用,计算获得抗菌肽与DNA的结合常数和成键位点数。结果显示,抗菌肽使DNA发生了明显的增色效应,并使DNA的荧光强度增强,抗菌肽能与EB竞争性的结合DNA,表明抗菌肽可能与DNA双螺旋的沟槽结合;在抗菌肽存在下,DNA与EB作用的结合常数和成键位点数都发生变化,表明抗菌肽以嵌入和非嵌入两种方式与DNA相互作用。
     (5)通过紫外分光光度法研究抗菌肽的抑菌动力学,并采用扫描电镜和透射电镜观察抗菌肽作用于金黄色葡萄球菌后的超微结构,对抗菌肽作用机理进行初步探讨。结果表明,抗菌肽抑菌作用比较明显,抗菌肽的活性与作用时间有关。抗菌肽可能是通过“桶-板”模式渗透细胞膜,从而影响细胞膜的结构和功能,使细胞膜形成许多孔道,增强了金黄色葡萄球菌细胞的通透性,造成细胞内的原生质扩散,并从孔道向胞外渗漏,影响了细菌的代谢系统,从而起到抑菌、杀菌作用。抗菌肽使金黄色葡萄球菌细胞内容物大量渗漏而死亡,死亡细胞的细胞壁保持完整,表明细胞膜是抗菌肽作用的主要靶位点。
     (6)新疆家蚕抗菌肽处理金黄色葡萄球菌不同时间后,分别用抗菌肽抗体和胶体金标记的二抗处理,透射电镜观察的结果表明,抗菌肽的抗菌作用与浓度和时间相关,并定位于细胞膜和细胞质中。
     这些研究结果为进一步改造新疆家蚕抗菌肽,获得抗菌活性更高的抗菌肽,提供了科学依据,通过对Cecropin-XJ作用于S.aureus的机理探讨,提出了Cecropin-XJ以渗透细胞膜和与DNA结合两种作用机理抑杀金黄色葡萄球菌,对于丰富和理解cecropins的作用机制做出了一定的贡献。本研究为研发抗菌肽成为新一代替代抗生素的抗菌药物,尤其是针对抗生素抗性菌的药物提供了依据,为新疆家蚕抗菌肽在新疆畜牧业生产中的应用奠定了理论基础。
Cecropin-XJ gene was isolated from Xinjing silkworm and the corresponding full peptide has been expressed in Pichia yeast and E.coli in our laboratraty.Kinetic studies have shown that the Cecropin-XJ has an effective antibacterial activity.It has exhibited an extreme heat-stable property and the ability to kill ampicillin-resistant S.aureus.Moreover,It has been observed that the Cecropin-XJ was highly tolerant to extreme acidic,basic,and high salt environments as well as resistant to 24-hour digestion by artificial gastric juice.With a broad spectrum of antibacterial activities,the Cecropin-XJ is able to inhibit both Gram positive and Gram negative bacteria.
     Although it has been biologically characterized,the structure-function relationship and antibacterial mechanisms of the Cecropin-XJ have not yet been clarified.It has not known whether Cecropin-XJ antibacterial mode of action is due to their effects on membrane,or their effects on intracellular targets such as DNA or the both.In this study,there are five Cecropin-XJ genes were modified by PCR and three other new genes were synthesized. Growth curves of the transformant E.coli containing different new Cecropin-XJ genes were performed to determine the antibacterial activities.To further characterize the antibacterial activity of modified cecropin-XJ,the bacterial inhibition experiment in vitro was also performed.At the same time,the effects of Cecropin-XJ from Xinjiang silkworm on growth-enhancing,serum hormone levels and physical and chemical index in chicken were performed.Mouse antibodies against Cecropin-XJ were generated by DNA immunization. The interaction of the antimicrobial peptide Cecropin-XJ from Xinjiang silkworm and Staphylococcus aureus DNA was investigated by ultraviolet spectra and fluorescence spectra in vitro.The interaction mode was studied by using ethidium bromide(EB) as an extrinsic fluorescence probe.Ultrastructural observation of S.aureus treated with Cecropin-XJ on Scanning Electron Microscope and Transmission Electron Microscope were performed.The localization of immuno-labelled antimicrobial peptides was studied using Transmission Electron Microscope.The main results are as follows:
     (1) It was showed that structural parameters includingα-helix,amphipathicity, hydrophobicity,net positive charge,crucial amino acid substitution and so on are interdependent,and therefore,modification of one parameter often leads to significant changes to one or more of the others.Alpha-helix plays an important role in the function of antibacteria,the location of which was of no importance to cecropin-XJ.Amphipathicity may play a more predominant role regarding interaction with target membranes.Hydrophobicity is an essential feature for interactions between antimicrobial peptide and membrane,but its degree must be kept in a certain range.Within the certain range,increasing peptide cationicity is generally associated with increasing antimicrobial potency.However,there is a limit beyond which increasing positive charge no longer confers increased activity.Tryptophan and C-terminal acylation play a crucial role in killing bacteria for Cecropin-XJ.
     (2) The results showed that the absolute weight of chicken reared by tap water supplemented with 1.5,3.5 mL/L Cecropin-XJ increased significantly than control group(P<0.05).Compared with the control group,there was no significant difference in serum total protein of experimental groups(P>0.05),but the concentration of serum urea nitrogen decreased significantly in experimental groups supplemented with 1.5,3.5 mL/L Cecropin-XJ (P<0.05).Serum IGF-1 levels of experimental groups increased significantly than control group.Experimental groups' serum T3 levels at 28 days were higher than those of control group,but there was no significant difference.Serum T4 levels of experimental groups were significantly lower than those of control group at 28 days(P<0.05).T3 levels of experimental groups were significantly lower than those of control group chickens at 56 days (P<0.05),but T4 levels of experimental groups were significantly higher than those of control group chickens.
     (3) It was showed that the recombinant plasmids were successfully expressed in mouse liver and induced antibody with higher immune reactivity and specificity in mice.The specific antibody levels of mice immunized with the recombinant plasmid were significantly higher than those with empty vector(P<0.05).Antibody levels of mice immunized with pcDNA3-Cecropin-XJ4R were higher than those of pcDNA3-Cecropin-XJ,but there was no significantly difference.
     (4) The increase in absorbance of DNA samples at 260nm due to the addition of Cecropin-XJ was measured.It is called hyperchromicity of DNA,which can provide a direct measure of the degree of base-pair unstacking.The unstack results in the loss of duplex helix and then leads to the duplex helix relaxing.At the same time,the interaction mode was studied by using ethidium bromide(EB) as an extrinsic fluorescence probe.With the addition of Cecropin-XJ,the intensity of intrinsic fluorescence absorbance of DNA at 593nm increases greatly.It is suggested that the addition of Cecropin-XJ may stack with the base-pair of DNA or expose the aromatic amino acides,which lead to the enhancing of DNA fluorescence intensity.Subsequently the competition between Cecropin-XJ and EB to combine with DNA was found.It suggested that the style was groove binding and intercalation in the interaction between Cecropin-XJ and double helix DNA.Furthermore,in this study,the binding constant and binding number of Cecropin-XJ complex with DNA was determined.The binding constant and number of EB complex with DNA changed with addition of Cecropin-XJ.It showed that the interaction between Cecropin-XJ and DNA was based on intercalation and non-intercalation.Taken together,it indicated that Cecropin-XJ can bond to S.aureus chromosome DNA,which suggests existing DNA synthesis inhibition mechanism. Meanwhile,these results contribute to explain the molecular mechanism of antimicrobial peptide from the interaction style and structural charateristic of Cecropin-XJ and S.aureus DNA.
     (5) It was showed that the ability of cecropin-XJ to kill S.aureus is effective and time-dependent.It may be the "barrel-stave pore" mechanism that cecropin-XJ quickly penetrated and damaged the membrane.And then it was observed that cecropin-XJ make effects on the cytoplasmic membrane,disturbing the ordered arrangement of membrane lipid and changing the permeability of cytoplasmic membrane with the cytoplasmic contents of the cells leaking out.Finally,the affected S.aureus was died due to leakage of the cell contents.
     The intact cell wall was left,not losing their shape after treated with cecropin-XJ,which strongly showed that no cell wall disintegrated,althought cecropin-XJ acted on S.aureus and led to cell death.These results indicated cytoplasmic membrane is the main target attacked by cecropin-XJ.
     (6) The immunolabelled localization of antimicrobial peptides was studied using transmission electron microscopy.Staphylococcus aureus was exposed to Cecropin-XJ. Cecropin-XJ was found in the cytoplasm and membrane of bacteria.Cecropin-XJ could effectively kill Staphylococcus aureus in the dosage-and time-dependent way.
     Based on these results,modification of Ceeropin-XJ to improve antimicrobial activity may be important in the rational design of novel therapeutic agents.To our knowledge,this study represents the first report on two different mechanism of action of Cecropin-XJ to kill S. aureus.First,membrane mechanism of Cecropin-XJ was emphasized by the SEM and immuno-TEM.Second,Cecropin-XJ may interact with DNA to inhibit the DNA replication and transcription,and then inhibit S.aureus growth and development.In addition to increasing our understanding of a novel mechanism of action of Cecropin-XJ,the study presents a potential antibiotic to overcome S.aureus,especially in killing antibiotic-resistant S.aureus, and contributes to develop a novel antibiotic for future therapeutic purposes.These findings could lead to a broad application prospect in the medical industry and domestic animal industry of Xinjiang.
引文
[1]Nüsslein K,Arnt L,Rennie J,Owens C,Tew GN.Broad-spectrum antibacterial activity by a novel abiogenic peptide mimic.Microbiology,2006,152(7):1913-1918
    [2]Marr A K,Gooderham W J,Hancock R E.Antibacterial peptides for therapeutic use:obstacles and realistic outlook.Currp in Pharmacol,2006,(5):468-472
    [3]Bradshaw J.Cationic antimierobial peptides:issues for potential clinical use.BioDrugs,2003,17(4):233-240.
    [4]冯兴军,王建华,杨雅麟,腾达,刘立恒.乳铁蛋白肽(Lactoferricin)作用机制研究进展.中国生物工程杂志,2004,24(1):23-26.
    [5]Zasloff M.Antimicrobial peptides of multicellular organisms.Nature,2002,415(6870):389-395
    [6]Brown K L,Hancock R E.Cationic host defense(antimicrobial) peptides.Currp in Immunol,2006,18(1):24-30
    [7]Hancock R.E and Lehrer R.Cationic peptides:a new source of antibiotics.Trends Biotechnol,1998,16:82-88.
    [8]Martin E,Ganz T and Lehrer R I.Defensins and other endogenous peptide antibiotics of vertebrates.J.Leukoc.Biol.1995,58:128- 136.
    [9]Wang Z,and Wang G.APD:the Antimicrobial Peptide Database.Nucleic Acids Res.2004,32:D590-D592.
    [10]刘忠渊,张富春,蔡伦,赵干,王宾.酵母菌中表达的新疆家蚕抗菌肽的特性研究.微生物学报,2003,43(5):635-641.
    [11]于健,邱芳萍,张玲.抗菌肽及其应用前景[J].长春工业大学学报(自然科学版),2004,25(1):66-68.
    [12]刘建涛,苏志坚,王方海,李广宏,宋少云.昆虫抗菌肽的研究进展.昆虫天敌,2006,28(1):36-43.
    [13]Powers J P,Hancock RE.The relationship between peptide structure and antibacterial activity. Peptides,2003,24(11): 1681 - 1691.
    [14]Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation,characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA ,1987,84 (15):5449.
    [15] Holak T A, Engstrom A, Kraulis PJ, Lindeberg G, Bennich H, Jones TA, Gronenborn AM, Clore GM. The solution conformation of the antibacterial peptide cecropinA: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry, 1988, 27: 7620-7629.
    [16] 苟小军,邬小勇,杨灿宇. 蛙皮多肽抗生素的研究进展. 成都大学学报,2006,25(1):25-30.
    [17] Christensen B, Fink J, Merrifield R B, Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA,1988,85:5072.
    [18] Park S C, Kim M H. Amphipathic α-helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: Pore formation mechanism in various lipid compositions, Biochimica et Biophysica Acta,2007:13-26.
    [19] Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides : their potential to mocluilate activity on model membranes and biological cells. Biophysica Acta, 1999, (1462):71—87.
    
    [20] Giangaspero A, Sandri L, Tossi A. Amphipathic alpha helical antimicrobial peptides.Eur J Biochem,2001,268(21):5589-5600.
    
    [21] Ramamoorthy A, Thennarasu S, Gottipati K, Sreekumar S, Heyl DL, An FY, Shelburne CE. Deletion of all cycteines in Tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and LPS selective binding. Biochemistry, 2006,45:6529-6540.
    [22] Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T, Shimonishi Y. Tachyplesin a class of antimicrobial peptide from the hemocytes of the hemocytes of the horseshoe crab(Tachypleus tridentatus) Isolation and chemical structure . J Biol Chem, 1998, 263 : 16709— 16713.
    [23] Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996,35(35):11361 - 11368.
    [24] Mandard N, Sodano P, Labbe H, Bonmatin JM, Bulet P, Hetru C, Ptak M, Vovelle F. Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data.Eur J Biochem,1998,256(2):404-410.
    [25]廖乾生,林福呈,李德葆.植物防御素及其研究进展.浙江大学学报,2003,29(1):113-118.
    [26]Imura Y,Nishida M,Ogawa Y,Takakura Y,Matsuzaki K.Action mechanism of tachyplesin I and Effects of PEGylation.BBA Biomembranes,2007,1768:1160-1169.
    [27]Harder J,Barrels J,Christophers E,Schroder JM..Isolation and characterization of human β-defensin-3,a novel human inducible peptide antibiotic.J Bio Chem,2001,276:5707-5713.
    [28]Shaw JE,Alattia JR,Verity JE,Privé GG,Yip CM.Mechanisms of antimicrobial peptide action:studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.J Struct Biol,2006,154(1):42-58.
    [29]徐恒卫,孙兰,刘景生.富含脯氨酸的抗菌肽研究进展.中国药理学通报,2004,7:735-740.
    [30]Bulet P,Hetru C.Antimicrobial peptide in insects:structure and function.Developmental and Comparative Immunology,1999,23:329-344.
    [31]Bulet P,Hegy G,Lambert J,van Dorsselaer A,Hoffmann JA,Hetru.Insect immunity.The inducible antibacterial peptide diptericin carries two O-glyeans necessary for biological activity.Biochem,1995,34:7394-7400.
    [32]张波,王林美,叶博,李树英,赵振军,范琦.用cDNA末端扩增法克隆柞蚕攻击素基因及序列分析.蚕业科学,2006,32(3):333-339.
    [33]Carlsson A,Bennich H.Attacin,an antibacterial protein from Hy alophora cecropia,inhibit synthesis of ouer membrane proteins in Escherichia coli by interfering with Omp gene transcription.Infect and Immunity,1991,59:3040-3044.
    [34]Hancock RE.Peptide antibiotics.Lancet,1997,349:418-422.
    [35]Boman HG,Agerberth B and Boman A.Mechanisms of action on Escherichia coli of cecropin P1 and PR-39,two antibacterial peptides from pig intestine.Infect Immun,1993 61:2978-2984.
    [36]Cabiaux V,Agerberth B,Johansson J,Homble F,Goormaghtigh E,and Ruysschaert JM.Secondary structure and membrane interaction of PR-39,a Pro-Arg-rich antibacterial peptide.Eur J Bioehem,1994,224:1019-1027.
    [37]Zhu W L,Park Y,Park I S,Park YS,Kim Y,Hahm KS,Shin SY.Imp rovement of bacterial cell selectivity of melittin by a single Trp mutation with a peptide residue.Protein Pept Lett,2006,13(7):719-725.
    [38]Dathe M,Wieprecht T,Nikolenko H,Handel L,Maloy WL,MacDonald DL,Beyermann M,and Bienert M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett, 1997,403(2):208-212.
    [39] Oathe M and Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochimica et Biophysica Acta, 1999, 1462(122): 71-87.
    [40] MorA, Nioolas P. The NH22 terminal a-helical domainl and 18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem, 1994,269 (3): 1934-1939
    [41] Chen Y, Mant C T, Hodges R S. Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic alpha-helix. J Pep t Res, 2002,59 (1): 18—33.
    
    [42] Chen Y, Mant C T, Farmer S W, Hancock RE, Vasil ML, Hodges. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem, 2005, 280(13): 12316-12329.
    [43]Bessalle R, Haas H, Goria A, Shalit I, and Fridkin M. Augmentation of the antibacterial activity of magainin by positive-charge chain extension. AntimicrobAgents Chemother,1992,36:313—317.
    
    [44]Luis G.M. Moraes, Marcos A. Fario, Renata F.F. Vieira, Clovis R. Nakaie, M. Teresa M. Miranda, Shirley Schreier, Sirlei Daffre, Antonio Miranda. Conformational and functional studies of gomesin analogues by CD, EPR and fluorescence spectroscopie. Biochimica Biophysica Acta, 2007,1768:52—58.
    
    [45]Hancock R E.Cationic peptides: efectors in innate immunity and novel antimicrobials.Lancet Infect Dis,2001,1(3):156-164.
    [46] Chan D I, Prenner E J, Vogel H J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. BBA Biomembranes, 2006,1758:1184—1202.
    
    [47] Matsuzaki K, Sugishita K, HaradaM, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta, 1997, 1327(1):119-130.
    [48] Zhu W L, Lan H, Park I S, Kim JI, Jin HZ, Hahm KS, Shin SY. Design and mechanism of action of a novel bacterial selective antimicrobial peptide from the cell penetrating peptide Pep21. Biochem Biophys Res Commun, 2006, 349 (2): 769—574.
    [49] Ann H S, Cho W, Kang S H, Ko SS, Park MS, Cho H, Lee KH. Design and synthesis of novel antimicrobial peptides on the basis of alpha helical domain of Tenecin 1, an insect defensin protein, and structure activity relationship study. Peptides, 2006,27 (4) : 640—648.
    [50]Blondelle SE and Houghten RA. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry, 1992,31 (50): 12688- 12694.
    [51]Dathe M, Nikolenko H, Meyer J, Beyermann M, and Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett, 2001,501:146—150.
    [52] Yang S T, Shin S Y, Hahm K S, Kim JI. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int J Antimicrob Agents, 2006,27 (4): 325—330.
    [53] Pal T, Sonnevend A, Galadari S, Conlon JM .Design of potent, nontoxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin22. Regul Pept, 2005,129 (123): 85-91.
    [54]Michael R. Yeaman and Nannette Y. Yount. Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacological Reviews, 2003,55:27-55.
    [55] Eisenberg D. Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem, 1984, 53: 595-623.
    [56] Pathak N, Salas-Auvert R, Ruche G, Janna MH, McCarthy D, and Harrison RG. Comparison of the effects of hydrophobicity, amphiphilicity and alphahelicity on the activities of antimicrobial peptides. Proteins, 1995,22(2): 182—186.
    [57] Perez Paya E, Houghten R A, Blondelle S E. The role of amphipathicity in the folding, self-association and biological activity of multiple subunit small proteins. J Biol Chem, 1995,270 (3): 1048 - 1056.
    [58]Wieprecht T, Dathe M, Krause E, Beyermann M, Maloy WL, MacDonald DL, and Bienert M. Modulation of membrane activity of amphipathic, antibacterial peptides by slight modifications of the hydrophobic moment. FEBS Lett, 1997,417:135—140.
    
    [59] Lee D G, Kim H N, Park Y, Kim HK, Choi BH, Choi CH, Hahm KS. Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP(2-20). derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochem aiophys Acta, 2002, 1598(12):185— 194.
    
    [60] Bessalle R, Gorea A, Shalit I, Metzger JW, Dass C, Desiderio DM, Fridkin M. Structure-function studies of amphiphilic antibacterial peptides. J Med Chem, 1993,36(9): 1203- 1209.
    [61] Ohmori N, Niidome T, Hatakeyama T, Mihara H, Aoyagi H. Interaction of alpha-helical peptides with phospholipid membrane: effects of chain length and hydrophobicity of peptides. J Pept Res, 1998,51 (2): 103-109.
    
    [62] Zhu W L, Lan H, Park Y, Yang ST, Kim JI, Park IS, You HJ, Lee JS, Park YS, Kim Y, Hahm KS, Shin SY.Effects of Pro→peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrp ticinamide antimicrobial peptide.Biochemistry.2006,45(43):13007-13017.
    [63]Chen Y,Guarnieri M T,Vasil A I,Vasil ML,Mant CT,Hedges RS.Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimierobial peptides.Antimicrob Agents Chemother,2007,51(4):1398-406.
    [64]Wieprecht T,Dathe M,Epand RM,Beyermann M,Krause E,Maloy WL,MacDonald DL,and Bienert M.Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic,antibacterial peptides.Bioehemistry,1997,36:12869-12880.
    [65]Uematsu N and Matsuzaki K.Polar angle as a determinant of amphipathic alpha-helix-lipid interactions:a model peptide study.Biophys J,2000,79:2075-2083.
    [66]Rickey P.Hicks,Jayendra B.Bhonsle,Divakaramenon Venugopal,Brandon W.Koser,and Alan J.Magill.De Novo Design of Selective Antibiotic Peptides by Incorporation of Unnatural Amino Acids.J Med.Chem.2007,50,3026-3036.
    [67]Otvos L J R.Antibacterial peptides isolated from insects.J.pept Sci,2000,6:497-511.
    [68]Taran SA,Esikova TZ,Mustaeva LG,Baru MB,Alakhov IuB.Synthesis and antibacterial activity of analogues of the N-terminal fragment of the sarcotoxin IA antimierobial peptide.Bioorg Khim,2002,28(5):396-401.
    [69]Lee DG,Hahm KS,Shin SY.Structure and fungicidal activity of a synthetic antimicrobiai peptide,P18,and its truncated peptides.Biotechnol Lett,2004,26(4):337-341.
    [70]PiniA,GiulianiA,Faleiani C,Runci Y,Ricci C,Lelli B,Malossi M,Neri P,Rossolini GM,Bracci L.Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification.Antimicrobial Agents Chemother,2005,49(7):2665-2672.
    [71]Jing W G,Svendsen J S,Vogel H J.Comparison of NMR structures and model membrane interactions of 15-residue antimicrobial peptides derived from bovine laetoferriein.Bioehem.Cell Biol,2006,84:312-326.
    [72]Jaynes J M,Burton C A,Barr S B.In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi.FASEB J,1989,2:2878-2883.
    [73]赵昆,刘思国,王春来,宫强,迟磊,刘建东,王勇,云孟克,常月红,刘慧芳,周媛媛 孙延鸣.牛抗茵肽Bac7-Bac5融合基因在大肠杆菌中的过表达、纯化及抑茵活性.中国生物工程杂志,2007,27(3):65-70.
    [74]Xu X,Jin F,Yu X,Ren S,Hu J,Zhang W.High-level expression of the recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12) with an ubiquitin fusion partner in E.coli.Protein Expression and Purification,2007,55:175 - 182.
    [75]李国栋,钱承军,陆敏,孙睿华,黄青山.一组人工合成抗菌肽的研究.微生物学报,2006,46(3):492-495.
    [76]Ahn HS,Cho W,Kang SH,Ko SS,Park MS,Cho H,Lee KH.Design and synthesis of novel antimierobial peptides on the basis of α-helical domain of Tenecin 1,an insect defensin protein,and structure-activity relationship study.Peptides,2006,27:640-648.
    [77]李桂平,陈仪本.一种新融合抗菌肽基因的克隆、表达及其抗菌活性的研究.微生物学报,2007,47(1):115-120.
    [78]Arnt L,Rennie J R,Linser S,Willumeit R,Tew GN.Membrane activity of biomimetic facially amphiphilic antibiotics.J Phys Chem B Condens Matter Mater Surf Interfaces.Biophys,2006,110(8):3527-3532.
    [79]Havard Jenssen,Pamela Hamill,and Robert E.W.Hancock.Peptide Antimicrobial Agents.Clinical Microbiology Reviews,2006,19(3):491-511.
    [1]Bechinger B.Structure and functions of channel-forming peptides:magainins,cecropins,melittin and alamethicin.J.Membr.Biol,1997,156:197-211.
    [2]Bechinger B.The structure,dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy.Biochim.Biophys.Acta,1999,1462:157-183.
    [3]Biggin PC,Sansom M S.Interactions of α-helices with lipid bilayers:a review of simulation studies.Biophys.Chem,1999,76:161 - 183.
    [4]Yuichi Imura,Minoru Nishid,Katsumi Matsuzaki.Action mechanism of PEGylated magainin 2analogue peptide.Bioehimica et Biophysica Acta,2007,1768:2578-2585.
    [5]Matsuzaki K.Why and how are peptide-lipid interactions utilized for selfdefense? Magainins and tachyplesins as archetypes.Biochim.Biophys.Acta,1999,1462:1 - 10.
    [6]Shai Y.Mechanism of the binding,insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell nonselective membrane-lytic peptides.Biochim.Biophys.Acta,1999,1462:55-70.
    [7] Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: Structural and charge requirements for activity. Biochim. Biophys. Acta, 1999,1462:29-54.
    [8] Boman H G. Inducible antibacterial defense system in Drosophial. Nature, 1972,237:232.
    [9] Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002,415:389—395.
    [10] Brogden K A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev., Microbiol, 2005,3:238-250.
    
    [11]Monika Majerowicz, Alan J. Waring, Shaoying Wen, and Frank Bringezu. Interaction of the Antimicrobial Peptide Dicynthaurin with Membrane Phospholipids at the Air-Liquid Interface. J. Phys. Chem. B, 2007,111:3813—3821.
    
    [12] 梁士德,张士璀. 抗菌肽和抗菌肽基因. 海洋科学,1994(6):30-311.
    
    [13] Won-Mi Cho, Bishnu Prasad Joshi, Hyeongjin Cho and Keun-Hyeung Lee. Design and synthesis of novel antibacterial peptide-resin conjugates. Bioorganic & Medicinal Chemistry Letters,2007;17:5772-5776.
    [14] Andersen J H, Jenssen H, Sandvik K, Gutteberg TJ. Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparin sulphate at the cell surface. J. Med. Virol, 2004,74:262—271.
    [15] De Lucca A J, Walsh TJ. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother, 1999,43:1 —11.
    [16] Theis T, Stahl U. Antifungal proteins: targets, mechanisms and prospective applications. Cell. Mol. Life Sci, 2004, 61: 437-455.
    [17] Papo N, Shai Y. Host defense peptides as new weapons in cancer treatment. Cell. Mol. Life Sci, 2005,62: 784-790.
    
    [18]Sarah R. Dennison, Leslie H.G. Morton, Frederick Harris, David A. Phoenix. Antimicrobial properties of a lipid interactive a-helical peptide VP1 against Staphylococcus aureus bacteria. Biophysical Chemistry,2007,129:279-283.
    [19] Frances Neville, David Gidalevitz , Girish Kale, Andrew Nelson. Electrochemical screening of anti-microbial peptide LL-37 interaction with phospholipids. Bioelectrochemistry, 2007,70:205—213.
    [20] Wachinger M , Kleinschmidtet A ,Winder D. Antimicrobial peptides melit tin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol,1998,79(4):731-740.
    
    [21] Srisailam S, Arunkumar A I,Wang W. Conformational study of a custom antibacterial peptide cecropin B1:implications of the lytic activity. Biochem Biophys Acta,2000,479 (122): 275-280.
    [22] Hernorth B. The influence of temprature and does on antibacterial peptide response against lipopoly saccharide in the blue mussel, Mytilus edulis. Fish Shellfish Immunol,2003,14 (1):25-37.
    [23] Epand RM, Epand R F.Modulation of membrane curvature by peptides.BiopoIymers,2000 (55) :358— 363.
    [24] Epand R M,Vogel H J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta,1999,1462: 11-28.
    [25] Herusimenka Y, Benincusa M, Mattiuzzo M, Cescutti P, Gennaro R, Rizzo R. Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens. Peptides,2005,26(7):1127- 1159.
    [26] Park IY, Park CB, Kim MS, Kim SC. Parasinl ,an antimicrobial peptide derived from histone H-A in the catfish, parasilurus asotus. FEBS Letters, 1998,437:258-262.
    
    [27] 刘先凯,赵彤言. 昆虫抗菌肽的研究进展. 寄生虫与昆虫学报,2001,8(2): 115-121.
    
    [28] Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett, 2001, 501:146—150.
    [29]Mavri J,Vogel H J. Ion pair formation of phosphorylated amino acids and lysine and arginine side chains: a theoretical study. Proteins, 1996,24:495—501.
    [30] Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M. All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett, 1990,274:151 —155.
    [31] Wade D, Boman A, Wahlin B, Drain CM, Andreu D, Boman HG, Merrifield RB. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA, 1990,87:4761 —4765.
    [32]Vunnam S,Juwadi P,Merrifield RB. Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine. J Pept Res,1997,49:59—66.
    [33] Papo N, Oren Z, Pag U, Sahl HG, Shai Y. The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. J Biol Chem, 2002,277(37): 33913—33921.
    [34]Michael R Y,Nannette Y Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev,2003,55:27-55.
    
    [35] Carlsson A, Bennich H. Attacin,an antibacterial protein from Hy alophora cecropia, inhibit synt hesis of ouer membrane proteins in Escherichia coli by interfering with Omp gene transcription. Infect and Immunity, 1991,59 :3040-3044.
    [36] Jon - Paul S Powers , Robert E W Hancock. The relationship between peptide structure and antibacterial activity. Peptides,2003 (24): 1681 - 16911.
    [37]Tim Salditt, Chenghao Li, Alexander Spaar. Structure of antimicrobial peptides and lipid membranes probed by interface-sensitive X-ray scattering. Biochimica et Biophysica Acta,2006,1758:1483-1498.
    [38]David I. Chan; Elmar J. Prenner, Hans J. Vogel .Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta, 2006,1758:1184—1202.
    [39] Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981,292:246-248.
    [40] Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes.Biochemistry, 1992,31:12416 —12423.
    [41]Shai Y. Molecular recognition betweenmembrane-spanning polypeptides. Trends Biochem Sci, 1995,20: 460-464.
    [42] Sitaram N,Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta.1999,1462:29-54.
    [43] 申吉泓. 抗菌肽作用机理研究现状. 国外医学肿瘤学分册,2003,10(5):301-303.
    
    [44] Bessin Y, Saint N, Marri L, Marchini D, Molle G. Gerard Molle Antibacteririal activity and pore-forming properties of ceratotoxins: a mechanism of action besied on the same model Biochimica et. Biophysica Acta ,2004,1667:148-156.
    [45] Frecer V, Ho B, Ding J L. Design of Potent Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy,2004,9:3349-3357.
    [46] Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochem, 1996,35:11361-11368.
    [47] Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J, 2001,81:1475-1485.
    [48] Hara T, Kodama H, Kondo M, Wakamatsu K, Takeda A, Tachi T, Matsuzaki K. Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers,2001,58:437—446.
    [49] Hara T, Mitani Y, Tanaka K, Uematsu N, Takakura A, Tachi T, Kodama H, Kondo M, Mori H, Otaka A, Nobutaka F, Matsuzaki K. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study. Biochemistry, 2001,40: 12395—12399.
    [50]Sylvie Campagna, Nathalie Saint, Ge'rard Molle and Andre Aumelas. Structure and Mechanism of Action of the Antimicrobial Peptide Piscidin. Biochemistry, 2007,46:1771-1778.
    [51] Yoonkyung Park, Dong Gun Lee, Seung-Hwan Jang, Eun-Rhan Woo, Hye Gwang Jeong, Cheol- Hee Choi and Kyung-Soo Hahm. A Leu-Lys-rich antimicrobial peptide: activity and mechanism. Biochimica et Biophysica Acta,2003,1645(2):172- 182.
    [52]Hancock RE, Rozek A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiology Letters, 2002,206(2): 143-149.
    [53] Friedrich CL, Moyles D, Beveridge TJ, Hancock RE. Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria. Antimicrobial Angent and Chemotherpy,2000,8:2086- 2092.
    [54 ] Park C B,Kim H S,Kim S C.Mechanism of action of the antimicrobial peptide buforin II :buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun, 1998,244 :253-259.
    [55] Yang YS, Mitta G, Chavanieu A, Calas B, Sanchez JF, Roch P, Aumelas A. Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry,2000,39: 14436- 14482.
    [56]Yan-qiong Xiong, Michael R Y, Arnold S. In Vitro Antibacterial Activities of Platelet Microbicidal Protein and Neutrophil Defensin against Staphylococcus aureus Are Influenced by Antibiotics Differing in Mechanismof Action. Antimicrobial Agents and Chemotherapy, 1999,5:1111 — 1117.
    [57] Suresh Yenugu. Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2betal and HE2beta2.Reproductive Biology and Endocrinology, 2004,2:61.
    [58] Gong X,Shi Y H ,Le GW. Study on the interaction mechanismof antibacterial peptide MDL -1 in Musca domestica L and E. coli DNA by fluorescence spectra. Spectroscopy and Spectral Analysis,2005,25(3) :420-423.
    [59] David M. LivermorelLinezolid in vitro :mechanism and antibacterial spectrum. Journal of Antimicrobial Chemotherapy,2003,51 (S2):9—161
    [60] Lijuan Zhang, Roland Benz, and Robert E. W. Hancock.Influence of Proline Residues on the Antibacterial and Synergistic Activities of R-Helical Peptides. Biochemistry, 1999,38, 8102-8111.
    [61] Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T, Selsted ME. Intaction of human defensins with Escherichia coli: mechenism of bactericidal activity. J Clin Invest, 1994,94:553—561.
    [62] Chun-Hua Hsu, Chinpan Chen, Maou-Lin Jou, Alan Yueh-Luen Lee, Yu-Ching Lin, Yi-Ping Yu, Wei-Ting Huang and Shih-Hsiung Wu. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Research, 2005,33 (13):4053—4064.
    [63]Haryadi Sugiarto, Pak-Lam Yu. Mechanisms ofaction ofostrich β-defensins against Escherichia coli. FEMS Microbiol Lett,2007,270:195-200.
    [64] Takeshima K, Chikushi A, Lee KK, Yonehara S, Matsuzaki K.Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes.J Biol Chem,2003,278(2): 1310-1315.
    
    [65] Cohen,M.L. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science, 1992,257:1050-1055.
    [66] Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A, Wang A, Lee K, Doria S, Hamill P, Yu JJ, Li Y, Donini O, Guarna MM, Finlay BB, North JR, Hancock RE. An anti-infective peptide that selectively modulates the innate immune response. Nature Biotechnology,2007,25(4):465-472.
    [67]Sneh Lata, BK Sharma and GPS Raghava. Analysis and prediction of antibacterial peptides. BMC Bioinformatics, 2007, 8:263—273.
    [1]李卫鹏,郑佐娅,王红,王从珠,杭勤,赵卫国.B型钠尿肽基因的克隆和原核表达载体构建及纯化.基础医学,2007,32(1):14-17.
    [2]吴玉章,刘茂昌,贾正才,邹丽云.HBV新型免疫原的设计、合成及免疫原性研究.第三军医大学学报,2000,22(10):919-923.
    [3]刘绛光,张海鸿.小分子多肽分离方法研究进展.中国生化药物杂志,2005,26(4):244-245.
    [4]莫永炎,刘亚伟,王静珍.人GST-WAP1融合蛋白的原核表达及其抗体制备.中国生物化学与分子生物学报,2003,19(2):168-172.
    [5]Kapsenberg ML.Chemicals and proteins as allergens and adjuvant.Toxicology Letter,1996,86(23):79-83.
    [6]Lerner RA,Green N,Alexander H,Liu FT,Sutcliffe JG,Shinnick TM.Chemically synthesized peptides predicted from the nucleotide sequence of hepatitis B virus genome elicit antibodies reactive envelope protein of Dane particles.Pro Natl Acad Sci USA,1981,78:3403-3407.
    [7]孙宪锋,董小平,张宝云,周伟,王长安,赵同兴,洪涛.人朊病毒多肽抗体的制备及应用.中华微生物学和免疫学杂志,2000,20(1):70-73.
    [8]Aguilar J C,Rodriguez E G.Vaccine adjuvants revisited.Vaccine,2007,25(19):3752-3762.
    [9]熊建平,石统东,贾正才,周伟,何念海.应用低压逆相脂质体包裹技术提高小分子Mart-1_(27-35)的免疫原性.免疫学杂志,2002,18(1):76-77.
    [10]张荣媛,王静,李茜.融合蛋白技术及临床应用进展.国际生物制品学杂志,2006,29(2):82-84.
    [11]Sambrook J,Fritsch EF,Maniatis T(金冬雁,黎孟枫译).分子克隆实验指南[M].第3版.北京:科学出版社,2001.
    [12]Shuntao W,Jiannan F,Jianwei G,Leiming G,Yan L,Yingxun S,Weisong Q,Meiru H,Gencheng H,Beifen S.A novel designed single domain antibody on 3-D structure of ricin A chain remarkably blocked ricin-induced cytotoxieity.Molecular Immunology,2006,(43):1912-1919.
    [13]Barrell P J,Liew OW,Conner AJ.Expressing an antibacterial protein in bacteria for raising antibodies.Protein Expression and Purification,2004,(33):153-159.
    [14]Natalia S,Emilio De S,Juliana L.A novel and easy method for the production of recombinant peptides for use in the generation of monospeeific antisera against Lama glama IgG2b and IgG2e subclasses.Immunol Methods,2006,(313):214-218.
    [15]Yang J,Guo SY,Pan FY,Geng HX,Gong Y,Lou D,Shu YQ,Li CJ.Prokaryotic expression and polyclonal antibody preparation of a novel Rab-like protein mRabL5.Protein Expression and Purification,2007,(53):1-8.
    [16]唐艳,李慧,张培因,卫红飞,王莉,李大鹏,于永利,王丽颖.MUC1核心肽多克隆抗体的制备及鉴定.中国生物制品学杂志,2005,18(2):135-137.
    [17]刘雨飞,丁丽华,郝春芳,方言,赵福弟,黄翠芬,杨晓,叶棋浓.转录因子XBP21的融合表达、纯化及多克隆抗体的制备.中国生物化学与分子生物学报,2004,20(6):762-767.
    [18]Pachuk C J,McCallus DE,Weiner DB,Satishchandran C.DNA vaccine challenge in delivery.Curr Opin Molher,2000,2(2):188-198.
    [19]Diestre C,Martínez-Lorenzo MJ,Bosque A,Naval J,Larrad L,Anel A.Generation of rabbit antibodies against death ligands by cDNA immunization,Immunol Methods,2006,(317):12-20.
    [20]Yang DH,Amina Makhmoudova,Arif BM,Feng Q,Retnakaran A,Palli SR,Krell PJ.DNA versus protein immunization for production of monoclonal antibodies against Choristoneura fumiferana ecdysone receptor(CfEcR).Vaccine,2006,(24):3115-3126.
    [21]Cardones AR,Leitner WW,Fang L,Murakami T,Kapoor V,Udey MC,Hwang ST.Genetic immunization with LYVE-1 cDNA yields function-blocking antibodies against native protein.Microvascular Research,2006,(71):32-39.
    [22]王永娟,王安平,孙怀昌.牛气管抗菌肽cDNA的克隆与表达.中国新药杂志,2006,15(19):1651-1655.
    [23]Scheer linck J.Genetic adjuvant for DNA vaccines.Nat Biotechno,1999,17(11):1075-1081.
    [24]Zhang X,Divangahi M,Ngai P,Santosuosso M,Millar J,Zganiacz A,Wang J,Bramson J,Xing Z.Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine:Enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene.Vaccine,2007,(25):1342-1352.
    [25]Kerro-Dego O,Prysliak T,Potter AA,Perez-Casal J.DNA-protein immunization against the GapB and GapC proteins of a mastitis isolate of Staphylococcus aureus.Veterinary Immunology and Immunopathology,2006,(113):125-138.
    [26]Fukumoto S,Tamaki Y,Okamura M,Bannai H,Yokoyama N,Suzuki T,Igarashi I,Suzuki H,Xuan X.Prime-boost immunization with DNA followed by a recombinant vaccinia virus expressing P50induced protective immunity against Babesia gibsoni infection in dogs.Vaccine,2007,(25):1334-1341.
    [27]Kang Y,Jin H,Zheng G,Du X,Xiao C,Zhang X,Geng S,Li X,Wang J,Chen A,Wang B.Co-inoculation of DNA and protein vaccines induces antigen-specific T cell suppression.Biochemical and Biophysical Research Communications,2007,(353):1034-1039.
    [28]TamJ P.Synthetic peptide vaccine design:synthesis and properties of a high-density multiple antigenic peptide system.Proc Natl Acad SciUSA,1988,85:5409-5413.
    [29]Francis M J,Hastings GZ,Brown F,McDermed J,Lu YA,Tam JP.Immunological evaluation of the multiple antigen peptide(MAP) system using the major immunogenic site of foot and mouth disease virus.Immunology,1991,73:249-254.
    [30]刘茂昌,吴玉章.乙肝病毒新型免疫原性多肽的设计、合成免疫学杂志,1998,2(14):98-100.
    [31]Kelker HC,Schlesinger D,Valentine FJ.Immunogenic and antigen properties of an HIV21 gp120derived multiple chain peptide.J Immunol,1994,152:4139-4148.
    [32]江平,侯艳宁,闫彩珍.兔抗大鼠神经甾体合成关键酶P450scc抗体的制备、特性鉴定及应用.细胞与分子免疫学杂志,2005,21(2):198-201.
    [33]王永刚,郝飞,黄燕萍,王宇明.丙型肝炎病毒包膜糖蛋白高变区1多抗原肽设计及免疫原性的研究.中华实验和临床病毒学杂志,2000,14(2):141-144
    [1]ImLer J,Hoffmann J.A.Toll receptors in innate immunity.Trends Cell Biol.,2001,11:304-311.
    [2]Dimopoulos G,Müller H.M.Innate immune defense against malaria infection in the mosquito.Curr.Opin.Immunol,2001,13:79-88.
    [3]Hoffmann J A,Reichhart J M.Drosophila innate immunity:an evolutionary perspective.Nat.Immunol.,2002,3:121-126.
    [4]Hancock R E and Lehrer R.Cationic peptides:a new source of antibiotics.Trends Biotechnol,1998,16:82-88.
    [5]李明魁,郭菊,张遂平.抗菌肽的研究与应用.现代畜牧兽医,2007,1:49-52.
    [6]刘忠渊,张富春,蔡伦,赵干,王宾.酵母菌中表达的新疆家蚕抗菌肽的特性研究.微生物学报,2003,43(5):635-641.
    [7]于健,邱芳萍,张玲.抗菌肽及其应用前景.长春工业大学学报(自然科学版),2004,25(1):66-68.
    [8]刘建涛,苏志坚,王方海,李广宏,宋少云.昆虫抗菌肽的研究进展.昆虫天敌,2006,28(1):36-43.
    [9]Zasloff M.Antimicrobial pep tides of multicellular organisms.Nature,2002,415(6870):389-395.
    [10]Brown K L,Hancock R E.Cationic host defense(antimicrobial) peptides.Currp in Immunol,2006,18(1):24-30.
    [11]Otvos L J R.Antibacterial peptides isolated from insects.J.pept,Sci,2000,6:497-511.
    [12]Hultmark D,Steiner H,Rasmuson T,Boman HG.Purification and properities of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia.European Journal of Biochemistry,1980,106:7-16.
    [13]Tossi A,Sandri L,Giangaspero A.Amphipathic,alpha-helicalantimicrobial peptides.Biopolymers,2000,55:4-30.
    [14] Dathe M, Wieprecht T.Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim et Biophys Acta, 1999,1462 :71 —87.
    [15] Yeaman M R, Yount N Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55:27-55.
    [16] Steiner H, Hultmark D, Engstrom A, Bennich H, Boman H G. Sequence and specificity of two antibacterial proteins involved in insect immunity.Nature,1981,292:246—248.
    [17] Steiner H. Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett,1982,137:283-287.
    
    [18] Holak T A, Engstrom A, Kraulis PJ, Lindeberg G, Bennich H, Jones TA, Gronenborn A M, and Clore GM. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry, 1988,27:7620—7629.
    [19]Zhu W L, Park Y, Park I S, Park YS, Kim Y, Hahm KS, Shin SY. Improvement of bacterial cell selectivity of melittin by a single Trp mutation with a peptide residue. Protein Pept Lett, 2006, 13 (7): 719-725. [20] MorA, Nicolas P. The NH2-terminal a-helical domain 1 and 18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem, 1994,269 (3): 1934—1939.
    
    [21] Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem, 2005,280:12316-12329.
    [22] Jin Y, Hammer J, Pate M, Zhang Y, Zhu F, Zmuda E, Blazyk J.Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic beta-sheet and alpha-helical potentials. Antimicrob Agents Chemother,2005,49 :4957—4964.
    [23] Pathak N, Salas-Auvert R, Ruche G, Janna MH, McCarthy D, and Harrison RG. Comparison of the effects of hydrophobicity, amphiphilicity and alphahelicity on the activities of antimicrobial peptides. Proteins, 1995,22(2): 182-186.
    [24]Wieprecht T, Dathe M, Krause E, Beyermann M, Maloy WL, MacDonald DL, and Bienert M. Modulation of membrane activity of amphipathic, antibacterial peptides by slight modifications of the hydrophobic moment. FEBS Lett ,1997,417:135—140.
    [25] Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003,55:27-55.
    [26]Shai Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem. Sci,1995, 20:460-464.
    
    [27] Lee D G, Kim H N, Park Y, Kim HK, Choi BH, Choi CH, Hahm KS.Design ofnovel analogue peptides with potent antibiotic activity based on the antimicrobial peptide. HP(2-20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochem aiophys Acta, 2002, 1598(12): 185-194.
    [28] Bessalle R, Gorea A, Shalit I, Metzger JW, Dass C, Desiderio DM, Fridkin M. Structure-function studies of amphiphilic antibacterial peptides. J Med Chem, 1993,36(9): 1203- 1209
    [29] Ohmori N, Niidome T, Hatakeyama T, Mihara H, Aoyagi H. Interaction of alpha-helical peptides with phospholip id membrane: effects of chain length and hydrophobicity of peptides. J Pep t Res, 1998,51 (2): 103-109.
    [30]Bessalle R, Haas H, Goria A, Shalit I, and Fridkin M. Augmentation of the antibacterial activity of magainin by positive-charge chain extension. AntimicrobAgents Chemother, 1992,36:313—317.
    [31] Matsuzaki K, Sugishita K, HaradaM, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta,1997, 1327(1):119-130.
    [32]Blondelle SE and Houghten RA. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry, 1992,31 (50): 12688—12694.
    [33] Yang S T, Shin S Y, Hahm K S, Kim JI. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int J Antimicrob Agents, 2006,27 (4): 325—330.
    [34] Pal T, Sonnevend A, Galadari S, Conlon JM. Design of potent, nontoxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin22. Regul Pept, 2005,129 (123): 85—91.
    [35]Michael R. Yeaman and Nannette Y. Yount. Mechanisms of Antimicrobial Peptide Action and Resistance.Pharmacological Reviews, 2003,55:27—55.
    [36]FimLand G, Eijsink VG, and Nissen-Meyer J. Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry,2002,41:9508—9515.
    [37]Shu-Yi Wei, Jiun-Ming Wu,Yen-Ya Kuo, Heng-Li Chen, Bak-Sau Yip,Shiou-Ru Tzeng, and Jya-Wei Cheng. Solution Structure of a Novel Tryptophan-Rich Peptide with Bidirectional Antimicrobial Activity. Journal of Bacteriology, 2006,328—334.
    [38] Yau W M, WimLey WC, Gawrisch K, White SH. The preference of tryptophan for membrane interfaces.Biochemistry,1998,37:14713-14718.
    [39]Schibli DJ, Epand RF, Vogel HJ, and Epand RM. Tryptophanrich antimicrobial peptides: comparative properties and membrane interactions. Biochem. Cell Biol,2002,80:667-677.
    [40] Rozek T, Waugh RJ, Steinborner ST, Bowie JH, Wallace JC.The maculatin peptides from the skin glands of the tree frog Litoria genimaculata-a comparison of the structures and antibacterial activities of maculatin 1.1 and caerin 1.1. J. Pept. Sci,1998,4:111 —115.
    [1]Hu YL,Hu TS,Lin SK,Su J,Sh GM,Li W,Zhao XZ.The Site-directed Mutagenesis and Expression of Cecropin B Gene.Pharmaceutical Biotechnology,1999,6(4):193-197.
    [2]Jaynes J M,Cartherine A,Burton C Aet al.In vito cytocidal effect of novel lytic peptides on plasmodium falciparum and trypanosoma cruzi.FASEB J,1988,2(13):2878-2883.
    [3]Andreas R Koczulla,Robert Bals.Antimicrobial peptides:Current status and therapeutic otential.Drugs,2003,63:389-460.
    [4]吴代飞,曾宪松,张银东,彭存智,黄亚东,郑学勤.抗菌肽B基因的点修饰及在昆虫细胞中的表达.热带作物学报,1999,20(3):54-58.
    [5]卢晓风,杨星勇,程惊秋,裴炎.昆虫抗菌肽及其研究进展.药学学报,1999,34(2):156-160.
    [6]陈晓生,刘为民,温刘发,张辉华,田允波,贺建华,黄国庆,罗竞标.抗菌肽替代抗生素对肉鸭生产性能及血清代谢激素水平的影响.中国家禽,2005,27(5)7-9.
    [7]Baman HG,Nilsson I,Rasmuson B,Inducible antibacterial defense system in Drosophila.Nature,1972,237:232-235.
    [8]Boman HG.Peptide antibiotics and their role in innate immunity.Annual Review of Immunology,1995,13:61-92.
    [9]Zasloff M.Magainins,a class of antimicrobial peptides from Xenopus skin:isolation,characterization of two active forms,and partial cDNA sequence of precursor.Proceeding National Academic Science,USA,1987,84:5449-5453.
    [10]Mor A,Nicolas P.Isolation and structure of a novel defensive peptides from frog skin.Eur J Biochem,1994,219:145-154.
    [11]Jaynes J N.Lytic peptides,used for growth,infection and cancer,Int C1:C12N1/06,A61K37/02,48/00.Schweiz Patent 12886,1990,1:38.
    [12]马卫明,佘锐萍,胡艳欣,靳红,彭芳珍.猪小肠抗菌肽对雏鸡的促生长作用及其机理初探.中国农业科学,2006,39(8):1723-1728.
    [13]刘忠渊,张富春,蔡伦,赵干,王宾.酵母菌中表达的新疆家蚕抗菌肽(Cecropin-XJ)的特性研究.微生物学报,2003,43(5):635-641.
    [14]陈晓生,张辉华,罗竞彪,温刘发,黄国庆,黄自然.饲粮中添加抗菌肽对肉鸭增重及血清尿素氮、总蛋白水平的影响.中国饲料.2005.10:21-23.
    [15]Frisen O D,Guenter W,Marquardt R R.The effect of enzyme supplementation on the apparent metabolizable energy and nutrient digestibilities of wheat,barley,oats,and rye for the young broiler chick.Poultry Science,1992,71:1710-1721.
    [16]Scanens CG,Vasilatos Younken R.Somatotropic axis and growth in broilers.Archiv Fur Gelflugel kunde,1995,9-12.
    [17]Cogburn L A,Mao N C,Agarwal S.Interaction between somatotropic axes in regulation of growth and development of broiler chickens.Archiv Fur Gelflugel kunde,1995,18-21.
    [18]Lo HC,Hirvonen MD,Kritsch KR.Growth hormone or insulin-like growth factor I increases fat oxidation and decreases protein oxidation without altering energy expenditure in parenterally fed rats Am J Clin Nutr,1997,65:1384-1390.
    [19]Gluckman PD,Douglas RG,Ambler GR.The endocrine role of insulin-like growth factor 1.Acta Paediatr Stand,1991,372:97-105.
    [20]Kikuehi K.Expression of IGF-Ⅰ during chicken development:Endocrinology,1991,128:1323-1328.
    [1]李金耀,张富春,马正海.家蚕抗菌肽cDNA原核表达及抗菌活性检测.昆虫学报,2004,47(3):407-411.
    [2]Hiromi S,Jimmy BF.Peptide-membrane interactions and mechanisms of membrane destruction by amphipathicα-helical antimicrobial peptides.Biochimica et Biophysica Acta,2006,1758:1245-1256.
    [3]王学理,王兴龙,刘锴,任林柱,李晓艳,梅建军.抗菌肽的作用机制与应用前景.动物医学进展,2006,27(9):42-45.
    [4]Sanjay G,Dennis M.Klinman R.A.DNA Vaccines:immunology,application,and optimization.Annu Rev Immunol,2000,18:927-974.
    [5]Donnelly J J,Ulmer JB,Liu MA.DNA vaccine.Life Sci,1997,60:163-172.
    [6]Schild GC,Minor PD.Human immunodeficiency virus and AIDS vaccine.Lancet,1990,335:1081-1084.
    [7]Diestre.C,Martinez-Lorenzo.MJ,Bosque.A,Naval J,Larrad L,Anel A.Generation of rabbit antibodies against death ligands by cDNA immunization.J of Immunol Methods,2006,317:12-20.
    [8]Cardones AR,Leitner WW,Fang L,Murakami T,Kapoor V,Udey MC,Hwang ST.Genetic immunization with LYVE-1 cDNA yields function-blocking antibodies against native protein.Microvascular Research,2006,71:32-39.
    [9]Liu F,Song YK,Liu D.Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA.Gene Therapy,1999,6:1258-1266.
    [10]李慕瑶,姜骞,刘家森,司昌德,韩凌霞,曲连东.犬细小病毒VP2基因的原核表达及间接ELISA方法的建立.中国兽医科学,2007,37(3):218-222.
    [11]Rao XC,Li S,Hu JC,Jin XL,Hu XM,Huang JJ,Chen ZJ,Zhu JM,Hu FQ.A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli.Protein Expression and Purification,2004,36:11-18.
    [12]贾帅争,王全立.水动力转染基因在小鼠体内的长期高效表达.生物技术通讯.2005,16(3):307-309.
    [13]SeangdeunM,Panida K,W atchara K.P reduction of polyclonal and monoclonal antibodies against CD54 mo lecules by intrasplenic immunization of p lasm id DNA encoding CD54 protein.Immunol L etters,2001,76:25-30.
    [14]石毅.核酸疫苗的研究进展.安徽农业科学,2006,34(4):682-683.
    [15]程海,唐欣昀,刘勇.临床用DNA疫苗生产工艺的研究进展.微生物学免疫学进展,2006,34(2):63-66.
    [16]Hassett D E,Whitton J L.DNA immunization.Trends Microbiol,1996,4(8):307 - 312.
    [17]Henke A.DNA immunization-a new chance in vaccine research.Med Microbiol Immunol,2002,191:187-190.
    [18]和晶亮.DNA疫苗的相关研究进展.动物医学进展,2007,28:44-47.
    [19]李臻,金宁一,金洪涛,沈国顺,付延军,辛苏文,韩贞珍,刘玉生.HIV多表位核酸疫苗构建及其免疫原性.中国生物制品学杂志,2007,20(3):178-180.
    [20]Jinshu X,Jingjing L,Duan P,Zheng Z,Ding M,Jie W,Rongyue C,Zhuoyi H.The immunogenicity of recombinant and dimeric gonadotrophin-releasing hormone vaccines incorporating a T-helper epitope and GnRH or repeated GnRH units.J ImmunoiMethods.2004,289(1):111 - 122.
    [21]张天笑,王秀利,袁野.DNA疫苗佐剂研究进展.生物技术通报,2007,24-28.
    [22]王福祥,孙永涛,刘娟,马英骥,杨宝山,颜丙柱.IL-12基因对HIV-1核酸疫苗诱导的免疫应答的影响.中国病毒学,2005,20(1):16-19.
    [1]Hu YL,Hu TS,Lin SK,Su J,Sh GM,Li W,Zhao XZ.The Site-directed Mutagenesis and Expression of Cecropin B Gene.Pharmaceutical Biotechnology,1999,6(4):193-197.
    [2]Andreas R Koczulla,Robert Bals.Antimicrobial peptides:Current status and therapeutic otential.Drugs,2003,63:389-460.
    [3]吴代飞,曾宪松,张银东,彭存智,黄亚东,郑学勤.抗菌肽B基因的点突变及在昆虫细胞中的表达.热带作物学报,1999,20(3)54-58.
    [4]卢晓风,杨星勇,程惊秋,裴炎.昆虫抗菌肽及其研究进展.药学学报,1999,34(2):156-160.
    [5]徐进署,张双全.昆虫抗菌肽对病原微生物作用的研究进展.昆虫学报,2002,45(5)673-678.
    [6]Dave PC,Billington E,Pan YL,Straus SK.Interaction of alamethicin with ether-linked phospholipid bilayers:oriented circular dichroism,31P solid-state NMR,and differential scanning calorimetry studies.Biophys.J,2005,89:2434-2442.
    [7]Powers J PS,Tan A,Ramamoorthy A,Hancock REW.Solution structure and interaction of the antimicrobial polyphemusins with lipid membranes,Biochemistry,2005,44:15504-15513.
    [8]Hauklanda HH,Ulvatnea H,Sandvika K,Vorlanda LH.The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm.FEBS Letters,2001,50:389-393.
    [9]Lijuan Zhang,Roland Benz,and Robert E.W.Hancock.Influence of Proline Residues on the Antibacterial and Synergistic Activities of R-Helical Peptides.B iochemistry 1999,38,8102- 8111.
    [10]王芳,张双全,戴祝英.抗菌肽CM4组分对K562癌细胞染色质DNA断裂作用的SCGE研究.生物化学与生物物理进展,1998,25(1):64-67.
    [11]宫霞,施用晖,乐国伟.荧光光谱分析家蝇幼虫抗菌肽与大肠杆菌染色体DNA作用机理.光谱学与光谱分析,2005,25(3):420-423.
    [12]刘忠渊,张富春,蔡伦,赵干,王宾.酵母菌中表达的新疆家蚕抗菌肽的特性研究.微生物学 报,2003,43(5):635-641.
    [13]SHEN Tong(沈同著).Biochemistry(生物化学(上册)).Beijing:People's Education Press(北京:人民教育出版社),1989.
    [14]江崇球,贺吉香,王金山.EB荧光探针法研究多粘菌素B与DNA的作用方式.光谱学与光谱分析,2002,22(1):103-106.
    [15]刘雪平,冯素玲,潘自红,樊静.溴化乙锭探针研究劳氏青莲与脱氧核糖核酸的相互作用.光谱学与光谱分析,2006,26(10):1895-1898.
    [16]Howe GM,Wu K C,Bauer W R.Binding of platinum and palladium metallointer callation reagent and antitumor drugs to dosed and open DNAs.Biochemistry,1976,15(19):4339-4345.
    [17]胡敏,张镇西,沈国励,刘娅莉.阿克拉霉素A与DNA作用的光谱学研究光谱学与光谱分析,2006,26(9):1668-1771.
    [18]Hsu CH,Chen C,Jou ML,Lee AY,Lin YC,Yu YP,Huang WT,Wu SH.Structural and DNA-binding studies on the bovine antimierobial peptide,indolicidin:evidence for multiple conformations involved in binding to membranes and DNA.Nucleic Acids Research,2005,33(13):4053-4057.
    [1]Hu Y L,Hu T S,Lin S K.The site-directed mutagenesis and expression of cecropin B gene.Pharmaceutical Biotechnology,1999,6(4):193-197.
    [2]Jaynes JM,Burton CA,Barr SB,Jeffers GW,Julian GR,White KL,Enright FM,Klei TR,Laine RA.In vito cytocidal effect of novel lyric peptides on plasmodium falciparum and trypanosoma cruzi.FASEB J,1988,2(13):2878-2883.
    [3]Koczulla A R,Bals R.Antimicrobial peptides:Current status and therapeutic potential.Drugs,2003,63:389-460.
    [4]吴代飞,曾宪松,张银东.抗菌肽B基因的点突变及在昆虫细胞中的表达.热带作物学报,1999,20(3):54-58.
    [5]Pag U,Oedenkoven M,Papo N,Oren Z,Shai Y,Sahl HG.In vitro activity and mode of action of diastereomerie antimicrobial peptides against bacterial clinical isolates.Journal of Antimicrobial Chemotherapy,2004,53:230-239.
    [6]Toraya S,Nishimura K,Naito A.Dynamic structure of vesicle-bond melittin in a variety of lipid chain lengths by solid-state NMR.Biophys J,2004,87:3323-3335.
    [7]Nomura K,Corzo G,Nakajima T,Iwashita T.Orientation and pore-forming mechanism of a scorpion pore-forming peptide bound to magnetically oriented lipid bilayers.Biophys J,2004,87:2497-2507.
    [8]Marassi FM,Opella S J,Juvvadi P,Merrifield RB.Orientation of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy.Biophys J,1999,77:3152-3155.
    [9]徐进署,张双全.家蚕抗菌肽CM_4组分杀菌机理的激光共聚焦显微镜观察.自然科学进展,2001,11(10):1105-1109.
    [10]刘忠渊,张富春,蔡伦,赵干,王宾.酵母菌中表达的新疆家蚕抗菌肽的特性研究.微生物学报,2003,43(5):635-641.
    [11]Hultmark D,Steiner H,Rasmuson T,Boman HG.Purification and properities of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia.European Journal of Biochemistry,1980,106:7-16.
    [12]Laura M,Romano D,Daniela M.The novel antimierobial peptide ceratoxin A alters permenbility of the inner and outer membrane of Escherichia coli K-12.Current Microbiology,1996,33:40-43.
    [13]翟培,韩晋辉,侯丽霞.家蝇抗菌肽的抑菌动力学研究及其机理初探.中国生物工程杂志,2006,26(11):33-39.
    [14]Park YY,Lee DG,Jang SH,Woo ER,Jeong H G,Choi CH,and Hahm KS.A Leu-Lys-rich antimicrobial peptide:activity and mechanism.Bioehimiea et Biophysiea Aeta,2003,1645:172-182.
    [15]Wei SY,Wu JM,Kuo YY,Chen HL,Yip BS,Tzeng SR,Cheng JW.Solution structure of a novel tryptophan-rich peptide with bidirectional antimierobial activity.Journal of Bacteriology,2006,188(1):328-334.
    [16]Hiromi S,Jimmy B F.Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobiai peptides.Bioehimiea et Biophysiea Aeta,2006,1758:1245-1256.
    [17]Tim S,Chenghao L,Alexander S.Structure of antimierobial peptides and lipid membranes probed by interface-sensitive X-ray scattering.Biochimica et Biophysica Acta,2006,1758:1483-1498.
    [18]王云起,蔡继业,马淑媛.抗菌肽magainin Ⅱ对E.coli杀伤作用的AFM观察.电子显微学报,2006,25(1):52-56.
    [1] Bals R, and Wilson J M. Cathelicidins—a family of multifunctional antimicrobial peptides. Cell. Mol. Life Sci,2003, 60:711-720.
    
    [2]Ganz T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. lmmunol,2003,3:710-720.
    [3] Jenssen H, Hamill P and Hancock R E W. Peptide antimicrobial agents. Clin. Microbiol. Rev,2006,19: 491-511.
    [4]Van D A, Veldhuizen E J A, Kalkhove S I C, Johanna L M, Bokhoven TV, Romijn R A, and Haagsman H P. The P-Defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Chemother,2007,51: 912—922.
    [5]Steiner H, Hultmark D, Engstrom A, Bennich H, and Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity.Nature,1981,292:246—248.
    [6] Hultmark D, Engstrom A, Bennich H, Kapur R, and Boman HG. Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem, 1982,127:207-217.
    
    [7]Zasloff M. Antimicrobial peptides of multicellular organisms. Nature ,2002,415:389—395.
    [8]Hancock R E W and Patrzyka A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr. Drug Targets Infect. Disorders, 2002,2:79—83.
    
    [9]Boman H.G. Peptide antibiotics and their role in innate immunity.Annu.Rev. Immunol,1995,13:61—92.
    [10] Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, and Saito H. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state 31P and 13C NMR spectroscopy. Biophys. J,2000, 78:2405-2417.
    [11]Nomura K, Corzo G, Nakajima T, and Iwashita T. Orientation and poreforming mechanism of a scorpion pore-forming peptide bound to magnetically oriented lipid bilayers. Biophys. J,2004, 87: 2497-2507.
    [12]Toraya S, Nishimura K, and Naito A. Dynamic structure of vesicle-bond melittin in a variety of lipid chain lengths by solid-state NMR, Biophys. J,2004,87:3323-3335.
    [13] Marassi F M, Opella SJ, Juvvadi P, and Merrifield RB. Orientation of cecropin A helices in phospholipid bilayers determined by solid-state NMR spectroscopy. Biophys. J, 1999,77: 3152—3155.
    [14] Nomura K, Ferrat G, Nakajima T, Darbon H, Iwashita T, and Corzo G. Induction of morphological changes in model lipid membranes and the mechanism of membrane disruption by a large scorpion-derived pore-forming peptide. Biophys. J,2005,89:4067-4080.
    [15] Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K, and Epand RM. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry, 1998,37:11856-11863.
    [16]Faulk WP and Taylor GM. An immunocolloid method for the electron microscope. Immuno-cytochemistry, 1971,8:1081.
    [17] Feldherr C M , Akin D. Signal-mediated nuclear transport in the amoeba. Journal of Cell Science, 1999,112 (12) :2043-2048.
    [18] Rutter G, Hohenberg H. Label-fracture of plasma membranes isolated from measles virus-infected cells.J Histochem Cytochem,1993,41(7):1085-1091.
    
    [19] Jiang Z, Sun S, Liang A, Huang W, Qin A. Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B.Clin Chem,2006,52(7):1389- 1394.
    [20]Liang R Q, Tan CY, Ruan K C. Colorimetric detection of protein microarrays based on nanogold probe coupled with silver enhancement. J Immun Method, 2004,285 (3) :157-163.
    [21] Hughes D. Preparation of colloidal gold probes. Methods Mol Biol, 2005,295:155-72.
    [22]Liu ZY, Zhang F C, Cai L, Zhao G, Wang B. Studies on the properties of cecropin-XJ expressed in yeast from Xinjiang Silkworm. Acta Microbiologica Sinica,2003,43:635-641.
    [23]National Committee for Clinical Laboratory Standards. 1993. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 3rd ed. Approved standard. NCCLS document M7-A3. National Committee for Clinical Laboratory Standards, Villanova, Pa.
    
    [24] Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers, 2002,66:236-248.
    [25] Wang GL, Jiang D, and FANG HJ. Study on Bacteriostatic action and Mechanism of Arisaema consanguineum Schott. Acta Veterinaria et Zootechnica Sinica,2004,35(3):280—285.
    [26] Flock J I. Extracellular-matrix-binding proteins as targets for the prevention of Staphylococcus aureus infections. Mol. Med,1999,5:532-537.
    
    [27]Lowy F D. Staphylococcus aureus infections. N. Engl. J. Med, 1998,339:520-532.
    [28]Epand R F, Schmitt MA, Gellman SH, Sen A, Auger M, Hughes DW, and Epand RM. Bacterial species selective toxicity of two isomeric α/β-peptides: Role of membrane lipids.Mol. Membr. Biol,2005,22:457-469.
    [29]Vollmer W, and Holtje JV. The architecture of the murein (peptidoglycan) in gram-negative bacteria: vertical scaffold or horizontal layer? J. Bacteriol,2004,186:5978-5987.
    [30] Hancock RE. Cationic peptides: effectors in innate immunity and novel antimicrobials, Lancet (Infect. Dis.), 2001,1:156-164.
    [31]Sitaram N, and Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim. Biophys. Acta,1999,1462:29-54.
    [32]Bayer M E. Response of cell walls of Escherichia coli to a sudden reduction of the environmental osmotic pressure. J. Bacteriol,1967,93:1104-1112.
    [33]Cheie PO. Plasmolysis of Escherichia coli B/r with Sucrose. Journal of Bacteriology, 1969, 98(2):335-346.
    [34]Cota-Robles E H. Electron microscopy of plasmolysis in Escherichia coli. J. Bacteriol,1963, 85:499— 503.
    [35]Cegelski L, Kim S J, Hing AW, Studelska DR, O'Connor RD, Mehta AK, and Schaefer J. Rotational-echo double resonance characterization of the effects of vancomycin on cell wall synthesis in taphylococcus aureus. Biochemistry,2002,41:13053—13058.
    [36]Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev., Microbiol, 2005,3:238-250.
    [37] Boman HG, Agerberth B, and Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun,1993,61:2978-2984.
    [38]Castle M, Nazarian A, Yi SS, and Tempst P. Lethal effects of apidaecin on Escherichia coli involve sequential molecular interactions with diverse targets. J. Biol. Chem,1999,274:32555-32564.
    [39]Hauklanda HH, Ulvatnea H, Sandvika K, and Vorlanda LH. The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Letters,2001, 508: 389-393.
    [40]Papo N, Oren Z, and Pag U. The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. Journal of Biological Chemistry,2002,277:33913—33921.
    [41] Yang L, Harroun TA, Weiss TM, Ding L, and Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J, 2001, 81:1475—1485.
    [42]Bechinger B. Structure and function of membrane-lytic peptides, Crit.Rev. Plant Sci,2004, 23: 271— 292.
    [43] Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochimica et Biophysica Acta,2006,1758:1529-1539.
    [44]Wade D, Boman A, Wahlin B, Drain CM, Andreu D, Boman HG, and Merrifield RB. All-D amino acid channel-forming antibiotic peptides. Proc. Natl. Acad. Sci. U. S. A., 1990, 87:4761.
    [45]Gazit E, Boman A, Boman H G, and Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry, 1995,34:11479— 11488.