求解大振幅非线性振动问题的若干解析逼近方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Some Analytical Approximate Methods for Large Amplitude Nonlinear Oscillations
  • 作者:李鹏松
  • 论文级别:博士
  • 学科专业名称:计算数学
  • 学位年度:2004
  • 导师:吴柏生
  • 学科代码:070102
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-04-01
摘要
物理和力学中的振动系统通常用非线性微分方程来描述。对于某些特殊
    情况,用线性化的微分方程代替非线性微分方程,能够给出原非线性方程的
    一些有用结果。但多数情况下,这种线性化是不合理的,此时,只能直接研
    究非线性微分方程。数学上求解线性微分方程的通用理论和方法已经非常成
    熟,但是,对于任意的非线性微分方程的通用性质却知之甚少。一般情况下,
    对于非线性方程的研究仅限于一些特殊的方程,而且,为了获得某个非线性
    微分方程的解析逼近解,求解方法通常要涉及到有限的解析逼近技术中的一
    种或几种。
    在求解非线性微分方程的所有解析逼近方法中,应用最广泛研究也最多
    是小参数摄动方法。这些方法将非线性微分方程的解展开为小参数的级数,
    主要包括:L-P 法、KBM 法和多尺度法。但是,这些方法只能用于求解弱非
    线性振动问题。谐波平衡法是另一类求解非线性微分方程的解析逼近方法,
    该方法用截断的 Fourier 级数逼近非线性微分方程的解。它的突出特点是不
    要求非线性微分方程中非线性项是小量,即不要求方程中含有小参数。谐波
    平衡法一般要求非线性恢复力? f (x)为 x 的奇函数( x 代表任意瞬时运动质
    点到稳定平衡点的距离), 否则该方法在求非线性振动方程的低阶解析逼近
    解时会导出矛盾的情况。此外,应用谐波平衡法及其改进方法构造非线性振
     1
    
    
    摘 要
    动的高阶解析逼近解是很困难的,因为这要求复杂的非线性代数方程组的解
    析解。
     本文针对一维保守系统大振幅非线性振动问题,提出了几种新的解析逼
    近方法。提出的这些新方法不要求非线性振动方程中含有小参数及位移的线
    性项。这些方法的主要优点是求解过程简单,建立的解析逼近周期与周期解
    既适用于小振幅又适用于大振幅,特别也包括振幅趋于无穷的情形,且都能
    给出精度非常高的解析逼近结果。
    1. 求解大振幅非线性振动问题的修正谐波平衡法
     考虑如下的一维保守系统非线性振动方程
     d2x + f (x)= 0, (1a)
     dt2
     x(0) = β , dx (0)= 0. (1b)
     dt
     引入新变量τ = ωt ,方程(1a,b)可以写为
     ω2x′′+ f (x)= 0, (2a)
     x(0) = β , x′(0) = 0 (2b)
    式中()表示对τ 求导。 新变量τ 的选取使得方程(2a,b)的解是关于τ 的以2π
     '
    为周期的周期函数,相应的原非线性振动的周期为T = 2π ω ,周期解 x(τ)及
    频率ω 都与振幅β 有关。
     令 x(τ)= x0(τ)+ ?x0(τ), 其中 x0(τ)是满足初始条件的周期解 x(τ)的初始
    逼近,?x0(τ)是待求的周期解的校正部分,它们都是关于τ 的以2π 为周期的
    周期函数。将非线性方程(2a,b)在 x(τ)= x0(τ)关于增量?x0(τ)线性化得
     2
    
    
    摘 要
     ω2x0′′ + f (x0)+ω2?x0′′ + fx(x0)?x0 = 0, (3a)
     ?x0(0)= 0, ?x0′(0)= 0. (3b)
    用谐波平衡法求解关于?x0(τ)的线性方程(3a,b)可以给出原非线性振动方程
    的解析逼近周期与周期解。
     当非线性恢复力? f (x)为 x的奇函数 [ f (? x)= ? f (x)]时,令
     x0(τ ) = β cosτ , (4a)
     ?x0(τ)= ci{cos[(2i ?1)τ]? cos[(2i +1)τ]}.
     ∑N
     (4b)
     i=1
     当非线性恢复力? f (x)为 x的一般函数 [ f (? x)≠ ? f (x)]时,令
     x0(τ ) =β +α β ?α
     + cosτ , (5a)
     2 2
     ?x0(τ)= ci{cos(iτ)?cos[(i + 2)τ]}.
     ∑N
     (5b)
     i=0
     此外,我们还将修正谐波平衡法用于 Duffing-harmonic 振子以及非自然
    系统振动问题,通过例子说明了此时本文提出的方法仍然能够给出高精度解
    析逼近周期与周期解。
    2. 求解大振幅非线性振动问题的迭代法
     引入新变量τ = ωt,将方程(1a,b)写为
     x′′ + x = x ?1
     ω2 f (x):= g(x). (6a)
     x(0) = β , x′(0) = 0 (6b)
    式中()表示对τ 求导。新变量τ 的选取使得方程(6a,b)的解是关于τ 的以2π
     '
     3
    
    
    摘 要
    为周期的周期函数。相应的原非线性振动的周期为T = 2π ω ,周期解 x(τ)及
    频率ω 都与振幅β 有关。
     提出如下的迭代过程
     xk′′+1 + xk = g(xk )+ gx(xk )(xk ? xk ),
     +1 ?1 ?1 ?1 (7a)
     xk (0) = β, xk′+1(0) = 0 ,
     +1 k = 0,1,2,L. (7b)
     当非线性恢复力? f (x)为 x的奇函数时,初始输入函数为
Physical and mechanical oscillatory systems are often governed by nonlinear
    differential equations. In many cases, it is possible to replace a nonlinear
    differential equation by a corresponding linear differential equation that
    approximates the original nonlinear equation closely enough to give useful results.
    Often such linearization is not feasible and for this situation the original nonlinear
    differential equation itself must be dealt with. The general theory and method of
    dealing with linear differential equations are highly developed branches of
    mathematics, whereas very little of a general nature is known about arbitrary
    nonlinear differential equations. In general, the study of nonlinear differential
    equations is restricted to a variety of special classes of the equations and the
    method of solution usually involves one or more of a limited number of
    techniques to achieve analytical approximations to the solutions.
     The most common and most widely studied methods of all analytical
    approximation methods for nonlinear differential equations are the perturbation
    methods. These methods involve the expansion of a solution to a differential
    equation in a series in a small parameter. They include the L-P method, the KBM
     7
    
    
    Abstract
    method and the Multi-time expansion. However, these methods apply to weakly
    nonlinear oscillations only. The method of harmonic balance is another procedure
    for determining analytical approximations to the solutions of differential
    equations by using a truncated Fourier series representation. An important
    advantage of the method is its applicability to nonlinear oscillatory problems for
    which the nonlinear terms are not “small”, i.e., no perturbation parameter needs
    to exist. In general, the success of harmonic balance method requires that the
    nonlinear restoring force ? f (x) is an odd function of x , where x represents the
    displacement measured from the stable equilibrium position. If this condition is
    not satisfied, the method of harmonic balance, when used in lowest order, leads to
    inconsistencies. In addition, applying the method of harmonic balance or its
    various generalization to construct higher-order approximate analytical solutions
    is also very difficult, since they require analytical solution of sets of algebraic
    equation with very complex nonlinearity.
     In this dissertation, some analytical approximate methods are presented to
    solve large amplitude nonlinear oscillations of single-degree-of-freedom
    conservative systems. The most interesting features of these new methods are its
    simplicity and its excellent accuracy in a wide range of values of oscillations
    amplitudes. These analytical approximate periods and corresponding periodic
    solutions are valid for small as well as large amplitudes of oscillation, including
    the case of amplitude of oscillation tending to infinity.
    1. A modified method of harmonic balance for large amplitude nonlinear
     oscillations
     Consider a single-degree-of-freedom conservative system governed by
     8
    
    
    Abstract
     d2x + f (x)= 0, (1a)
     dt2
     x(0) = β , dx (0)= 0. (1b)
     dt
     By introducing an independent variableτ = ωt , and equation (1a,b) can be
    rewritten as
     ω2x′′+ f (x)= 0, (2a)
     x(0) = β , x′(0) = 0 (2b)
    where a prime represents derivative with respect toτ . The new independent
    variable is chosen in such a way that the solution to Eq.(2a,b), is a periodic
    function ofτ of period 2π . The corresponding period of the nonlinear oscillation
    is given byT = 2π ω . Here, both the periodic solution x(τ ) and frequencyω
    depend on β .
     Let x(τ ) = x0(τ )+ ?x0(τ ), where x0(τ ) is an initial approx
引文
[1] A. Lindstedt, Astron. Nach. 1882, 103: 211.
    [2] H. Poincaré, Les Méthodes Nouvelles de la Méchanique Celeste, Gauthier
     Villars, Paris, 1892(I).
    [3] N. Minorsky, Nonlinear Oscillations, Robert E. Krieger; Huntington, NY;
     1926.
    [4] J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems, Inter-
     science, New York, 1950.
    [5] N. W. Mclachlan, Ordinary Nonlinear Differential Equations in Engineering
     and Physical Sciences, Clarendon Press, Oxford, 1950.
    [6] A. A. Andronov, A. A. Vitt and S. E. Khaikin, Theory of Oscillators, Addison-
     Wesley, Reading, MA, 1966.
    [7] R.Bellman, Perturbation Techniques in Mathematics, Physics and Engineering;
     Holt, Rinehart and Winston; New York, 1966.
    [8] A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973.
    [9] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for
     Scientists and Engineers, McGraw-Hill, New York, 1978.
    [10] A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, Wiley-Interscience,
     New York, 1979.
    [11] A. H. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience,
     New York, 1981.
    [12] 陈予恕,非线性振动,天津科学技术出版社,1983 年。
     93
    
    
    参考文献
    [13] P. Hagedorn, Non-linear Oscillations, Oxford, Clarendon, 1988.
    [14] J. A. Murdock, Perturbation: Theory and Methods, Wiley-Interscince, New
     York, 1991.
    [15] R. E. Mickens, Oscillations in Planar Dynamic Systems, World Scientific,
     Singapore, 1996.
    [16] J. Awrejcewicz, I. V. Andrianov, L. I. Manevitch, Asymptotic Approaches in
     Nonlinear Dynamics, Springer-Verlag Berlin Heidelberg New York, 1998.
    [17] 周纪卿,朱因远,非线性振动,西安交通大学出版社,1998 年。
    [18] 刘延柱,陈文良,陈立群,振动力学,高等教育出版社,1998 年。
    [19] 胡海岩,应用非线性动力学,航空工业出版社,2000 年。
    [20] J. H. He, A modified perturbation technique depending upon an artificial
     parameter, Meccanica, 2000, 35: 299-311.
    [21] 闻邦春,李以农,韩清凯,非线性振动理论中的解析方法及工程应用,
     东北大学出版社,2001 年。
    [22] 陈予恕,非线性振动,高等教育出版社,2002 年。
    [23] B. S. Wu, H. X. Zhong, Summation of perturbation solutions to nonlinear
     oscillations, Acta Mechanica, 2002, 154(1-4): 121-127.
    [24] B. Van der Pol, A theory of the amplitude of free and forced triode vibration,
     Radio Review, 1920, 1:701-725.
    [25] N. M. Krylov, N. N. Bogoliubov, Introduction to Nonlinear Mechanics,
     Princeton University Press, New Jersey, 1947. (Russian original:Ivd-vo AN
     USSR, Kiev, 1937).
    [26] N. N. Bogliubov, Perturbation Theory in Nonlinear Mechanics, (in Russian).
     Sborn. Inst. Stroit. Mekh. AN USSR, 1950, 14: 9-34.
    [27] Yu. A. Mitropolsky, Nonstationary Processes in Nonlinear Oscillatory
     94
    
    
    参考文献
     Systems, (in Russian), Izd-vo AN USSR, Kiev, 1955.
    [28] N. N. Bogliubov, Yu.A. Mitropolsky, Asymptotic Methods in the Theory of
     Nonlinear Oscillations, Gordon and Breach, New York, 1961.
    [29] Yu. A. Mitropolsky, The Averaging Method in Nonlinear Mechanics, (in
     Russian), Naukova Dumka, Kiev, 1971.
    [30] E. P. Popov and I. P. Palitov, Approximate Methods for the Analysis of
     Nonlinear Automatic Systems, (in Russian, State Press for Physics and
     Mathematical Literature, Moscow, 1960. English translation: Foreign
     Technical Division, AFSC, Wright- Patterson AFB, Ohio; Report
     FTD-II-62-910).
    [31] R. A. Struble, Nonlinear Differential Equations, McGraw-Hill, New York,
     1962.
    [32] P. S. Landa, Regular and Chaotic Oscillations, Springer-Verlag Berlin
     Heidelberg New York, 2001.
    [33] P. A. Sturrock, Nonlinear effect in electron plasmas, Proc. Roy. Soc. London,
     1957, A242: 277-299.
    [34] P. A. Sturrock, Nonlinear theory of electromagnetic waves in plasmas,
     Stanford University Microwave Laboratory Rept. No.1004, 1963.
    [35] E. A. Frieman, On a new method in the theory of irreversible processes,
     Journal of Mathematical Physics, 1963, 4: 410-418.
    [36] A. H. Nayfeh, A perturbation method for treating nonlinear oscillation
     problems, Journal of Mathematics and Physics, 1965, 44: 368-374.
    [37] A. H. Nayfeh, Nonlinear oscillations in a hot electron plasma, Physics of
     Fluids, 1965, 8: 1896-1898.
    [38] A. H. Nayfeh, Forced oscillations of the Van der Pol oscillator with delayed
     95
    
    
    参考文献
     amplitude limiting, IEEE Trans. Circuit Theory, 1968, 15: 192-200.
    [39] G. Sandri, A new method of expansion in mathematical physics, Nuovo
     Cimento, 1965, B36: 67-93.
    [40] G. Sandri, Uniformization of asymptotic expansions, In Nonlinear Partial
     Differential Equations: A Symposium on Methods of Solutions (W. F. Ames,
     Ed.), Academic, New York, 1967, 259-277.
    [41] J. D. Cole and J. Kevorkian, Uniformly valid asymptotic approximations for
     certain nonlinear differential equations, Nonlinear Differential Equations
     and Nonlinear Mechanics, (J. P. LaSalle and S. Lefschetz, Eds), Academic,
     New York, 1963, 113-120.
    [42] J. Kevorkian, The two variable expansion procedure for the approximate
     solution of certain nonlinear differential equations, Space Mathematics,
     Part3: (J. B. Rosser, Ed.), American Mathematical Society, Providence, R.I.,
     1966, 206-275.
    [43] J. D. Cole, Perturbation Method in Applied Mathematics, Blaisdell, Waltham,
     Mass, 1968.
    [44] J. A. Morrison, Comparison of the modified method of averaging and the
     two variable expansion procedure. SIAM Review, 1966, 8: 66-85.
    [45] L. M. Perko, Higher order averaging and related methods for perturbed
     periodic and quasi-periodic systems, SIAM Journal on Applied Mathematics,
     1969, 17: 698-724.
    [46] G. E. Kuzmak, Asymptotic solutions of nonlinear second order differential
     equations with variable coefficients, J. Appl. Math. Mech., 1959, 23:
     730-744.
    [47] J. A. Cochran, Problems in Singular Perturbation Theory, PH. D. Thesis,
     96
    
    
    参考文献
     Stanford University, 1962.
    [48] J. J. Mahony, An expansion method for singular perturbation problems, J.
     Australian Mat. Soc., 1962, 2: 440-463.
    [49] A. H. Nayfeh, A Generalized Method for Treating Singular Perturbation
     Problems, PH. D. Thesis, Stanford University, 1964.
    [50] A. H. Nayfeh, An expansion method for treating singular perturbation
     problems, Journal of Mathematical Physics, 1965, 6: 1946-1951.
    [51] J. C. West, Analytical Techniques for Nonlinear Control Systems, English
     University Press, London, 1960.
    [52] D. D. Siljak, Nonlinear Systems, Wiley, New York, 1969.
    [53] H. Leipholz, Direct Variational Methods and Eigenvalue Problems in
     Engineering, Noordhoff International Publishing, Leyden, 1975.
    [54] F. F. Seelig, Unrestricted harmonic balance I: theory and computer program
     for time-dependent systems, Z. Naturforschung, 1980, 35a: 1054-1061.
    [55] F. F. Seelig, Unrestricted harmonic balance IV: extension to transcendental
     functions, Z. Naturforschung, 1983, 38a: 636-640.
    [56] A. S. Atadan and K. Huseyin, An intrinsic method of harmonic analysis for
     nonlinear oscillations (a perturbation technique), Journal of Sound and
     Vibration, 1984, 95(4): 525-530.
    [57] R. E. Mickens, Comments on the method of harmonic balance, Journal of
     Sound and Vibration, 1984, 94(3): 456-460.
    [58] R. E. Mickens, A generalization of the method of harmonic balance, Journal
     of Sound and Vibration, 1986(3), 111: 515-518.
    [59] R. E. Mickens, Comments on “a generalized Galerkin’s method for nonlinear
     oscillators”, Journal of Sound and Vibration, 1987, 118(3): 561-564.
     97
    
    
    参考文献
    [60] Y. K. Cheung, S. H. Chen, S. L. Lau, Application of the incremental
     harmonic balance method to cubic non-linearity systems, Journal of Sound
     and Vibration, 1990, 140(2): 273-286.
    [61] K. Huseyin and R. Lin, An intrinsic multiple-scale harmonic balance method
     for nonlinear vibration and bifurcation problems, International Journal of
     Non-linear Mechanics, 1991, 26: 727-740.
    [62] A. A. Al-Qaisia and M. N. Hamden, Bifurcations of approximate harmonic
     balance solutions and transition to chaos in an oscillator with inertial and
     elastic symmetric nonlinearities, Journal of Sound and Vibration, 2001,
     244(3): 453-479.
    [63] B. S. Wu, C. W. Lim and Y. F. Ma, Analytical approximation to large-
     amplitude oscillation of a non-linear conservative system, International
     Journal of Non-linear Mechanics, 2003, 38: 1037-1043.
    [64] C. W. Lim and B.S. Wu, A new analytical approach to the Duffing-harmonic
     oscillator, Physics Letters A, 2003, 311: 365-373.
    [65] Y. K. Cheung, S. H. Chen and S. L. Lau, A modified Lindstedt-Poincaré
     method for certain strongly non-linear oscillators, International Journal of
     Non-Linear Mechanics, 1991, 26: 367-378.
    [66] J. H. He, A coupling method of a homotopy technique and a perturbation
     technique for non-linear problems, International Journal of Non-linear
     Mechanics, 2000, 35: 37-43.
    [67] M. Senator, and C. N. Bapat, A perturbation technique that works even when
     the non-linearity is not small, Journal of Sound and Vibration, 1993, 164(1):
     1-27.
    [68] S. J. Liao, An approximate solution technique not depending on small
     98
    
    
    参考文献
     parameters: a special example, International Journal of Non-linear
     Mechanics, 1995, 30: 371-380.
    [69] S. J. Liao and A. T. Chwang, Application of homotopy analysis method in
     nonlinear oscillations, ASME Journal of Applied Mechanics, 1998, 65:
     914-922.
    [70] B. S. Wu, H. X. Zhong, Application of vector-valued rational approxima-
     tions to a class of non-linear oscillations, International Journal of Non-linear
     Mechanics, 2003, 38: 249-254.
    [71] R. E. Mickens and D. Semwogerere, Fourier analysis of a rational harmonic
     balance approximation for periodic solutions, Journal of Sound and
     Vibration 1996, 195(3): 528-530.
    [72] M. S. Sarma and B. Nageswara Rao, A rational harmonic balance
     approximation for the Duffing equation of mixed-parity, Journal of Sound
     and Vibration, 1997, 207(4): 597-599.
    [73] K. Cooper and R. E. Mickens, Generalized harmonic balance/numerical
     method for determining analytical approximations to the periodic solutions
     of the x4 3 potential, Journal of Sound and Vibration, 2002, 250(5):
     951-954.
    [74] B. S. Wu and P. S. Li, A method for obtaining approximate analytic periods
     for a class of nonlinear oscillators, Meccanica, 2001, 36: 167-176.
    [75] B. S. Wu and P. S. Li, A new approach to nonlinear oscillations, ASME
     Journal of Applied Mechanics, 2001, 68: 951-952.
    [76] B. S. Wu and C. W. Lim, Large amplitude non-linear oscillations of a general
     conservative system, International Journal of Non-linear Mechanics, 2004,
     39: 859-870.
     99
    
    
    参考文献
    [77] S. B. Yuste, A generalized Galerkin method for cubic oscillators, Journal of
     Sound and Vibration, 1989, 130(2): 332-336.
    [78] J. Garcia-Margallo and J. D. Bejarano, Generalized Fourier series and limit
     cycles of generalized Van der Pol oscillators. Journal of Sound and Vibration,
     1990, 136(3): 453-466.
    [79] S. B. Yuste, Comments on the method of harmonic-balance in which Jacobi
     elliptic function are used, Journal of Sound and Vibration, 1991, 145(3):
     381-390.
    [80] J. L. Summers and M. D. Savage, 2 timescale harmonic-balance I:
     Application to autonomous one-dimensional nonlinear oscillators, Phil.
     Trans. R. Soc. London A, 1992, 340: 473.
    [81] A.V. Rao and B. N. Rao, Some remarks on the harmonic-balance method for
     mixed-parity nonlinear oscillations, Journal of Sound and Vibration, 1994,
     170(4): 571-576.
    [82] R. E. Mickens, Mathematical and numerical study of Duffing-harmonic
     oscillator, Journal of Sound and Vibration, 2001, 244(3): 563-567.
    [83] H. Hu, More on generalized harmonic oscillators, Journal of Sound and
     Vibration, 2002, 250(3): 567-568.
    [84] R. E. Mickens, Iteration procedure for determining approximate solutions to
     non-linear oscillator equations, Journal of Sound and Vibration, 1987, 116(1):
     185-188.
    [85] S. S. Shen, A Course on Nonlinear Waves , Kluwer, Dordrecht, 1994.
    [86] R. Knobel, An Introduction to the Mathematical Theory of Waves, American
     Mathematical Society, Rhode Island, 2000.
    [87] C.W. Lim, B.S. Wu and L.H. He, A new approximate analytic approach for
     100
    
    
    参考文献
     dispersion relation of the nonlinear Klein-Gordon equation, Chaos, 2001, 11:
     843-848.
    [88] C. Hayashi, Nonlinear Oscillations in Physical Systems, McGraw-Hill, New
     York, 1964.
    [89] C. R. Eminhizer, R. H. G. Helleman and E. W. Montroll, On a convergent
     nonlinear perturbation theory without small denominators or secular terms,
     Journal of Mathematical Physics , 1976, 17: 121-140.
    [90] H. Hu, A classical perturbation technique which is valid for large parameters,
     Journal of Sound and Vibration, 2004(2), 269: 409-412.
    [91] R. E. Mickens, Oscillations in an x4 3 potential, Journal of Sound and
     Vibration, 2001, 246(2): 375-378.
    [92] P. W. Gottlieb, Frequencies of oscillators with fractional-power non-
     linearities, Journal of Sound and Vbration, 2003, 261(3): 557–566.
    [93] H. Hu, Z. G. Xiong, Oscillations is an x(2 m+2) (2n+1)potential, Journal of
     Sound and Vibration, 2003, 259(4): 977-980.
     101
    
    
    参考文献
    102