银屑病患者外周血CD4~+CD25~+调节性T细胞的检测及免疫学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:银屑病患者外周血调节性T细胞的表达
     目的:探讨不同方法标记的银屑病患者外周血中调节性T细胞(Treg)的表达及其在银屑病免疫学变化中的作用。方法:利用流式细胞仪检测45例银屑病患者外周血中CD4~+CD25~(high)Foxp3~+调节性T细胞在CD4~+T细胞中的比例;用流式细胞仪和单克隆荧光抗体检测45例银屑病患者外周血中CD4~+CD25~(high)调节性T细胞百分率,对10例银屑病患者进行了CD4~+CD25~(hi-int)CD127~(low/-)调节性T细胞百分率的检测。结果:红皮病型银屑病患者外周血中CD4~+CD25~(bright)Treg、CD4~+CD25h~(high)Foxp3~+Treg细胞比例均较正常人对照组显著增高,分别为5.37±1.99vs1.77±1.20(P<0.01)和12.56±2.68vs7.09±2.2(P<0.05)。寻常型银屑病患者中点滴型组银屑病患者CD4~+CD25~(high)Foxp3~+Treg细胞比例低于斑块型(6.31±1.28vs8.18±1.55,P<0.05);脓疱型银屑病患者中脓疱存在患者CD4~+CD25~(high)Foxp3~+Treg细胞比例明显低于脓疱消退患者(4.75±2.06vs8.25±11.5,P<0.05)。银屑病和正常对照组CD4~+CD25~(hi-int)CD127~(low/-)调节性T细胞在CD4~+T细胞中比例同CD4~+CD25~(high)调节性T细胞比例相比,差异均有统计学意义(P<0.05);但两组之间相比无差异(P>0.05)。结论:红皮病型银屑病外周血CD4~+CD25~(high)Treg、CD4~+CD25~(high)Foxp3~+Treg细胞比例均增高,可能与红皮病型银屑病特殊的发病机制有关;Treg细胞比例的改变,可能参与了不同类型银屑病不同阶段的发病;结合CD127可纯化调节性T细胞。
     第二部分:银屑病患者外周血CD4~+CD25~+调节性T细胞的功能分析
     目的:探讨银屑病患者外周血中CD4~+CD25~+调节性T细胞的功能改变及其在银屑病发病中的作用。方法:磁珠分离8例寻常型银屑病患者、6例正常健康对照外周血CD4~+CD25~+Treg细胞、CD4~+CD25~-Tresp细胞,1:1混合培养72小时,3H-thymidine掺入法测定两组混合培养后Treg细胞对Tresp细胞增殖的抑制及Treg细胞、Tresp细胞分别培养后的增殖能力;收集培养的上清液,ELISA法检测两组CD4~+CD25~+Treg细胞对CD4~+CD25~-T细胞分泌功能的影响;ReaL-time PCR检测两组CD4~+CD25~+Treg细胞、CD4~+CD25~-T细胞(Tresp)Foxp3的表达。结果:Tresp细胞、Treg细胞的增殖能力,银屑病患者和健康对照组相比,无统计学意义;银屑病患者Treg细胞对Tresp细胞增殖的抑制明显下降(19.5%vs60%,P<0.01);两者共培养后,银屑病患者Tresp细胞分泌高水平的IFN-γ(179.66±48.97vs87.36±33.36,P<0.05);较正常对照组相比,银屑病组Treg细胞对Tresp细胞分泌IFN-γ的抑制减弱(40%vs63%,P<0.05);两组IL-10与TGF-β分泌改变均无统计学意义;Treg细胞较Tresp细胞相比,表达高水平的Foxp3,银屑病患者Treg细胞Foxp3mRNA的表达同健康对照组相比无统计学意义。
     结论:寻常型银屑病患者外周血中CD4~+CD25~+Treg细胞对CD4~+CD25~-T细胞(Trep)增殖的抑制功能的降低可能参与了该病的发病过程。
     第三部分:细胞外腺苷代谢途径在寻常型银屑病患者外周血调节性T细胞发挥功能中的作用
     目的:探讨细胞胞外腺苷代谢途径(CD39、CD73分子、A2A受体)在银屑病患者外周血CD4~+CD25~+Treg细胞抑制功能中的作用。方法:利用流式细胞仪、单克隆抗体检测寻常型银屑病患者、正常健康对照组外周血中CD39、CD73及A2A受体在Treg细胞、Teff细胞表面的表达。结果:寻常型银屑病患者外周血中CD4~+CD25~(high)Treg细胞中,CD39、CD73双染(2.41±0.42vs6.11±1.27)及CD73单染比例(6.48±1.53vs14.28±2.46)均低于正常对照组(P<0.01),CD4~+CD25~(med)T细胞、CD4~+CD25~-Teff细胞中,银屑病患者CD73单染比例亦降低(14.34±1.63vs23.34±3.85,15.42±4.46vs28.58±6.42,P<0.05);加入Foxp3染色后,CD4℃D25~(high)Foxp3~+Treg部分,CD39/CD73双染(2.89±0.55vs5.97±1.09)及CD73单染比例在银屑病患者外周血中亦明显减少(7.69±1.49vs12.65±1.98(P<0.01),而CD4~+CD25~(med)、CD4~+CD25~-部分,CD39和CD73的表达无异常;寻常型银屑病患者外周血CD4~+CD25_(high)Foxp3~+Treg细胞表面A2AR表达增加(43.7±9.55 vs 70.4±7.86,P<0.05),而CD4~+CD25 Teff细胞表面A2AR表达同正常对照相比无统计学意义。结论:寻常型银屑病患者外周血Treg细胞表面胞外酶CD73表达降低,A2AR表达增加,这可能是导致银屑病患者外周血Treg细胞抑制功能减弱的机制之,参与了银屑病的发病。
PartⅠThe expression of CD4~+CD25~+regulatory T cells in peripheral blood of patients with psoriasis
     Objective:To study the level of regulatory T cells labeled by different antibody in peripheral blood of patients with psoriasis and its role in the pathogenesis.Methods:Flow cytometric analysis was employed to study the CD4~+CD25~(high)Foxp3~+regulatory T cells in the peripheral blood of 45 patients with psoriasis.The expression of CD4~+CD25~(high)cells in 45 patients with psoriasis and the surface antigens(CD4,CD25,CD127) of T cells in the peripheral blood of 10 psoriasis vulgaris were also detected by Flow cytometric analysis.Results: The proportion of CD4~+CD25~(high)、CD4~+CD25~(high)Foxp3~+regulatory T cells were both significant higher in patients with psoriatic erythroderma than healthy control and other types(P<0.01,P<0.05);In psoriasis vulgaris,the CD4~+CD25~(high)Foxp3~+regulatory T cells population demonstrated elevated ratio in guttate psoriasis group,compared to chronic plaque psoriasis;Same change happened to pustule remained pustular psoriasis patients versus pustule faded pustular psoriasis.There was big difference of the percentage of CD4~+CD25~(hi-int) CD127~(low/-) regulatory T cells compared to CD4~+CD25~(high)regulatory T cells in both psoriasis and normal,while the psoriatic group has the same level of CD4~+CD25~(hi-int)CD127~(low/-)regulatory T cells as normal one.Conclusion:CD4~+CD25~(high)、CD4~+CD25~(high)Foxp3~+regulatory T cells may play an important role in the special pathogenesis of erythrodermic psoriasis;Less number of CD4~+CD25~(high) Foxp3~+ regulatory T cells may not work properly in early stage of the different psoriasis,leading the disease progression.Treg cells can be purified better by CD127 to further study its number in peripheral blood.
     PartⅡThe function change of CD4~+CD25~(high)regulatory T cell in peripheral blood of patients with psoriasis
     Objective:To analysis the function change of CD4~+CD25~(high)regulatory T cells in patients with psoriasis vulgaris compared to normal group.Methods:Using the immunomagnetic beads isolate the CD4~+CD25~(high)Treg cells and CD4~+CD25~-Tresp cells(T effector).Sixteen hours before finish culture,[3~H]-thymidine was added to analyze alloantigen-specific T cell proliferation of CD4~+CD25~-Tresp cell in the presence or the absence of Treg cells.The secretive function of Tresp cells、Treg cells co-cultured and cultured separately were measured by ELISA.Foxp3 mRNA level of Treg and Teff cells were also detected by real-time quantitative RT-PCR.Results:The proliferation ability of the CD4~+CD25~(high) Tregs and CD4~+CD25~-Tresp cells in control and psoriatic group have no difference. The CD4~+CD25~(high)Treg cell population demonstrated significant decreased suppression to effector T cells(P<0.01).As secretive function,the level of IFN-γin Tresp cell of psoriasis were much higher than normal group,the suppression of Treg cells to co-cultured IFN-γsecreting of Tresp cells in psoriasis were decreased compared to normal(P<0.05);While there was no change in IL-10 and TGF-βsecretion level of Treg cells co-cultured in two group.In both psoriatic and normal patient,Treg population contain high level Foxp3 mRNA compared to Tresp.Conclusion:Dysfunction of CD4~+CD25~(high)Treg cell may be a potential explanation for unrestrained effector T cell proliferation in psoriasis and play an important role in the pathogenesis of psoriasis.
     PartⅢExtracellular adenosine generation in psoriatic patient' s peripheral blood CD4~+CD25~+regulatory T cell
     Objective:To study CD4~+CD25~+Treg cell surface ectoenzyme CD39/CD73 and adenosine receptor A2A expression level on CD4~+CD25~+Treg cell and CD4~+CD25~-Teff.
     Methods:Flow cytometric analysis was employed to study the CD39,CD73 level on CD4~+CD25~(high)Treg cell and CD4~+CD25~(high)Foxp3~+Treg cell in peripheral blood of psoriasis vulgaris and normal patients.The expression of A2A receptor in Treg cell and Teff cell was also detected by Flow cytometric analysis in psoriatic and normal patient.Results:The double positive of CD39/CD73 and single CD73 positive expression in CD4~+CD25~(high)regulatory T cell were both significant lower in patients with vulgaris psoriasis,compared to normal control,2.41±0.42vs6.11±1.27(P<0.01) and 6.48±1.53vs14.28±2.46 respectively(P<0.01), while in CD4~+CD25~(mde) and CD4~+CD25~-T cell,the psoriatic single CD73 level also decreased(14.34±1.63vs23.34±3.85,15.42±4.46vs28.58±6.42,P<0.05);After Foxp3 staining,the CD4~+CD25~(high)Foxp3~+regulatory T cell population in psoriasis vulgaris patients still demonstrated obvious decrease ratio in double CD39/CD73 and single CD73 level compared to normal patient(2.89±0.55vs5.97±1.09,7.69±1.49vs12.65±1.98,P<0.01):No difference of CD39、CD73 level in CD4~+CD25~(med) and CD4~+CD25~-T cell part after Foxp3 staining.The A2A receptor level in CD4~+CD25~(high)Foxp3~+regulatory T cells was significant higher in patients with psoriasis vulgaris than healthy controls,43.7±9.55 and 70.4±7.86 respectively(P<0.01);No expression difference of A2AR on CD4~+CD25~-Teff cell in psoriatic patient and normal one.Conclusion:Extracelluar adenosine generated by Treg cell marker CD73 and adenosine receptor A2A may impart the attenuated suppression capacity of peripheral blood Treg cells in psoriatic patient and play an important role in the pathogenesis of psoriasis.
引文
1. Nickoloff BJ. The cytokine network in psoriasis [J]. Arch Dermatol, 1991,127(6):871-84.
    
    2. Zhang K, Li X, Yin G, et al. Functional characterization of CD4+CD25+ regulatory T cells differentiated in vitro from bone marrow-derived haematopoietic cells of psoriasis patients with a family history of the disorder [J]. Br J Dermatol, 2008, 158(2):298-305.
    
    3. CG S. The prevalence, prevention and treatment of psoriasis [J]. Clin J Dermatol, 1996, 29(75-76.
    
    4. Ferrandiz C, Bordas X, Garcia-Patos V, et al. Prevalence of psoriasis in Spain (Epiderma Project: phase I) [J]. J Eur Acad Dermatol Venereol, 2001, 15(1) :20-3.
    
    5. Nevitt GJHutchinson PE. Psoriasis in the community: prevalence, severity and patients' beliefs and attitudes towards the disease [J]. Br J Dermatol, 1996, 135(4) :533-7.
    
    6. Boyman 0, Hefti HP, Conrad C, et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha [J]. J Exp Med, 2004, 199(5):731-6.
    
    7. Vollmer S, Menssen A, Trommler P, et al. T lymphocytes derived from skin lesions of patients with psoriasis vulgaris express a novel cytokine pattern that is distinct from that of T helper type 1 and T helper type 2 cells [J]. Eur J Immunol, 1994, 24(10):2377-82.
    
    8. Bata-Csorgo Z, Hammerberg C, Voorhees JJ, et al. Kinetics and regulation of human keratinocyte stem cell growth in short-term primary ex vivo culture. Cooperative growth factors from psoriatic lesional T lymphocytes stimulate proliferation among psoriatic uninvolved, but not normal, stem keratinocytes [J]. J Clin Invest, 1995, 95(1):317-27.
    
    9. Austin LM, Ozawa M, Kikuchi T, et al. The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 di fferentiation bias is also measured in circulating blood T cells in psoriatic patients [J]. J Invest Dermatol, 1999, 113(5):752-9.
    
    10. Schlaak JF, Buslau M, Jochum W, et al. T cells involved in psoriasis vulgaris belong to the Th1 subset [J]. J Invest Dermatol, 1994,102(2): 145-9.
    
    11. Clark RA, Chong B, Mirchandani N, et al. The vast majority of CLA+T cells are resident in normal skin [J]. J Immunol, 2006, 176(7):4431-9.
    
    12. Santamaria Babi LF, Picker LJ, Perez Soler MT, et al. Circulating allergen-reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen [J]. J Exp Med, 1995,181 (5): 1935-40.
    
    13. Wrone-Smith TNickoloff BJ. Dermal injection of immunocytes induces psoriasis [J]. J Clin Invest, 1996, 98(8):1878-87.
    
    14. Prinz JC, Gross B, Vollmer S, et al. T cell clones from psoriasis skin lesions can promote keratinocyte proliferation in vitro via secreted products [J]. Eur J Immunol, 1994, 24(3):593-8.
    
    15. Nickoloff BJ, Qin JZNestle F0. Immunopathogenesis of psoriasis [J]. Clin Rev Allergy Immunol, 2007, 33(1-2):45-56.
    
    16. Gershon RK. A disquisition on suppressor T cells [J]. Transplant Rev, 1975, 26(170-85.
    
    17. Nachtigal D, Zan-Bar IFeldman M. The role of specific suppressor T cells in immune tolerance [J]. Transplant Rev, 1975, 26(87-105.
    
    18. Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases [J]. J Immunol, 1995, 155(3):1151-64.
    
    19. Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood [J]. J Exp Med, 2001, 193(11):1303-10.
    
    20. Jonuleit H, Schmitt E, Stassen M, et al. Identification and functional characterization of human CD4 (+)CD25(+) T cells with regulatory properties isolated from peripheral blood [J]. J Exp Med, 2001, 193(11):1285-94.
    
    21. Bluestone JAAbbas AK. Natural versus adaptive regulatory T cells [J]. Nat Rev Immunol, 2003, 3(3):253-7.
    
    22. Annacker 0, Burlen-Defranoux 0, Pimenta-Araujo R, et al. Regulatory CD4 T cells control the size of the peripheral activated/memory CD4 T cell compartment [J]. J Immunol, 2000, 164(7):3573-80.
    
    23. Almeida AR, Legrand N, PapiernikM, et al. Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers [J]. J Immunol, 2002, 169(9):4850-60.
    
    24. Fontenot JD, Gavin MARudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells [J]. Nat Immunol, 2003, 4(4): 330-6.
    
    25. Hori S, Nomura TSakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3 [J]. Science, 2003, 299(5609):1057-61.
    
    26. Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells [J]. J Exp Med, 2006, 203(7) : 1701-11.
    
    27. Seddiki N, Santner-Nanan B, Martinson J, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells [J]. J Exp Med, 2006, 203(7):1693-700.
    
    28. Dieckmann D, Bruett CH, Ploettner H, et al. Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected] [J]. J Exp Med, 2002, 196(2) : 247-53.
    
    29. Jonuleit H, Schmitt E, Kakirman H, et al. Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells [J]. J Exp Med, 2002, 196(2):255-60.
    
    30. Hawrylowicz CMO'Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma [J]. Nat Rev Immunol, 2005,5(4):271-83.
    
    31. FahlenL, Read S, GorelikL, et al. T cells that cannot respond to TGF-beta escape control by CD4(+)CD25(+) regulatory T cells [J]. J Exp Med, 2005,201 (5): 737-46.
    
    32. Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells [J]. Immunity, 2006, 25(2):195-201.
    
    33. Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression [J]. J Exp Med, 2007, 204 (6) : 1257-65.
    34. Bopp T, Becker C, Klein M, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression [J]. J Exp Med, 2007, 204 (6): 1303-10.
    
    35. Bodor J, Feigenbaum L, Bodorova J, et al. Suppression of T-cell responsiveness by inducible cAMP early repressor (ICER) [J]. J Leukoc Biol, 2001, 69(6) :1053-9.
    
    36. Suader DN, Bailin PL, Sundeen J, et al. Suppressor cell function in psoriasis [J]. Arch Dermatol, 1980, 116(1):51-5.
    
    37. Sauder DN, Bailin PLKrakauer S. Suppressor cell defect in psoriasis [J].Adv Exp Med Biol, 1979, 121B (299-305.
    
    38. Cooper KD, S.Taylor OBaadsgaard CE. Atopic Dermatitis as an autoimmune disease:characterization of T cells autoreactive to epidermal cells and clinical response to cyclosporine A. [J]. Third Int'1 Symposium on Cyclosporine A, 1987,
    
    39. Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4 [J]. J Exp Med,2000, 192(2) : 303-10.
    
    40. Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis [J]. J Exp Med, 2004, 199(7):971-9.
    
    41. Kriegel MA, Lohmann T, Gabler C, et al. Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II [J]. J Exp Med, 2004, 199(9):1285-91.
    
    42. Rensing-Eh1 A, Gaus B, Bruckner-Tuderman L, et al. Frequency, function and CLA expression of CD4+CD25+F0XP3+ regulatory T cells in bullous pemphigoid [J]. Exp Dermatol, 2007, 16(1):13-21.
    
    43. Sugiyama H, Gyulai R, Toichi E, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation [J]. J Immunol, 2005, 174(1):164-73.
    
    44. Gorman S, Kuritzky LA, Judge MA, et al. Topically applied 1, 25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+cells in the draining lymph nodes [J]. J Immunol, 2007, 179(9):6273-83.
    45. Penna G, Roncari A, Amuchastegui S, et al. Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3 [J]. Blood, 2005, 106(10): 3490-7.
    
    46. Bos JD, de Rie MA, Teunissen MB, et al. Psoriasis: dysregulation of innate immunity [J]. Br J Dermatol, 2005, 152(6):1098-107.
    
    47. Cao D, Malmstrom V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis [J]. Eur J Immunol, 2003, 33(1) :215-23.
    
    48. Nagler-Anderson C, Bhan AK, Podolsky DK, et al. Control freaks: immune regulatory cells [J]. Nat Immunol, 2004, 5(2):119-22.
    
    49. Balandina A, Saoudi A, Dartevelle P, et al. Analysis of CD4+CD25+ cell population in the thymus from myasthenia gravis patients [J]. Ann N Y Acad Sci, 2003, 998(275-7.
    
    50. Lindley S, Dayan CM, Bishop A, et al. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes [J]. Diabetes, 2005, 54(1) :92-9.
    
    51. Terabe MBerzofsky JA. Immunoregulatory T cells in tumor immunity [J]. Curr Opin Immunol, 2004, 16(2):157-62.
    
    52. Ikemoto T, Yamaguchi T, Morine Y, et al. Clinical roles of increased populations of Foxp3+CD4+ T cells in peripheral blood from advanced pancreatic cancer patients [J]. Pancreas, 2006, 33(4):386-90.
    
    53. Golgher D, Jones E, Powrie F, et al. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens [J]. Eur J Immunol, 2002, 32(11):3267-75.
    
    54. Hoffmann P, Ermann J, Edinger M, et al. Donor-type CD4(+)CD25(+)regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation [J]. J Exp Med, 2002,196(3): 389-99.
    
    55. Rezvani K, Mielke S, Ahmadzadeh M, et al. High donor F0XP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT [J]. Blood, 2006, 108(4):1291-7.
    
    56. Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation[J].J Exp Med,1996,184(2):387-96.
    57.rakahashi T,Kuniyasu Y,roda M,et al.Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells:induction of autoimmune disease by breaking their anergic/suppressive state[J].Int Inmunol,1998,10(12):1969-80.
    58.Thornton AMShevach EM.CD4+CD25+ immunoregulatory r cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2production[J].J Exp Med,1998,188(2):287-96.
    59.Wood KJ Sakaguchi S.Regulatory r cells in transplantation tolerance[J].Nat Rev Immunol,2003,3(3):199-210.
    60.Cosmi L,Liotta F,Lazzeri E,et al.Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes [J].Blood,2003,102(12):4107-14.
    61.Walker MR KD,Gersuk VH.Induction of Foxp3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells[J].Clin Invest,2003,112(9):1437-1443.
    62.Khattri R,Kasprowicz D,Cox T,et al.The amount of scurfin protein determines peripheral T cell number and responsiveness[J].J Immunol,2001,167(11):6312-20.
    63.Ruprecht CR,Gattorno M,Ferlito F,et al.Coexpression of CD25 and CD27identifies FoxP3+regulatory T cells in inflamed synovia[J].J Exp Med,2005,201(11):1793-803.
    64.王盈,周磊明,官菊丽ea.中国健康人外周血中具有C D 4~+ C D 2 5~(in/hit) C D 127~(lo)特征的调节性T细胞频率[J].细胞与分子免疫学杂志,2007,23(9):816-818.
    65.Baecher-Allan C,Brown JA,Freeman GJ,et al.CD4+CD25high regulatory cells in human peripheral blood[J].J Immunol,2001,167(3):1245-53.
    66.Banham AH.Cell-surface IL-7 receptor expression facilitates the purification of FOXP3(+) regulatory T cells[J].Trends Immunol,2006,27(12):541-4.
    67.陈丽芳,陈小敏,杨秀丽等.银屑痫患者外周血CD4+CD25+调节性T细胞水平的研究[J].中华皮肤科杂志,2007,40(3):479.
    68.才华,郭楠,候治富.C D 4 + C D 2 5 +调节性T细胞研究进展[J].吉林大 学学报,2007, 33(6) : 1110-1112.
    
    69. Haas J, Hug A, Viehover A, et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis [J]. Eur J Immunol, 2005, 35(11):3343-52.
    
    70. de Kleer IM, Wedderburn LR, Taams LS, et al. CD4+CD25bright regulatory T cells actively regulate inflammation in the joints of patients with the remitting form of juvenile idiopathic arthritis [J]. J Immunol, 2004,172(10) :6435-43.
    
    71. Liu MF, Wang CR, Fung LL, et al. The presence of cytokine-suppressive CD4+CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis [J]. Scand J Immunol, 2005, 62(3):312-7.
    
    72. Balandina A, Lecart S, Dartevelle P, et al. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis [J]. Blood, 2005, 105(2):735-41.
    
    73. Brusko TM, Wasserfall CH, Clare-Salzler MJ, et al. Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes [J]. Diabetes, 2005, 54(5):1407-14.
    
    74. Valencia X, Yarboro C, Illei G, et al. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus [J]. J Immunol, 2007, 178(4):2579-88.
    
    75. Crispin JC, Martinez AAlcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus [J]. J Autoimmun, 2003, 21 (3): 273-6.
    
    76. Nomura I, GolevaE, Howell MD, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes [J]. J Immunol, 2003, 171(6):3262-9.
    
    77. Siegel RM, Katsumata M, Komori S, et al. Mechanisms of autoimmunity in the context of T-cell tolerance: insights from natural and transgenic animal model systems [J]. Immunol Rev, 1990, 118(165-92.
    
    78. Anderson AEIsaacs JD. Tregs and rheumatoid arthriti s [J]. Acta Reumatol Port, 2008, 33(1): 17-33.
    
    79. Taams LS, van Amelsfort JM, Tiemessen MM, et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells [j]. Hum Immunol, 2005, 66(3):222-30.
    
    80. Misra N, Bayry J, Lacroix-Desmazes S, et al. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells [J]. J Immunol, 2004, 172(8):4676-80.
    
    81. Scheffold A, Murphy KMHofer T. Competition for cytokines: T(reg) cells take all [J]. Nat Immunol, 2007, 8(12):1285-7.
    
    82. Pandiyan P, Zheng L, Ishihara S, et al. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells [J]. Nat Immunol, 2007, 8(12) :1353-62.
    
    83. Fontenot JD, Rasmussen JP, Gavin MA, et al. A function for interleukin 2 in Foxp3-expressing regulatory T cells [J]. Nat Immunol, 2005,6(11):1142-51.
    
    84. Duthoit CT, Mekala DJ, Alli RS, et al. Uncoupling of IL-2 signaling from cell cycle progression in naive CD4+ T cells by regulatory CD4+CD25+ T lymphocytes [J]. J Immunol, 2005, 174(1):155-63.
    
    85. Gondek DC, Lu LF, Quezada SA, et al. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism [J]. J Immunol, 2005, 174(4): 1783-6.
    
    86. Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance [J].Immunity, 2007, 27(4) :635-46.
    
    87. Zhao DM, Thornton AM, DiPaolo RJ, et al. Activated CD4+CD25+ T cells selectively kill B lymphocytes [J]. Blood, 2006, 107(10):3925-32.
    
    88. Bluestone JATang Q. How do CD4+CD25+ regulatory T cells control autoimmunity? [J]. Curr Opin Immunol, 2005, 17(6):638-42.
    
    89. Tang Q, Adams JY, Tooley AJ, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice [J]. Nat Immunol, 2006,7(1) :83-92.
    
    90. Tadokoro CE, Shakhar G, Shen S, et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo [J]. j Exp Med,2006, 203(3):505-ll.
    
    91. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse [J]. Nat Genet, 2001,27(1) :68-73.
    
    92. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of F0XP3 [J]. Nat Genet, 2001, 27(1):20-l.
    
    93. Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy [J]. Nat Genet, 2001, 27(1):18-20.
    
    94. Pillai V, Ortega SB, Wang CK, et al. Transient regulatory T-cells: a state attained by all activated human T-cells [J]. Clin Immunol, 2007,123(1): 18-29.
    
    95. Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells [J]. Nat Immunol, 2003, 4(4):337-42.
    
    96. Read S, Malmstrom VPowrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation [J]. J Exp Med, 2000,192(2): 295-302.
    
    97. Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells [J]. Nat Immunol, 2003, 4(12):1206-12.
    
    98. Mellor ALMunn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism [J]. Nat Rev Immunol, 2004, 4(10):762-74.
    
    99. Read S, Greenwald R, Izcue A, et al. Blockade of CTLA-4 on CD4+CD25+regulatory T cells abrogates their function in vivo [J]. J Immunol, 2006,177(7): 4376-83.
    
    100. Tang Q, Boden EK, Henriksen KJ, et al. Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function [J]. Eur J Immunol, 2004,34(11): 2996-3005.
    
    101. McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4(+)CD25(+)immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor [J]. Immunity, 2002,16(2):311-23.
    
    102. Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4 (+)regulatory T cells through GITR breaks immunological self-tolerance [J].Nat Immunol, 2002, 3(2): 135-42.
    103. Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells [J]. Immunity, 2004, 21 (4):503-13.
    
    104. Workman CJVignali DA. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223) [J]. J Immunol, 2005,174(2): 688-95.
    
    105. Vignali D. How many mechanisms do regulatory T cells need? [J]. Eur J Immunol, 2008, 38(4) :908-11.
    
    106. Asseman C, Mauze S, Leach MW, et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation [J]. J Exp Med, 1999, 190(7):995-1004.
    
    107. Powrie F, Carlino J, Leach MW, et al. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells [J]. J Exp Med, 1996, 183(6): 2669-74.
    
    108. Li MO, Wan YY, Sanjabi S, et al. Transforming growth factor-beta regulation of immune responses [J]. Annu Rev Immunol, 2006, 24(99-146.
    
    109. Hawrylowicz CM. Regulatory T cells and IL-10 in allergic inflammation [J]. J Exp Med, 2005, 202(11):1459-63.
    
    110. de la Rosa M, Rutz S, Dorninger H, et al. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function [J]. Eur J Immunol, 2004,34(9): 2480-8.
    
    111. Barthlott T, Moncrieffe H, Veldhoen M, et al. CD25+CD4+T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production [J]. Int Immunol, 2005, 17(3):279-88.
    
    112. Ge Q, Bai A, Jones B, et al. Competition for self-peptide-MHC complexes and cytokines between naive and memory CD8+ T cells expressing the same or different T cell receptors [J]. Proc Natl Acad Sci U S A, 2004,101(9):3041-6.
    
    113. Sukiennicki TLFowell DJ. Distinct molecular program imposed on CD4+ T cell targets by CD4+CD25+ regulatory T cells [J]. J Immunol, 2006, 177(10):6952-61.
    
    114. Suri-Payer E, Amar AZ, Thornton AM, et al. CD4+CD25+T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells [J]. J Immunol, 1998, 160(3): 1212-8.
    
    115. Scholz C, Patton KT, Anderson DE, et al. Expansion of autoreactive T cells in multiple sclerosis is independent of exogenous B7 costimulation [J]. J Immunol, 1998, 160(3):1532-8.
    
    116. VigliettaV, Kent SC, Orban T, et al. GAD65-reactive T cells are activated in patients with autoimmune type la diabetes [J]. J Clin Invest, 2002, 109(7): 895-903.
    
    117. Liu MF, Wang CR, Fung LL, et al. Decreased CD4+CD25+T cells in peripheral blood of patients with systemic lupus erythematosus [J]. Scand J Immunol,2004, 59(2) : 198-202.
    
    118. Longhi MS, Hussain MJ, Mitry RR, et al. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis [J]. J Immunol,2006, 176(7): 4484-91.
    
    119. Longhi MS, Ma Y, Bogdanos DP, et al. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease [J]. J Hepatol, 2004,41 (1) :31-7.
    
    120. Ryan KR, Lawson CA, Lorenzi AR, et al. CD4+CD25+ T-regulatory cells are decreased in patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy [J]. J Allergy Clin Immunol, 2005, 116(5):1158-9.
    
    121. Furuno K, Yuge T, Kusuhara K, et al. CD25+CD4+ regulatory T cells in patients with Kawasaki disease [J]. J Pediatr, 2004, 145(3):385-90.
    
    122. Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease [J]. Gastroenterology, 2005, 128(7):1868-78.
    
    123. Lawson CA, Brown AK, Bejarano V, et al. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood [J]. Rheumatology (Oxford), 2006,45(10) : 1210-7.
    
    124. Lan RY, Cheng C, Lian ZX, et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis [J].Hepatology, 2006, 43(4) :729-37.
    
    125. Battaglia A, Di Schino C, Fattorossi A, et al. Circulating CD4+CD25+ T regulatory and natural killer T cells in patients with myasthenia gravis: a flow cytometry study [J]. J Biol Regul Homeost Agents, 2005, 19(1-2):54-62.
    
    126. Fattorossi A, Battaglia A, Buzzonetti A, et al. Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment [J]. Immunology, 2005, 116(1):134-41.
    
    127. Venken K, Hellings N, Hensen K, et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and F0XP3 expression [J]. J Neurosci Res, 2006, 83(8) : 1432-46.
    
    128. Miyara M, Amoura Z, Parizot C, et al. The immune paradox of sarcoidosis and regulatory T cells [J]. J Exp Med, 2006, 203(2):359-70.
    
    129. Verhagen J, Akdis M, Traidl-Hoffmann C, et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin [J]. J Allergy Clin Immunol, 2006, 117(1):176-83.
    
    130. Vukmanovic-Stejic M, McQuaid A, Birch KE, et al. Relative impact of CD4+CD25+ regulatory T cells and tacrolimus on inhibition of T-cell proliferation in patients with atopic dermatitis [J]. BrJDermatol, 2005, 153(4): 750-7.
    
    131. Yamagiwa S, Gray JD, Hashimoto S, et al. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood [J]. J Immunol, 2001, 166(12):7282-9.
    
    132. Levings MK, Sangregorio RRoncarolo MG. Human cd25(+) cd4 (+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function [J]. J Exp Med, 2001, 193(11) : 1295-302.
    
    133. Pietrzak AT, Zalewska A, Chodorowska G, et al. Cytokines and anticytokines in psoriasis [J]. Clin Chim Acta, 2008, 394(1-2):7-21.
    
    134. Ning-han Feng H-fW, Wei Zhang, et al. Immunology Mechanism of CD4+ CD25+ T Regulatory Cells Acting on Effector T Cells [J]. Journal Of Nanjing Medical University(English Edition), 2004, 18(4):178-82.
    
    135. Lim DG, Joe IY, Park YH, et al. Effect of immunosuppressants on the expansion and function of naturally occurring regulatory T cells [J]. Transpl Immunol, 2007, 18(2):94-100.
    
    136. Kopf H, de la Rosa GM, Howard 0M, et al. Rapamycin inhibits differentiation of Thl7 cells and promotes generation of FoxP3+ T regulatory cells [J]. Int Immunopharmacol, 2007, 7(13):1819-24.
    137. Rotsztejn H, Nachtigal D, Trznadel-Budzko E, et al. Influence of systemic photochemotherapy on regulatory T cells and selected cytokine production in psoriatic patients: a pilot study [J]. Med Sci Monit, 2005,11(12):CR594-8.
    
    138. Borsellino G, Kleinewietfeld M, Di Mitri D, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression [J]. Blood, 2007, 110(4):1225-32.
    
    139. Kobie JJ, Shah PR, Yang L, et al. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine [J]. J Immunol, 2006,177(10): 6780-6.
    
    140. Robson SC, Wu Y, Sun X, et al. Ectonucleotidases of CD39 family modulate vascular inflammation, and thrombosis in transplantation [J]. Semin Thromb Hemost, 2005, 31(2) :217-33.
    
    141. Resta R, Yamashita YThompson LF. Ecto-enzyme and signaling functions of lymphocyte CD73 [J]. Immunol Rev, 1998, 161(95-109.
    
    142. Hershfield MS. New insights into adenosine-receptor-mediated immunosuppression and the role of adenosine in causing the immunodeficiency associated with adenosine deaminase deficiency [J].Eur J Immunol, 2005, 35(1):25-30.
    
    143. Robison GA, Butcher RWSutherland EW. Cyclic AMP [J]. Annu Rev Biochem,1968, 37(149-74.
    
    144. Minguet S, Huber M, Rosenkranz L, et al. Adenosine and cAMP are potent inhibitors of the NF-kappa B pathway downstream of immunoreceptors [J].Eur J Immunol, 2005, 35(1) :31-41.
    
    145. Novak TJRothenberg EV. cAMP inhibits induction of interleukin 2 but not of interleukin 4 in T cells [J]. Proc Natl Acad Sci USA, 1990,87(23):9353-7.
    
    146. Montesinos MC, Takedachi M, Thompson LF, et al. The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5'-nucleotidase: findings in a study of ecto-5'-nucleotidase gene-deficient mice [J]. Arthritis Rheum, 2007,56(5) : 1440-5.
    
    147. Sitkovsky MVOhta A. The 'danger' sensors that STOP the immune response: the A2 adenosine receptors? [J]. Trends Immunol, 2005, 26(6):299-304.
    
    148. Huang S, Apasov S, KoshibaM, et al. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion [J]. Blood, 1997, 90(4):1600-10.
    
    149. Armstrong JM, Chen JF, Schwarzschild MA, et al. Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-gene-deficient mice [J]. Biochem J,2001, 354(Pt 1):123-30.
    
    150. Ohta ASitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage [J]. Nature, 2001, 414(6866):916-20.
    
    151. Ohta A, Gorelik E, Prasad SJ, et al. A2A adenosine receptor protects tumors from antitumor T cells [J]. Proc Natl Acad Sci USA, 2006,103(35): 13132-7.
    
    152. Naganuma M, Wiznerowicz EB, Lappas CM, et al. Cutting edge: Critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis [J]. J Immunol, 2006, 177(5):2765-9.
    
    153. Sugiyama H, Chen P, Hunter M, et al. The dual role of the cAMP-dependent protein kinase C alpha subunit in T-cell receptor-triggered T-lymphocytes effector functions [J]. J Biol Chem, 1992, 267(35): 25256-63.
    
    154. Takayama H, Trenn G, KruisbeekA, et al. T cell antigen receptor triggered exocytosis in cytotoxic T lymphocytes is inhibited by soluble, but not immobilized monoclonal antibodies to Lyt-2 antigen [J]. J Immunol, 1987,139(4) : 1014-21.
    
    155. Sitkovsky M, Lukashev D, Deaglio S, et al. Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells [J]. Br J Pharmacol, 2008, 153 Suppl 1(S457-64.
    
    156. Zimmermann H. 5'-Nucleotidase: molecular structure and functional aspects [J]. Biochem J, 1992, 285 ( Pt 2)(345-65.
    
    157. Hunsucker SA, Mitchell BSSpychala J. The 5' -nucleotidases as regulators of nucleotide and drug metabolism [J]. Pharmacol Ther, 2005,107(1) : 1-30.
    
    158. Colgan SP, Eltzschig HK, Eckle T, et al. Physiological roles for ecto-5'-nucleotidase (CD73) [J]. Purinergic Signal, 2006, 2(2):351-360.
    
    159. YamashitaY, Hooker SW, Jiang H, et al. CD73 expression and fyn-dependent signaling on murine lymphocytes [J]. Eur J Immunol, 1998,28(10) :2981-90.
    
    160. Spychala J, Zimmermann AGMitchell BS. Tissue-specific regulation of the ecto-5'-nucleotidase promoter. Role of the camp response element site in mediating repression by the upstream regulatory region [J]. J Biol Chem, 1999, 274(32) : 22705-12.
    
    161. Cronstein BN, Kramer SB, Weissmann G, et al. Adenosine: a physiological modulator of superoxide anion generation by human neutrophils [J]. J Exp Med, 1983, 158(4) : 1160-77.
    
    162. Linden J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection [J]. Annu Rev Pharmacol Toxicol, 2001, 41(775-87.
    
    163. Mubagwa KFlameng W. Adenosine, adenosine receptors and myocardial protection: an updated overview [J]. Cardiovasc Res, 2001, 52(1):25-39.
    
    164. McCallion K, Harkin DWGardiner KR. Role of adenosine in immunomodulation: review of the literature [J]. Crit Care Med, 2004, 32(1):273-7.
    
    165. Eltzschig HK, Ibla JC, Furuta GT, et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium:role of ectonucleotidases and adenosine A2B receptors [J]. J Exp Med,2003, 198(5) : 783-96.
    
    166. Gavin MA, Rasmussen JP, Fontenot JD, et al. Foxp3-dependent programme of regulatory T-cell differentiation [J]. Nature, 2007, 445(7129) :771-5.
    
    167. Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3 [J]. Immunity, 2005, 22(3): 329-41.
    
    168. Huang DY, Vallon V, Zimmermann H, et al. Ecto-5'-nucleotidase (cd73)-dependent and -independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo [J]. Am J Physiol Renal Physiol, 2006, 291(2):F282-8.
    
    169. Castrop H, Huang Y, Hashimoto S, et al. Impairment of tubuloglomerular feedback regulation of GFR in ecto-5' -nucleot idase/CD73-deficient mice [J]. J Clin Invest, 2004, 114(5):634-42.
    
    170. Eckle T, Fullbier L, Wehrmann M, et al. Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury [J]. J Immunol, 2007, 178(12):8127-37.
    
    171. Volmer JB, Thompson LFBlackburn MR. Ecto-5'-nucleotidase (CD73)-mediated adenosine production is tissue protective in a model of bleomycin-induced lung injury [J]. J Immunol, 2006, 176(7):4449-58.
    
    172. Koszalka P, Ozuyaman B, Huo Y, et al. Targeted disruption of cd73/ecto-5'-nucleotidase alters thromboregulation and augments vascular inflammatory response [J]. Circ Res, 2004, 95(8):814-21.
    
    173. Thompson LF, Eltzschig HK, Ibla JC, et al. Crucial role for ecto-5'-nucleotidase (CD73) in vascular leakage during hypoxia [J]. J Exp Med, 2004, 200(11):1395-405.
    
    174. Zernecke A, Bidzhekov K, Ozuyaman B, et al. CD73/ecto-5'-nucleotidase protects against vascular inflammation and neointima formation [J]. Circulation, 2006, 113(17):2120-7.
    
    175. Eckle T, Krahn T, Grenz A, et al. Cardioprotection by ecto-5'-nucleotidase (CD73) and A2B adenosine receptors [J]. Circulation, 2007, 115(12):1581-90.
    
    176. Koshiba M, Kojima H, Huang S, et al. Memory of extracellular adenosine A2A purinergic receptor-mediated signaling in murine T cells [J]. J Biol Chem, 1997, 272(41) : 25881-9.
    
    177. Koshiba M, Rosin DL, Hayashi N, et al. Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies [J]. Mol Pharmacol, 1999, 55(3):614-24.
    
    178. Zarek PE, Huang CT, Lutz ER, et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells [J]. Blood, 2008, 111 (1):251-9.
    
    179. Montesinos MC, Yap JS, Desai A, et al. Reversal of the anti inflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the antiinflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis [J]. Arthritis Rheum, 2000, 43(3): 656-63.
    
    180. Bours MJ, Swennen EL, Di Virgilio F, et al. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation [J]. Pharmacol Ther, 2006, 112(2) :358-404.
    1.Kostovic K,Pasic A.Phototherapy of psoriasis:review and update[J].Acta Dermatovenerol Croat,2004,12(1):42-50.
    2.Asawanonda P,Anderson RR,Chang Y,et al.308-nm excimer laser for the treatment of psoriasis:a dose-response study[J].Arch Dermatol,2000,136(5):619-24.
    3.Bonis B,Kemeny L,Dobozy A,et al.308 nm UVB excimer laser for psoriasis [J]. Lancet, 1997, 350(9090):1522.
    
    4. Feldman SR, Mellen BG, Housman TS, et al. Efficacy of the 308-nm excimer laser for treatment of psoriasis: results of a multicenter study [J]. J Am Acad Dermatol, 2002, 46(6): 900-6.
    
    5. Rodewald EJ, Housman TS, Mellen BG, et al. The efficacy of 308nm laser treatment of psoriasis compared to historical controls [J]. Dermatol Online J, 2001, 7(2):4.
    
    6. Novak Z, Bonis B, Baltas E, et al. Xenon chloride ultraviolet B laser is more effective in treating psoriasis and in inducing T cell apoptosis than narrow-band ultraviolet B [J]. J Photochem Photobiol B, 2002,67(1): 32-8.
    
    7. Bianchi B, Campolmi P, Mavilia L, et al. Monochromatic excimer light (308 nm): an immunohistochemical study of cutaneous T cells and apoptosis-related molecules in psoriasis [J]. J Eur Acad Dermatol Venereol, 2003, 17(4):408-13.
    
    8. Yang F, Sarangarajan R, Le Poole IC, et al. The cytotoxicity and apoptosis induced by 4-tertiary butylphenol in human melanocytes are independent of tyrosinase activity [J]. J Invest Dermatol, 2000, 114(1) : 157-64.
    
    9. Giusti F GA. Basic mechanisms of cutaneous inflammation. Examples and therapeutic consequences [J]. G Ital Dermatol Venereol, 2000, 135(1): 49.
    
    10. Cappugi P ML, Mavilia C, et al. 308 - nm monochromatic excimer light in psoriasis: clinical evaluation study of cytokine levels in the skin [J]. J Immunopathol Pharmacol, 2002, 13(14-19.
    
    11. Taneja A, Trehan M, Taylor CR. 308-nm excimer laser for the treatment of psoriasis: induration-based dosimetry [J]. Arch Dermatol, 2003,139(6): 759-64.
    
    12. Gerber W, Arheilger B, Ha TA, et al. Ultraviolet B 308-nm excimer laser treatment of psoriasis: a new phototherapeutic approach [J]. Br J Dermatol, 2003, 149(6):1250-8.
    
    13. Housman TS, Pearce DJ, Feldman SR. A maintenance protocol for psoriasis plaques cleared by the 308 nm excimer laser[J]. J Dermatolog Treat, 2004, 15(2): 94-7.
    
    14. Gupta SN, Taylor CR. 308-nm excimer laser for the treatment of scalp psoriasis [J]. Arch Dermatol, 2004, 140(5):518-20.
    
    15. Taylor CR, Racette AL. A 308-nm excimer laser for the treatment of scalp psoriasis[J]. Lasers Surg Med, 2004, 34(2):136-40.
    
    16. Campolmi P ML, Lotti TM, et al. 308 - nm monochromatic excimer light for the treatment of palmopantar psoriasis [J]. J Immunopathol Pharmacol, 2002, 13(1): 11-13.
    1.Bluestone JA,Abbas AK.Natural versus adaptive regulatory T cells[J].Nat Rev Immunol,2003,3(3):253-7.
    2.Schubert LA,Jeffery E,Zhang Y,et al.Scurf in(FOXP3) acts as a repressor of transcription and regulates T cell activation[J].J Biol Chem,2001,276(40):37672-9.
    3.Brunkow ME,Jeffery EW,Hjerrild KA,et al.Disruption of a new forkhead/winged-helix protein,scurfin,results in the fatal lymphoproliferative disorder of the scurfy mouse[J].Nat Genet,2001.27(1):68-73.
    4.Annacker O,Pimenta-Araujo R,Burien-Defranoux O,et al.On the ontogeny and physiology of regulatory T cells[J].Immunol Rev,2001,182:5-17.
    5.Fontenot JD,Gavin MA,Rudensky AY.Foxp3 programs the development and function of CD4~+CD25~+ regulatory T cells[J].Nat Immunol,2003,4(4): 330-6.
    
    6. Thornton AM, Shevach EM. CD4~+ CD25~+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production [J]. J Exp Med, 1998, 188(2): 287-96.
    
    7. Piccirillo CA, Shevach EM. Cutting edge: control of CD8~+ T cell activation by CD4+CD25+ immunoregulatory cells [J]. J Immunol, 2001,167(3): 1137-40.
    
    8. Groux H, 0'Garra A, Bigler M, et al. A CD4~+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis [J]. Nature, 1997, 389(6652): 737-42.
    
    9. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4~+CD25~+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta [J]. J Exp Med, 2001, 194(5): 629-44.
    
    10. Cederbom L, Hall H, Ivars F. CD4~+CD25~+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells [J]. Eur J Immunol,2000, 30(6): 1538-43.
    
    11. Zheng SG, Koss MN, Quismorior FP, et al. Suppression of a lupus-like syndrome with regulatory T cells generated ex vivo with TGF-β [J]. J Arthritis Rheum, 2001, 44(s): 283.
    
    12. Crispin JC, Martinez A, Alcocer-Varela J. Quantification of regulatory T cells in patients with systemic lupus erythematosus [J]. J Autoimmun,2003, 21 (3) : 273-6.
    
    13. Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus [J]. J Immunol, 2005,175(12): 8392-400.
    
    14. Ou LS, Goleva E, Hall C, et al. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens [J]. J Allergy Clin Immunol, 2004, 113(4): 756-63.
    
    15. Verhagen J, Akdis M, Traidl-Hoffmann C, et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin [J]. J Allergy Clin Immunol, 2006, 117(1): 176-83.
    
    16. Wrone-Smith T, Nickoloff BJ. Dermal injection of immunocytes induces psoriasis [J]. J Clin Invest, 1996, 98(8): 1878-87.
    
    17. Prinz JC, Gross B, Vollmer S, et al. T cell clones from psoriasis skin lesions can promote keratinocyte proliferation in vitro via secreted products [J]. Eur J Immunol, 1994, 24(3): 593-8.
    
    18. Sugiyama H, Gyulai R, Toichi E, et al. Dysfunctional blood and target tissue CD4~+CD25~(high) regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation [J]. J Immunol,2005, 174(1): 164-73.
    
    19. Kriegel MA, Lohmann T, Gabler C, et al. Defective suppressor function of human CD4~+CD25~+ regulatory T cells in autoimmune polyglandular syndrome type II. J Exp Med, 2004. 199(9): p. 1285-91.
    
    20. Berger CL, Tigelaar R, Cohen J, et al. Cutaneous T-cell lymphoma:malignant proliferation of T-regulatory cells [J]. Blood, 2005, 105(4):1640-7.
    
    21. Tiemessen MM, Mitchell TJ , Hendry L, et al. Lack of suppressive CD4~+CD25~+F0XP3~+ T cells in advanced stages of primary cutaneous T-cell lymphoma [J]. J Invest Dermatol, 2006, 126(10): 2217-23.
    
    22. Klemke CD, Fritzsching B, Franz B, et al. Paucity of FOXP3+ cells in skin and peripheral blood distinguishes Sezary syndrome from other cutaneous T-cell lymphomas [J]. Leukemia, 2006, 20(6): 1123-9.