IPC-208B型原子力显微镜系统改进及其压电微悬臂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪以来,扫描探针显微镜(Scanning Probe Microscope,简称SPM)已经成为纳米检测与加工不可缺少的研究仪器。尤其是原子力显微镜(AFM)凭借其原子量级(0.1nm)的精度,在材料科学、生物医学、纳米机电以及微纳加工领域得到了广泛的应用。随着纳米技术的迅速发展以及在纳米检测与加工领域中的深入应用,原子力显微镜技术自身也得到了很大的发展。重庆大学恒瑞纳米技术工作站在现有的IPC-208B型原子力显微镜系统的基础上,不断优化原子力显微镜系统的性能,拓展其应用,并致力于研究开发多工作模式的原子力显微镜。本论文在重庆市科委自然科学基金项目和重庆大学自然科学青年基金项目的资助下,开展了IPC-208B型原子力显微镜系统性能改进、最新实验应用及其压电微悬臂的研究,主要做了以下几个方面的研究工作:
     ①系统研究以AFM为主的SPM的工作原理、发展概况以及应用情况,详细论述了压电微悬臂的理论和国内外应用发展,重点论述了压电微悬臂在AFM系统中的研究现状。
     ②介绍实验室近几年在IPC-208B型原子力显微镜系统改进及其最新应用实验方面的工作。系统介绍AFM.IPC-208B型机系统组成,重点介绍显微镜镜体中的步进电机、压电陶瓷、微悬臂、变速系统;改进方面在AFM系统配备了AFM微悬臂调节装置,微悬臂调节机构采用可拆卸式的装置,兼顾了AFM系统功能与STM系统功能,提高了仪器的应用价值。为微悬臂和探针增设探针调节监测装置(2D调节),增强调整的准确性,提高调整效率,避免撞针情况的发生,提高微悬臂的可操作性;选择压电陶瓷扫描器进行下扫描设置,使扫描范围由原来的1000×1000 nm2扩大为10×10μm2,实现大范围扫描;详细论述该系统在微加工、生物医药样品表征、铁磁和铁电材料表征和高分子聚合物纤维材料表征方面的最新的应用进展。
     ③对AFM系统的压电微悬臂进行设计。根据微悬臂形变与位移传感原理,在AFM压电微悬臂设计原理、讨论其工作模式原理的基础上,给出完整的压电微悬臂结构及系统设计,提出硅底+电极+压电薄膜+电极四层结构;分析对比PZT与ZnO两种压电材料的特点,并分析压电微悬臂感应和执行两种工作方式;研究了微悬臂及其探针的加工工艺;分析压电微悬臂的特点,在与其他方式微悬臂的进行对比分析的基础上探讨压电微悬臂在AFM中的应用前景。
     ④对AFM压电微悬臂进行有限元分析及ANSYS仿真。根据有限元和ANSYS仿真原理,按照原子力显微镜工作环境和要求,采用有限元方法建立微悬臂模型,采用ANSYS软件对模型进行静力分析求解得到压电分析结果:电压随作用力或位移的变化关系,具有较好的线性度。深入分析模型中的各个参数:长度、宽度、厚度等对电压产生的影响,得到3阶模态振动图及固有频率模态分析结果,并讨论不同尺寸参数对模态频率的影响;分析不同探针位置对模态频率和灵敏度的影响,并对是否考虑延伸端进行性能对比分析;采用电压/位移(△U/△D)对模型的灵敏度进行标度,做各尺寸参数对灵敏度的影响分析;总结仿真分析结果,综合考虑压电微悬臂尺寸的影响,优化分析结果:选择微悬臂长度为200μm,宽度为50μm,延伸端长度为20μm,延伸端宽度为10μm,压电层厚度为1μm,硅底厚度为1.5μm,电极厚度为0.2μm时,微悬臂的一阶频率为f=44.972kHz,灵敏度K=1.71mv/nm。按照AFM探针起伏为0—100 nm计算,压电信号变化范围在0—171 mv,为AFM微悬臂的研制提供参考。
Since 21st century, Scanning Probe Microscopes (SPM) has become an indispensable research instrument in nano-testing and processing. In particular, the Atomic Force Microscope (AFM) with its atomic level accuracy (0.1nm) has been widely used in materials science, bio-medicine, nano-electromechanical and Nano/Micro process areas. With the rapid development of nano-technology and in-depth applications in the field of nano-inspection and processing, atomic force microscope technology itself has also got a great development. Chongqing University Heng-Rui Nano-technical workstation try to optimize the system performance and expand its applications on IPC-208B type atomic force microscope, and be committed to research and development of multi-mode atomic force microscope. In this paper, funded by the Natural Science Fund project of Chongqing Science and Technology Commission and Chongqing University Natural Science Youth Fund project, I carried out some study such as system performance improvements of IPC-208B type atomic force microscope, the latest experimental applications and piezoelectric micro-cantilever research. So, my main researches in the following areas:
     ①Systematic study was carried out on the SPM for AFM-based with working principle, the development and applications, discussed in the theory of piezoelectric micro-cantilever applications and development at home and abroad in detail, with emphasis on the current study of the piezoelectric micro-cantilever applied in AFM system.
     ②Recent laboratory works were introduced about the IPC-208B type atomic force microscope system improvement and its latest new application experiments. I introduced AFM.IPC-208B-type system components, with emphasis on the lens body with stepper motor, piezoelectric ceramics, micro-cantilever and transmission system. For the improvements on the AFM system equipped with a regulating device for AFM micro-cantilever, which gives attention to STM and AFM, as well as the added conditioning monitoring devices for cantilever - probe, in order to enhance the accuracy of the adjustment, I improve the adjustment efficiency and avoid the firing pin from happening, all this aims to improve the operability of micro-cantilever. I chose a piezoelectric scanner to complete the under scanning setting, so that the scanning range expanded from the original 1000×1000 nm2 to 10×10μm2, achieving a wide scanning range. Detail the latest system applications were shown in micro-processing, bio-medical samples characterization, ferromagnetic and ferroelectric materials, fiber material characterization and polymer characterization.
     ③Piezoelectric micro-cantilever was designed for AFM system. According to the relation betwween micro-cantilever deformation and its displacement, based on the AFM piezoelectric micro-cantilever design principle and the selected work mode principle, I gave the complete piezoelectric micro-cantilever structure (Si + pole + piezoelectric film+ pole) and system design; analyzed and compared characteristics of the PZT and ZnO piezoelectric materials, and analyzed the two kinds work ways of piezoelectric micro-cantilever sensors and implementation; analyzed the preparation of micro-cantilever and probe; analyzed characteristics of piezoelectric micro-cantilever based on the comparison between micro-cantilever and other methods, in the end, I analyzed the application prospect of piezoelectric micro-cantilever in the AFM .
     ④Finite element analysis and ANSYS simulation for the AFM piezoelectric micro-cantilever were completed. According to finite element and ANSYS simulation principle, in accordance with atomic force microscope working environment and requirements, I used the finite element method to establish micro-cantilever model, and used ANSYS software to analyze the model and obtained results of the piezoelectric analysis solution: change relationship of voltage with the force or displacement. I analyzed the impact on the voltage of the various model parameters: length, width, thickness and so on, received three first order modal vibration maps and natural frequency modal analysis results, and discussed the different size parameters on the modal frequency of the impact; and I analyzed impact of different probe needle position on the of modal frequency and sensitivity, and made performance comparison analysis whether consider the extending side; using voltage/displacement (△U/△D) the model sensitivity scale, I analyzed the impact of the size parameters on the sensitivity. At last by optimization analysis, the simulation results was shown: when cantilever length is 200μm and its width is 50μm, extended length is 20μm and its width is10μm, piezoelectric film thickness is1μm, Si thickness is 1.5μm, pole thickness is 0.2μm, we got the basal frequency f=44.972kHz, the sensitivity K=1.71mv/nm. According to the of AFM probe wave 0—100 nm,the piezoelectric signal is about 0—171 mv,which is convenient to be identified for AFM system.
引文
[1]白春礼.扫描隧道显微术及其应用[M].上海:上海科学出版社.1992
    [2]张立德.国际纳米技术的最新发展动态以及我国面临的挑战与对策[J].新材料产业.2002,10:63~67.
    [3]吴中华.日美制定国家战略争夺纳米科技制高点[J].新材料产业.2001,5:18~21.
    [4]师昌绪,李克健,吴述尧.关于发展我国纳米科学技术的几点思考[J].新材料产业.2001,9:51~53
    [5] Binnig G, Rohrer H.Helv.Phys [J].Acta.1982,55:726.
    [6]白春礼.纳米科技及其发展前景[J].科学通报.2001,46(2):89~92.
    [7] Binig G,Quate C F,Gerber Ch.Phys[J].Rev.Lett.1986,56:930.
    [8]白春礼、田芳、罗克.扫描力显微术[M],北京:科学出版社,2000
    [9] U.Hartmann, An elementary introduction to atomic force microscopy and related methods [M], Lecture, Germany: University of Saarbrücken, 1997.
    [10] MultiMode. SPM Instruction Manual, Version 4.31ce, Digital Instruments Veeco Metrology Group [M]. 2000.
    [11] D. Drakova, Theoretical modeling of scanning tunneling microscopy, scanning tunneling spectroscopy and atomic force microscopy [J]. Rep. Prog. Phys., 2001, 64:205–290.
    [12] H. K. Wickramasinghe, Progress in scanning probe microscopy [J]. Acta Mater, 2000, 48:347-358.
    [13]田文超,贾建援.扫描探针显微镜系列及其应用综述[J].西安电子科技大学学报(自然科学版).2003,30(1):108~112.
    [14]白春礼,郭军.STM在多相催化表面研究中的应用(上)[J].石油化工.1992,21(3):206~215.
    [15] G.Binnig, C. F. Quate and Ch. Gerber, Atomic force microscope [J], Phys. Rev. Lett. 1986, 56(9):930-933.
    [16]韩贤武,高精度AFM的研制及在机械和小分子结构中的应用[D],重庆大学博士学位论文,2007.
    [17] R Wisendanger, H J Guntherodt, Springer Ser. In Surface Sciences 28, in Scanning Tunelling Microscopy II [M]. 2nd Edition. R Gomer ed. Berlin Heidelberg: Springer-Verlag. 1995.
    [18] Drake B, Prater C B, Weisenhorn A L, Gould S A C, Albrecht T R, Quate C F, Cannell D S, Hansma H G, Hansma P K. Science. 1989, 243:1586
    [19] E Meyer, H Heinzelmann, P Grutter, T Jung, T Weisskopf, H R Hidber, R Lapka, H Rudin,H J Guntherodt [J]. J. Microscopy. 1988, 152:269.
    [20] Goddenhenrich T, Lemke H, Hartmann U, Heiden C. J. Vac [J]. Sci. Technol. 1990, A8: 383
    [21] G Binning, et al [J]. Phys.Rev. Lett. 1983, 50:120.
    [22] Tromp R M, Hamers R J, Demuth J E [J]. Phys. Rev. Lett. 1986, 34:2388.
    [23] Hoyt P R, Doktycz M J, Warmack R J, Allison D P. Spin-column isolation of DNA-protein interactions from complex protein mixtures for AFM imaging [J]. Ultramicroscope. 2001, 86(1-2): 139-143.
    [24] Umemura K, Komatsu J, Uchihashi T, et al. Atomic force microscopy of RecA-DNA complexes using a carbon nanotube tip[J]. Biochem Biophys Res. Commun. 2001, 281(2): 390~395.
    [25] Rivetti C, Walker C, Bustamante C, et al. Polymer Chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility [J]. J Mol Biol. 1998, 280(1):41~59.
    [26] Krautbauer R, Pope LH, Schrader TE, et al. Discriminating small molecule DNA binding modes by single molecule force spectroscopy[J]. FEBS Lett. 2002, 510(3):154~158.
    [27]孙全梅,陈龙,陈佩佩等.原子力显微镜磁驱动轻敲模式在活细胞成像中的应用研究[J]。电子显微学报,2008,27(4):311-315.
    [28] Mathur AB, Collinsworth AM, Reichert WM,et al. Endothelial cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy[J]. J. Biomech. 2001,34(12): 1545~1553.
    [29] Braet F, Vermijlen D, Bossuyt D,et al. Early detection of cytotoxic events between hepatic natural killer cells and colon carcinoma cells as probed with the AFM [J]. Ultramicroscopy. 2001, 89(40):265~273.
    [30] Girasole M, Cricenti A, Generosi R, et al. Artificially induced unusual shape of erythrocytes an atomic force microscopy study [J]. J. Microsc. 2001, 204(Pt 1):46~52.
    [31]田孝军,王越超,董再励等.基于AFM的机器人化纳米操作系统综述[J].机械工程学报,2009,45(6):14-23.
    [32]闫永达,孙涛,董申等.利用AFM探针机械刻划方法加工微纳米结构[J].传感技术学报.2006,19(5):1451-1453.
    [33]传感器技术网站:http://ins22web.seu.edu.cn/chgq/chap1-11/cgq601-1.htm. [EB/OL]
    [34]王敏锐,Zn0薄膜压电微力传感器/执行器研究[D],大连理工博士学位论文.2006
    [35]唐洁,压电微悬臂梁传感技术的研究[D],天津大学硕士学位论文,2005.
    [36]王忠顺,压电微悬臂梁共振检测系统的研究[D],天津大学硕士学位论文,2006.
    [37] Voe D L , Pisano A P. Modeling and optimal design of piezoelectric cantilevermicroactuators [J]. Journal of Microelectromechanical System, 1997, 6(3):266-270.
    [38]韩建强,朱长纯,刘君华.谐振法确定热激励微梁共振器厚度及残余应变[J],电子器件, 2003,26(4):328-332.
    [39] Riethmuller W, Benecke W. IEEE Trans [J]. Electron Devices, 1988, 35(6):758-762.
    [40] Lee H C, Huang R S. Study on field-emission array pressure sensors [J].Sensors and Actuators, 1993, 34(2):137-140.
    [41] Britton C L,Warmack R J,S F Smith et a1. Battery-powered wireless MEMS sensors for high-sensitivity chemical and biological sensing [J].Advanced Research in VLSI, 1999. Proceedings.20th Anniversary Conference on, 1999:359—368.
    [42]郭方敏,赖宗声,朱自强.悬臂式RF MEMS开关的设计与研制[J],半导体学报,2003,24(11):1190-1196.
    [43] Roelofs A, Bottger U et al. Differentiating 180o and 90o switching of ferroelectric domains with three-dimensional piezoresponse force microscopy [J]. Appl. Phys. Let., 2000, Vol. 77, N021:3444-3446.
    [44] Jerman H. Electrically-actived Micromachined diaphragm valves [J], Proc.Micro System Technologies 90(Berlin), 1990:806-811.
    [45] Baselt D R,Fruhberger B.Design and performance of a microcantilever—based hydrogen sensor[J].Sensors and Actuators B,2003,88(2):120—131.
    [46] Britton C L,Jones Jr R L,Oden P I.Multiple—input microcantilever sensors [J]. Ultramicroscopy,2000,82(2):17—21.
    [47] Yoon Y S, Kim J H, Polla D L et al. Influence of Interface Structure on Chemical Etching Process for Air Gap of Microelectromechanical System Based on Surface Micromachining [J]. Appl. Phys. 1998, 37:7129-7133.
    [48] Itoh T, Lee C, Suga T. Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O3 microcantilever for dynamic scanning force microscopy [J]. Appl. Phys.Lett., 1996, 69(14): 2036-2038.
    [49] Minne S C, Manalis S R, Atalar A. Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor [J]. Appl. Phys. Lett., 2000, 68 (10): 1427-1429.
    [50]周嘉,黎坡,黄宜平等.压电共振式微悬臂梁气体传感器[J],压电与声光, 2003,25(5):358-362.
    [51]杨轶,张林涛,张宁欣.压电薄膜悬臂梁结构的建模和性能模拟[C],第八届全国敏感元件与传感器学术会议,Proc. STC'03:135-138.
    [52]于晓梅,张大成,李婷等[J].半导体学报2003, 861: 24-27.
    [53]王晓平,刘磊,胡海龙,张馄[J].物理学报,2004, 76: 53-58.
    [54]李磊,褚家如,平志明.压电微悬臂梁微弱压电信号检测[J],压电与声光,2004, 26(1): 27-30.
    [55] N. Satoh, K. Kobayashi, S. Watanabe, et al. Dynamic-mode AFM using the piezoelectric cantilever: investigations of local optical and electrical properties [J]. Applied Surface Science 188 (2002) 425–429.
    [56] Takayuki Shibata, Kazuya Unno, Eiji Makino, et al. Fabrication and characterization of diamond AFM probeintegrated with PZT thin film sensor and actuator [J]. Sensors and Actuators A 114 (2004) 398–405.
    [57] J.D. Adams, L. Manning, B. Rogers, et al. Self-sensing tapping mode atomic force microscopy [J]. Sensors and Actuators A 121 (2005) 262–266.
    [58] L. Manning,B. Rogers,L. Manning, et al. Piezoelectric self-sensing of adsorption-induced microcantilever bending [J]. Sensors and Actuators A 121 (2005) 457–461.
    [59] Takayuki Wakayama, Toshinari Kobayashi, Nobuya Iwata, et al. Micro-fabrication of silicon/ceramic hybrid cantilever for atomic force microscope and sensor applications [J]. Sensors and Actuators A 126 (2006) 159–164.
    [60]杨学恒,陈红兵,费德国,谢超,靳平,杨惠.一种高精度原子力显微镜的设计及应用[J].中国机械工程.2004,15(21):1909-1911.
    [61]杨学恒,王银峰.IPC-205系列扫描隧道显微镜的研制及应用[J].无损检测.2002,24(5):188-190.
    [62] B Kuk, Silverman PJ. Rev [J]. Sci.Instrum. 1989, 60:165
    [63]庞振基,黄其圣.精密机械设计[M].北京:机械工业出版社.2000.
    [64]朱喜林,张代治.机电一体化设计基础[M].北京:科学出版社.2004.
    [65]刘桂芬,钟宏杰,杨学恒.STM.IPC-205B型扫描隧道显微镜的技术与应用[J].显微、测量、微细加工技术与设备.2003,6:39~42.
    [66]曾庆勇.微弱信号检测[M].杭州:浙江大学出版社.1994.
    [67] Li Ruifa. Logarithmic Amplifiers and Their Integration [J]. Microelectronics. 1996, 26(3):175~183.
    [68]阎秀兰.数据采集系统中的放大器[M].北京.机械工业出版社.1982.
    [69]赵玉山.跨导型放大器[M].北京:电子工业出版社.1995.
    [70] Fisher D. AFM for debug probing [J]. J solid state technol. 2000:195.
    [71]辛洪政,彭光含,杨学恒.高精度IPC-205B型扫描隧道显微镜的设计及应用[J].重庆大学学报.2004,27(10):48~51.
    [72]刘济春,IPC-208B型原子力显微镜的镜体设计及其应用[D],重庆大学硕士学位论文,2005.
    [73]邓新宇,傅松滨,原子力显微镜在生物学中应用的现状与前景[J] .国外医学遗传学分册,2003,26(3):134-137.
    [74]蔡颖谦,徐如祥,姜晓丹.原子力显微镜技术在生物医学领域的应用[J].中华神经医学志.2005,4(7):735~738.
    [75]唐超,基于损伤理论的变压器绝缘纸热老化机理研究[D],重庆大学硕士学位论文,2007.
    [76]王树森.变压器绝缘材料[J].变压器, 2003, 40(4):42-46.
    [77] DL/T 596-1996,电力设备预防性试验规程[M]. 1996年发布, 1997年实施.
    [78] Tamura R., et al. Diagnosis of ageing deterioration of insulating paper [J]. Proc. IEE J., 1981, 101-A, 30-36.
    [79]刘仁庆.纤维素化学基础[M].科学出版社, 1985,9.
    [80] Robert W. Stark,Georg Schitter and Andreas Stemmer.Tuning the interaction force in tapping mode atomic force microscopy [J]. Phys. Rev. B68,085401 (2003).
    [81] Tomasz Kowalewski and Justin Legleiter. Iming stability and average tip-sample force intapping mode atomic force microscopy [J]. J. APPI. Phys. 99,064903(2006).
    [82] Zhong,Q. Inniss,D. Fraetured Polymer/silica fiber surface studied by tapping mode atomic force microscopy [J]. Surface Science,v290,nl-2,Jun10,1993,688-692.
    [83]张福学,王丽坤.现代压电学(中册)[M].北京:科学出版社,2002.
    [84] F. Xu, R. A. Wolf, T. Yoshimura, etal. Piezoeleetrie films for MEMS applieations [J]. 11th Internationa1Symposium on Eleetrets,2002:386一396.
    [85] P V Burmistrova, A S Sigov, A L Vasiliev, etal. Effect of Lead Content on the microstrueture and eleetrieal properties of Sol-Gel PZT thin films [J], Ferroeleetries, 2002, 217(1):51一56.
    [86]刘梦伟,基于双压电PZT薄膜单元的悬臂梁式微力传感器研究[D],大连理工大学博士学位论文,2006.
    [87] Yinfeng Wang, Anping Liu, Xueheng Yang and Xiaoping Su. Study on Microstructure and Property of Pt-Doped WO3 Films [J]. International Journal of Modern Physics B. 2007 .Vol. 21(18-19):3489-3492.
    [88] Xueheng Yang, Hongjie Zhong, Taiguo Tang, Haihui Bai, Anping Liu. Study on space morphology of molecular structure by AFM [J]. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006:577~580.
    [89] Zhong Ding,Yang Xueheng,Han Xianwu,Liu Anping, Tang Taiguo. Study on space morphology of molecular structure of tungsten trioxide compound film surface by AFM [J]. Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered andMolecular Systems, IEEE NEMS 2007.
    [90]彭光含,杨学恒,刘济春,李旭,辛洪政,刘安平.纳米金刚石的STM观测及其导电机理[J].重庆大学学报(自然科学版),2006,29(6):87-90.
    [91]苏小平,杨学恒,韩贤武,刘安平,徐艳.三氧化钨薄膜表面分子结构空间形态的AFM研究[J].材料导报.2007,11(5):335-337.
    [92]刘安平,郭红华等.基于隧道电流检测方式的原子力显微镜纳米检测系统设计[J].电子显微学报,2009,28(2):116-121.
    [93]黄志奇,压电微位移驱动器的结构设计与仿真[D],电子科技大学硕士学位论文,2004.
    [94]陈华品,Zn0薄膜的制备与压电传感器压电结构的有限元分析[D],电子科技大学硕士学位论文,2006.
    [95] H.卡德斯图赛编,诸德超等译.有限元法手册[M].北京:科学出版社,1996.
    [96] ANSYS,Inc. ANSYS耦合场分析指南[M]. 2002.
    [97]栾桂冬,张金轶,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社,1990.99-183.
    [98]李景湧.有限元法[M].北京:北京邮电大学出版社,1999.
    [99]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [100]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [101]韩清凯.有限单元法及应用[M].长春:吉林科学技术出版社,2002.
    [102]龚曙光.ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003. 438-445.
    [103]任重.ANSYS实用分析教程[M].北京:北京大学出版社,2003. 295-297.
    [104]娄利飞,杨银堂,李跃进等.压电薄膜微传感器的动态特性分析[J].机械设计与研究,2005,21(3):65-67.
    [105]董明,惠春,徐爱兰.基于Ansys的压电式四臂加速度计模拟分析[J].传感技术学报,2006,19(3):637-641.
    [106]刘斌.硅集成探针技术及微纳摩擦效应研究[D],中国科学院研究生院硕士论文,2007.
    [107]石二磊.硅微悬臂梁探针的制备工艺研究[D],大连理工大学硕士学位论文,2008.
    [108]文明,欧阳羽,柏玮等.磁标记反义探针对小鼠的急性毒理观察[J].第三军医大学学报,2009,31(5):398-401
    [109] Ming Wen, Bibo Li, Wei Bai et al. Application of atomic force microscopy in morphological observation of antisense probe labeled with magnetism. Molecular Vision, 2008, 14:114-117.
    [110]李艳宁,赵倩云,王忠顺等.压电探针应用于原子力显微镜液体成像的研究[J].西安交通大学学报,2006,40(3):341-343.