楔环连接结构静力接触行为与动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
楔环连接与螺钉连接和管螺纹连接相比具有使连接壳体外表面更加光顺、外形尺寸相对缩小、连接附加质量轻、结构紧凑、连接工艺更简单和便于拆装等优点而在鱼雷、水雷和一些特种结构中已得到了实际应用。楔环连接结构是彼此接触的多变形体组合结构,其中的非线性因素包括材料、几何、接触与间隙、耗散、运动非线性等,这些非线性因素的存在使得结构的力学行为较线性要复杂得多,因此,研究并阐明非线性力学现象的机理,探求相应的分析计算方法,不仅具有重要的学科意义,同时通过为工程结构的设计提供理论支持而反映出重要的应用价值。本文采用理论分析、有限元数值模拟和实验研究相结合的方法,开展楔环连接结构的非线性静力行为与动力学特性研究。这些研究工作跨越了一个较为宽广的应用范围(从结构的非线性静力学接触行为研究到具有接触特征的结构振动与冲击非线性响应研究),提出了结构静、动力学特性研究中所遇到的技术难点(从结构简化的非线性单自由度动力学模型参数辨识到一个具有接触力学特征的三维多部件组合结构的非线性静力行为与动力学特性分析)的解决方法,取得了一些研究成果,可供楔环连接结构以及其它类似复杂结构的理论分析、数值模拟和实验研究参考,并为结构的设计与使用提供技术支持。
     首先论述非线性接触理论的发展概况以及实际工程接触问题的研究现状,介绍连接结构静力接触行为、振动与冲击响应有限元数值模拟的研究进展,综述非线性结构系统的建模与参数辨识的研究现状,并对楔环连接结构理论分析、有限元数值模拟与实验研究以及设计与使用所取得的研究进展作简要的回顾。第二章为静力接触问题的非线性有限元理论基础,分别给出接触问题积分形式的数学描述与离散形式的迭代方程。
     第三章利用有限元数值模拟、理论分析和实验研究结合的方法,开展单轴拉伸载荷作用下楔环连接结构的静力学接触行为研究。在实验研究中,采用电测与光测结合的方法测量结构连接部位的变形与位移分布,MTS810材料实验机自带的力传感器和应变仪测量结构的载荷一总位移曲线。建立楔环连接结构的三维摩擦接触有限元模型,计算结构连接部位环向与轴向应力,模拟轴向拉伸过程中载荷达到某临界值时载荷—总位移曲线的转折,合理解释产生转折的力学机制。对于实验难以测量的装配于环形槽中的楔环带,给出了有限元数值模拟结果。建立楔环连接结构的参数化二维有限元接触模型,研究楔环连接结构公差配合对结构应力与变形的影响,数值模拟结果表明:在楔环连接结构的装配过程中,楔环带靠紧下件环形槽底面可有效减小下件连接部位处的应力。
     第四章基于冲击动力学计算基本理论,开展小量级冲击载荷作用下楔环连接结构动特性的有限元数值模拟、理论分析与实验研究工作。建立楔环连接结构的三维摩擦接触有限元模型并利用实验结果修正模型,应用LS-DYNA3D有限元程序显式算法求解结构
    
    摘要
    的加速度响应。采用拟谐波平衡方法辨识计算冲击响应信号中包含的前几阶频率成分,
    结果表明:计算与实验加速度响应峰值吻合较好(法向加速度响应峰值计算与实验的最
    大相对误差为15.16%,切向加速度响应峰值计算与实验的最大相对误差为14.69%),计
    算曲线能反映实际响应信号的衰减趋势,且有限元时程响应分析考虑了接触状态的变
    化,因而更符合实际情况。此外,给出冲击载荷作用下楔环连接结构壳体轴向与周向单
    元以及楔环带小端部位单元的等效应力响应时程曲线,结果发现结构整体最大等效应力
    并未出现在冲击载荷作用位置,而出现在与冲击载荷作用位置位于同一经线上的上件连
    接部位的倒角位置处。
     第五章综合利用振动系统动力学模型的近似求解方法和非线性模态分析方法,验证
    两种方法在研究结构振动响应的非线性特性上的一致性,开展楔环连接结构振动响应的
    非线性特性辨识研究。提出将等效线性化方法与Duffing模型相结合来共同进行模型参
    数的辨识,前者辨识出来的等效阻尼比用于后者以模拟结构的幅频响应,定量分析不同
    激振力幅值下结构刚度的变化,揭示结构刚度改变导致结构出现软非线性特性的力学机
    制,利用Duffing模型正确模拟和解释了结构振动响应中的不稳定和跳跃现象。
     第六章基于结构振动传递特性,建立随机激励下楔环连接结构随机响应实验结果的
    理论预测模型。通过低量级随机激励下的振动环境实验,利用理论模型预测结构在相对
    较高量级随机激励下的响应,分析结构随机振动响应的非线性程度。研究结果表明:随
    机激励条件下,结构振动响应表现出明显的软非线性特性,对于相对小量级随机激励情
    形,理论预测与实验频谱曲线吻合较好。
     第七章基于模态实验结果以及分析模态对结构参数的敏度分析修正楔环连接结构
    有限元模型,研究自由与固支状态下结构的模态,分析结构模态频率之间的内共振。应
    用LS一DYNA3D程序进行结构振动响应的数值模拟,比较6种定频激励条件下结构振动
    响应有限元计算与实验时间历程曲线,验证振动响应有限元计算的有效性。利用快速傅
    立叶变换(FFT)技术对结构振动响应的有限元计算和实验结果进行处理,分析定频激
    励条件下结构振动响应中的?
Wedge-ring connection, has been gained some practical utilizations in some specific structures, such as torpedoes, mines, for such connection form, comparing with bolt connection, tube nipple connection, possesses some advantages of making connection surface of the shells smoother, case size smaller, additional mass lighter, connection structure tighter, assembly processing simpler and disassembling more convenient. Wedge-ring connection structure is a multi-deformable-body combined structure with its components contacting with each other, and the nonlinear factors in it are physical, geometrical, contact, clearance, dissipative, motive nonlinearities, which makes the mechanical behaviors of the structure far more complicated than linear ones. Consequently, to study and illustrate the mechanisms of the phenomena in nonlinear mechanics, to research the corresponding numerical calculating methods, not only have an important scientific significance for the development of mechanics, but also possess an important
     practical engineering value by supplying a theoretical support for the design and use of the structure. In this paper, the nonlinear static contact behaviors and dynamic characteristics of a wedge-ring connection structure are studied by theoretical analysis, finite element (FE) numerical simulation and experimental approaches. These studies span a wide variety of applications (form nonlinear static contact behaviors of the structure to nonlinear vibrations and shock response of the structure with contact feature), and solve a series of technical difficulties meeting with in the course of static and dynamic analysis of the structure (from parametrical identifications of a simplified single degree of freedom dynamic model to studies on the nonlinear static behaviors and dynamic responses of a three-dimensional (3D), multiple-component assembly featuring structure). Some important conclusions are obtained, and these conclusions give some available references for the theoretical analysis, numerical simulations
     and experimental studies of the wedge-ring connection structure and other similar complex structures, and provide some valuable technical supports for the design and use of engineering structures.
    Firstly, the developments of the nonlinear contact theory and the studying actualities are summarized, then the advances of the static contact behaviors, the FE numerical simulations of the vibrations and shock responses of the connection structures are simply introduced, the studies on the modeling and parameter identifications of the nonlinear systems are synthesized, and some previous achievements on the theoretical analysis, FE numerical simulations, experimental studies, and the designs and uses of the wedge-ring connection
    
    
    
    
    structure are surveyed and reviewed as well. The basic theories of nonlinear FE on the static contact questions are given in Chapter 2, the mathematical descriptions in the form of integral and the iteration equations in the discrete form of the contact equations are given.
    The mechanical behaviors of the wedge-ring connection structure with deformable contact under uniaxial tension load are studied by the methods of FE numerical simulations, theoretical analysis and experimental studies in Chapter 3. In the experimental studies, the strains are recorded using resistance strain gages, the in-surface displacements and off-surface ones of the connection location of the structure are measured using laser holography, and the load vs. total displacement curve is recorded by the measuring system of the MTS810 Material Test Machine. A 3D FE model with deformable friction contact of the wedge-ring connection structure is constructed for calculating the axial and circumferential stresses at the connection location of the structure, and simulating the breakpoint occurring on the load vs. displacement curve. The experiment and FE numerical calculations indicate that the quasi-symmetric property of the wedge-ring connection structure causes asymmetric deformation. The larger the axial loads an
引文
[1] 陈予恕,Ray P S Han.现代工程非线性动力学的现状与展望[J].力学与实践,1995;17(6):11-19.
    [2] 黄震中.鱼雷总体设计[M].西安:西北工业大学出版社,1987.
    [3] 张宁文.鱼雷总体设计原理与方法[M].西安:西北工业大学出版社,1998.
    [4] Simo J C, Laursen T A. Augmented Lagrangian treatment of contact problems involving friction[J]. Comp. Struct., 1992; 42(1): 97~116.
    [5] Pietrzak G, Curnie A. Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment[J]. Comp. Methods Appl. Mech. Eng., 1999; 177: 351~381.
    [6] Christensen P W, Klarbring A, Pang J S, et al. Formulation and comparison of algorithm for fiictional contact problems[J]. Int. J. Numer. Methods Eng., 1998, 42: 145~173.
    [7] 陈万吉,胡志强.三维摩擦接触问题算法精度利收敛性研究[J].大连理工大学学报,2003;43(5):541~547.
    [8] Kishore N N, Ghosh A, Rathore S K, et al. Finite element analysis of quasi-static contact problems using minimum dissipation of the energy principle[J]. J. Appl. Mech., ASME, 1994; 61(3): 642~648.
    [9] Lerman L B. Approximate determination of the dynamic and static contact stresses on a rigid internal support[J]. Int. Appl. Mech., 1997; 32(9): 714~718.
    [10] Jones R E, Papadopoulos R A novel three-dimensional contact finite element based on smooth pressure interpolations[J]. Int. J. Numer. Methods Eng., 2001; 51(7): 791~811.
    [11] Vijayarangan S, Ganesan N. Static contact stress analysis of a spur gear tooth using the finite element method, including frictional effects[J]. Comp. & Struct., 1994; 51(6): 765~770.
    [12] 南宫自军,姜晋庆,张铎.固体火箭发动机连接结构接触应力研究[J].推进技术,1997;18(4):54~57.
    [13] Xu Y, Zhang S H, Li P, et al. 3D rigid-plastic FEM numerical simulation on tube spinning[A]. In: J. Mater. Processing Tech.[C], 5th Asia Pacific Conf. on Mater. Processing, Seoul, 2001: 710~713.
    [14] Wang S, Makinouchi A. Contact search strategies for FEM simulation of the blow molding process[J]. Int. J. Numer. Methods Eng., 2000; 48(4): 501~521.
    [15] 卿启湘,李光耀,刘潭玉.棒材拉拔问题的弹塑性无网格法研究[J].机械工程学报,2004;40(1):85~89.
    [16] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. Int. J. Numer. Meth. Eng., 1994; 37(3): 229~256.
    [17] Matsuzaki Y, Funabashi K, Hosokawa K. Effect of surface roughness on contact pressure of static seals[J]. JSME Int. J. Series3: Vib. Control Eng., Eng. for Industry, 1993; 36(1): 119~124.
    
    
    [18] Nabhani F. Wear mechanisms of ultra-hard cutting tools materials[J]. Journal of Materials Processing Technology, 2001; 115(3): 402~412.
    [19] 刘巨保.间隙元在钻柱接触非线性力学分析中的应用[J].力学与实践,2003;25(4):45~47.
    [20] Wu T X, Thompson D J. Theoretical investigation of wheel/rail nonlinear interaction due to roughness excitation[J]. Vehicle System Dynamics, 2000; 34(4): 261~282.
    [21] Zastrau B, Nackenhorst U, Jarewski J. On the computation of elastic-elastic rolling contact using adaptive finite element techniques[A]. In: int. Conf. on Contact Mech., Proc. 1997[C], Madrid, Spain, 1997, Ashurst, Engl.: Computational Mechanical Publ., 1997: 129~138.
    [22] Wulfsohn D, Upadhyaya S K. Determination of dynamic three-dimensional soil-tyre contact profile[J]. J. Terranmech., 1992; 29(4/5): 433~464.
    [23] Cao J J, Bell A J. Elastic analysis of a circular flange joint subjected to axial force[J]. Int. J. Pressure Vessels & Piping, 1993; 55(3): 435~449.
    [24] Cao J J, Bell A J. Experimental study of circular flange joints in tubular structures[J]. J. Strain Analy. for Eng. Design, 1996; 31(4): 259~267.
    [25] Hwang D Y, Stallings J M. Finite element analysis of bolted flange connections[J]. Comp. & Struct., 1994; 51(5): 521~533.
    [26] Bakhiet E M, Guillot J F. Analytical model of bolted joints subjected to high eccentric loadings[A]. In: Design, Analysis, Synthesis, & Applications ASME, Petroleum Division[C], Proc. of the 2nd Biennial Europ. Joint Conf. on Eng. Syst. Design & Analy., London, 1994, New York: ASME, 1994: 117~129.
    [27] Koves W J. Analysis of flange joints under external loads[J]. J. Pressure Vessel Tech., ASME, 1996; 118(1): 59~63.
    [28] Bouzid A, Derenne M. Distribution of the gasket contact stress in bolted flanged connections[A]. In: Current Topics in the Design & Analy. of Pressure Vessels & Piping ASME, Pressure Vessels & Piping Division[C], Proc. of the 1997 ASME PVP Conf., Orlando, 1997, New York: ASME, 1997: 185~193.
    [29] Cao B G, Duan C H, XU H. 3-D finite element analysis of bolted flange joint considering gasket nonlinearity[A]. In: ASME, Pressure Vessels & Piping Division[C], Analy. of Bolted Joints-1999, Boston, 1999: 121~126.
    [30] Estrada H, Parsons I D. Strength and leakage finite element analysis of a GFRP flange joint[J]. Int. J. Pressure Vessels & Piping, 1999; 76(8): 543~550.
    [31] Bruschelli L, Latorrata V. Influence of 'shell behavior' on load distribution for thin-walled conical joints[J]. J. Appl. Mech., ASEM, 2000; 67(2): 298~306.
    [32] Song S, Park C, Moran K P, et al. Contact area of bolted joint interface. Analytical, finite element
    
    modeling, and experimental study[A]. In: CAD in Electronic Packaging ASME[C], Winter Annual Meeting of ASME, Anaheim, New York: ASME, 1992: 73~81.
    [33] Rahman M U, Rowlands R E. Finite element analysis of multiple-bolted joints in orthotropic plates[J]. Compt. & Strut., 1993; 46(5): 859~867.
    [34] Amanuel S, Gebremedhin K G, Boedo S, et al. Modeling the interface of metal-plate-connected tension-splice joint by finite element method[J]. Transaction of the ASAE, 2000; 43(5): 1269~1277.
    [35] Kim S J, Goo N S. Dynamic contact responses of laminated composite plates according to the impactor's shapes[J]. Comp. & Struct., 1997; 65(1): 83~90.
    [36] Chao C C, Tu C Y. Three-dimensional contact dynamics of laminated plates: Part 1. Normal impact[J]. Composites Part B: Engineering, 1999; 30(1): 9~22.
    [37] Anderson T A, Madenci E. A simplified dynamic low-velocity impact model for sandwich composites based on the three-dimensional quasi-static analysis[A]. In: Collection of Technical Paper-AIAA/ASME/AHS/ASC Structures, Structural Dynamics & Materials Conference[C], 2001; 4: 2717~2723.
    [38] Pereira M S, Nikravesh P. hnpact dynamics of multibody systems with frictional contact using joint coordinates and canonical equations of motion[J]. Nonlinear Dynamics, 1996; 9(1/2): 53-71.
    [39] Wang D, Conti C, Beale D. Interference impact analysis of multibody systems[J]. J. Mech. Design, ASME, 1999; 121(1): 128~135.
    [40] Favre W, Scavarda S. Representation for planar point contact joints in the multibody mechanical bond graph library[A]. In: Proc. of the Institution of Mechanical Engineers. Part Ⅰ, J. Syst. & Control Eng.[C], 1998: 305~313.
    [41] Bauchau O A, Rodriguez J. Modeling of joints with clearance in flexible multibody system[J]. Int. J. Solids & Struct., 2002; 39(1): 41~63.
    [42] Gaul L, Lenz J, Sachau D. Active damping of space structures by contact pressure control in joints[J]. Mechanics of Structures & Machines, 1998; 26(1): 81~100.
    [43] Yang B D, Menq C H. Characterization of 3D contact kinematics and prediction of resonant response of structures having 3D frictional constraint[J]. J Sound & Vib., 1998; 217(5): 909~925.
    [44] Chen J J, Yang B D, Menq C H. Periodic forced response of structures having three-dimensional frictional constraints[J]. J Sound & Vib., 2000; 229(4): 775~792.
    [45] Glenn T S, Ghandi K, Atalla M J, et al. Mixed-domain traveling-wave motor model with lossy (complex) material properties[A]. In: Proceedings of SPIE-The International Society for Optical Engineering[C], Smart Struct. & Materials 2001, Newport Beach, CA, US, 2001; 4326: 525~537.
    [46] 张景绘.动力学系统建模[M].北京:国防工业出版社,2000:116~178.
    [47] Caughey T K. Random excitation of a system with bilinear hysteresis[J]. J. Appl. Mech., ASME,
    
    1960; 27(4): 649~652.
    [48] Wen Y K, Asce M. Method for random vibration of hysteretic systems[J]. J. Eng. Mech. Div., 1976; 4: 249~263.
    [49] Wen Y K. Equivalent linearization for hysteretic systems under random excitation[J]. J. Appl. Mech., ASME, 1980; 47(1): 150~154.
    [50] Badrakhan F. Rational study of hysteretic systems under stationary random excitation[J]. Int. J. Nonlinear Mech., 1987; 22(4): 315~325.
    [51] Masri S F, Sassi H, Caughey T K. Nonparametric identification of nearly arbitrary nonlinear systems[J]. J. Appl. Mech., ASEM, 1982; 49(3): 619~628.
    [52] Mottershead J E, Stanway R. Indentification of N'th power velocity damping[J]. J. Sound & Vib., 1986; 105(2): 309~319.
    [53] Yar M, Hammond J K. Parameter estimation for hysteretic system[J]. J. Sound & Vib., 1987; 117(1): 161~172.
    [54] 陈乃立,童忠钫.非线性迟滞系统的参数分离识别[J].振动与冲击,1994,3(4):7~14.
    [55] 龚宪生,唐一科.一类迟滞非线性振动系统建模新方法[J].机械工程学报,1999,35(4):11~14.
    [56] 龚宪生,谢志江,骆振黄 等.非线性隔振阻尼特性研究[J].振动工程学报,2001,14:334~338.
    [57] 赵荣国,徐友钜,陈忠富等.一个新的非线性迟滞隔振系统动力学模型[J].机械工程学报,2004;40(2):185~188.
    [58] ZHAO Rong-guo, CHEN Zhong-fu, XU You-ju, et al. Ellipse-like dynamic model for nonlinear hysteretic vibration isolation system[J]. J. Jishou Univ., 2003; 24(3): 6~12.
    [59] 傅志方,周炎.非线性结构系统的模态分析、建模及参数辨识—研究综述[J].振动与冲击,1992;11(1/2):99~114.
    [60] Caughey T K. Equivalent linearization techniques[J]. J. Acous. Soc. American, 1963; 35(11): 1706~1711.
    [61] Iwan W D, Yang I M. Application of statistical linearization techniques to nonlinear multidegree of freedom system[J]. J. Appl. Mech., ASME, 1972; 39(2): 545~550.
    [62] Atalik T S, Utku S. Stochastic linearization of multidegree of freedom nonlinear systems[J]. Earthq. Eng. & Struct. Dynam., 1976; 4: 411~420.
    [63] 王和祥,蔡坚.非零均值随机作用下振动系统的响应分析[J].清华大学学报(自然科学版),1986;26(2):1~12.
    [64] Iwan W D, Mason A B Jr. Equivalent linearization for systems subjected to non-stationary random excitation[J]. Int. J. Nonlinear Mech., 1980; 15: 71~82.
    [65] Pradlwarter H J, Schuller G I. Equivalent linearization—a suitable tool for analyzing MDOF-systems[J]. Prob. Eng. Mech., 1993; 8(2): 115~126.
    
    
    [66] Schuller G I, Pandey M D, Pradlwarter H J. Equivalent linearization (EQL) in engineering practice for aseismic design[J]. Prob. Eng. Mech., 1994; 9(1/2): 95~102.
    [67] Kimura K, Yasumro H, Sakata M. Non-Gaussian equivalent linearization for non-stationary random vibration of hysteretic system[J]. Prob. Eng. Mech., 1994; 9(1/2): 15~22.
    [68] Grigoriu M. Equivalent linearization for Poisson white noise input[J]. Prob. Eng. Mech., 1995; 10(1): 45~51.
    [69] Soize C. Stochastic linearization methoc with random parameters for SDOF nonlinear dynamical systems: prediction and identification procedures[J]. Prob. Eng. Mech., 1995; 10(3): 143~152.
    [70] Horta L G, Juang T N. Identifying approximate linear models for simple nonlinear systems[J]. J Guidance, 1986; 9(4): 7~8.
    [71] Tenma K. Equivalent piecewise linearization method for an essentially nonlinear system[J]. Bull of the JSME, 1981; 24(192).
    [72] Elishakoff I, Birman V, Bert C W. Modified Panovko's method for vibration analysis of a structural element with different tension and compression behavior[J]. J. Sound & Vib., 1991; 148(2): 215~222.
    [73] 赵荣国,徐友钜,陈忠富 等.不同拉压特性结构振动分析的双线性近似方法[J].振动与冲击,2004;23.
    [74] 王国砚.非线性随机振动中的等效线性化方法研究及其在工程中的应用[D].博士学位论文.上海:同济大学,1999.
    [75] Lee T T, Chang Y F. Analysis, parameter estimation and optimal control of nonlinear systems via general orthogonal polynomials[J]. Int. J. Control, 1986; 44(4): 1089~1120.
    [76] Shih D H, Kung F C. The shifted Legendre approach to nonlinear system analysis and identification[J]. Int. J. Control, 1985; 42(6): 1399~1410.
    [77] Horng I R, Chou J H. Analysis and identification of nonlinear systems via shifted Jacobi series[J]. Int. J. Control, 1987; 45(1): 279~290.
    [78] 刘强,丁文镜.单自由度非线性振动系统的一种非参数识别法[J].振动与冲击,1986;5(4):58~65.
    [79] Kung F C, Shih D H. Analysis and identification of Hammerstein model nonlinear delay systems using klock-pulse function expansions[J]. Int J Control, 1986; 43(1): 139~147.
    [80] 杨永新,Ibrahim S R.非线性集总参数振动系统的一个非参数识别方法[J].振动与冲击,1985;4(1):15~27.
    [81] Liu H, Vinh T. Multi-dimensional signal processing for nonlinear structural dynamics[J]. Mech. Syst. & Sig. Proc., 1991; 5(1): 61~81.
    [82] Tomlison G R. Development in the use of the Hilbert transform for detecting and quantifying
    
    nonlinearity associated with frequency response functions[J]. Mech. Syst. & Sig. Proc., 1987; 1(2): 151~171.
    [83] Al-Hadid M A, Wright J R. Application of the force state mapping approach to the identification of nonlinear systems[J]. Mech. Syst. & Sig. Proc, 1990; 4(6): 463~482.
    [84] Mertens M, Auweraer H V D. Vanherck P, et al. The complex stiffness method to detect and identify nonlinear dynamic behavior of SDOF systems[J]. Mech. Syst. & Sig. Proc., 1989; 3(1): 37~54.
    [85] Yun C B, Masanobu S. Identification of nonlinear structural dynamic systems[J]. J. Struct. Mech., 1980; 8(2): 187~203.
    [86] Hanagud S V, Meyyappa M, Craig J I. Method of multiple scales and identification of nonlinear structural dynamics systems[J]. AIAA, 1985; 23(5): 802~807.
    [87] Chen S, Billings S A. Representation of nonlinear systems: the NARMAX model[J], lnt J Control, 1989, 49(3): 1013~1032.
    [88] Billings S A, Tsang K M. Spectral analysis for nonlinear systems. Part Ⅰ: Parametric nonlinear spectral analysis[J]. Mech. Syst & Sig Proc., 1989, 3(4): 319~339.
    [89] Billings S A, Tsang K M. Spectral analysis for nonlinear systems. Part Ⅱ: Interpretation of nonlinear FRFs[J]. Mech. Syst. & Sig. Proc., 1989, 3(4): 341~359.
    [90] 顿静安.楔环受力状态的分析[J].重型机械,1991;(6):59.
    [91] 顿静安,海燕.大直径圆筒楔环联接结构的研究与设计[J].山西机械,1999;(4):16~18.
    [92] 张国恩.楔环连接舱体对接的工艺措施[J].航空工艺,1997;(5):38.
    [93] 卜志广,宋保维,张宇文 等.楔环联接的可靠性优化设计[J].机械科学与技术,2000;19(1):57~59.
    [94] 李媛,张明君,殷国富.基于UG的楔环结构参数设计[J].现代制造工程,2002;(9):42~44.
    [95] Groves S, Sanchez R, Lyon R, et al. Evaluation of cylindrical shear joints for composite materials[J]. J. Composite Mater., 1992; 26(8): 1134~1150.
    [96] 张延珍.战术导弹振动特性的研究[A].见:全国第六届模态分析与试验学术交流会论文集(中册)[C],1991:430~440.
    [97] 郝志明,张德美,张家鹏.楔形环连接结构的随机有限元可靠性分析[R].见:中国工程物理研究院科技年报/1999.成都:四川科学技术出版社,2000:127.
    [98] Hemez F M, Doebling S W. Review and assessment of model updating for non-linear, transient dynamics[J]. Mech. Syst. & Sig. Proc., 2001; 15(1): 45~74.
    [99] ASCI Technology Prospectus[R]. Dept. of Energy Defence Program, DOE/DP/ASC-ATP-001, USA, July, 2001.
    [100] 张令弥.计算仿真与模型确认及在结构环境与强度中的应用[J].强度与环境,2002;29(2):42~47.
    
    
    [101] CurnierA. A theory of friction [J]. Int. J. Solids & Struct., 1984; 20: 637~647.
    [102] Hallquist J O, Goudreau G L, Benson D J. Sliding interface with contact-impact in large-scale Lagrangian computations[J]. Comp. Meth. in Appl. Mech. & Eng., 1985; 51: 107~137.
    [103] Chaudhary A B, Bathe K J. A solution method for static and dynamic analysis of three-dimensional contact problems with friction[J]. Comp. & Struct., 1986, 24(6): 855~873.
    [104] Chen W H, Yeh J T. Three-dimensional finite element analysis of static and dynamic contact problems with friction[J]. Comp. & Struct., 1990; 35(5): 541~552.
    [105] Mahmoud F F, Hassan M M, Salamon N J. Dynamic contact of deformable bodies[J]. Comp. & Struct., 1990, 36(1): 169~181.
    [106] 欧恒安,李润方,龚剑霞.三维冲击—动力接触问题的有限元混合算法[J].重庆大学学报,1994;17(2):52~57.
    [107] Nayfeh J F, Rivieccio N J. Nonlinear vibration of composite shell subjected to resonant excitations[J]. Journal of Aerospace Engineering, 2000; 13(2): 59~68.
    [108] Zhao R G, Xu Y J, Xu M, Chen Z F. Study of principal resonance for Duffing system with damping under simple harmonic excitation[A]. In: Proc. of the 5th ICVE[C], Nanjing, 2002, Beijing: China Aviation Industry Press, 2002: 475~481.
    [109] 刘炼生,黄克累.一种用于非线性振动系统的模态分析方法[J].力学学报,1988;20(1):41-48.
    [110] Rosenberg R M. Normal modes of non-linear dual-mode systems[J]. J. Appl. Mech., 1960; 27(2): 263-268.
    [111] 赵荣国,徐友钜,陈忠富.非线性振动理论中的非线性模态对应原理探讨[J].西南交通大学学报,2002;37(增刊):20~25.
    [112] Zhao R G, Xu Y J, Chen Z F. Modal corresponding principle in nonlinear vibration systems[J]. Natural Science Journal of Xiangtan University, 2003; 25(1): 106~112.
    [113] Amabili M, Pellicano F, Padoussis M P. Nonlinear dynamics and stability of circular cylindrical shells containing flowing fluid, Part Ⅲ: truncation effect without flow and experiments[J]. J. Sound Vib., 2000; 237: 617~640.
    [114] Pellicano F, Amabili M, Padoussis M R Effect of the geometry on the nonlinear vibration of circular cylindrical shells[J]. Int. J. Nonlinear Mech., 2002; 37: 1181~1198.
    [115] Yamaguchi T, Nagai K. Chaotic vibration of a cylindrical shell-panel with an in-plane elastic-support at boundary[J]. Nonlinear Dyn., 1997; 13: 259~277.
    [116] 陈予恕,唐云.非线性动力学中的现代分析方法[M].北京:科学出版社,1992.
    [117] Rand R H. Nonlinear normal modes in two degree-of-freedom systems[J]. J. Appl. Mech., 1971; 38(2): 561.
    [118] Rand R H. A direct method for nonlinear normal modes[J]. Int. J. Nonlinear Mech., 1974; 9(5):
    
    363-368.
    [119] Month L A, Rand R H. The stability of bifurcating periodic solutions in two-degree-of-freedom nonlinear system [J]. J. Appl. Mech., 1977; 44(4): 782-783.
    [120] Johnson T L, Rand R H. On the existence and bifurcation if minimal normal modes [J]. Int. J. Nonlinear Mech., 1979; 14(1): 1-12.
    [121] 刘炼生,霍拳忠,黄克累.非线性振动系统主振型的一种求解方法及稳定性判定[J].应用数学和力学,1987;8(6):505-512.
    [122] 闻邦椿,李以农,韩清凯.非线性振动理论中的解析方法及工程应用[M].沈阳:东北大学出版社,2001:33~37.
    [123] 冯宇石.环境试验振动条件的发展方向[J].光电对抗与无源干扰,2000;(3):46~48.
    [124] 胡志强,法庆衍.随机振动试验应用技术[M].北京:中国计量出版社,1996:12.
    [125] 王保乾.使试验优化的振动虚拟环境(VETO)[J].工程设计与力学环境,2001;(2):41~48.
    [126] 朱长春,王懋礼,曾启铭.基于振动传递特性的振动环境试验响应预测[J].西南交通大学学报,2002;37(增刊):1~4.
    [127] 张景绘,王超.工程随机振动理论[M].西安:西安交通大学出版社,1988:50~250.
    [128] 李德保,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001:63~70.
    [129] Mottershead J E, Friswell M I. Model updating in structural dynamics: A survey[J]. J. Sound & Vib., 1993; 167(2): 347~375.
    [130] 胡仔溪.利用Nastran和模态试验修正结构有限元分析模型[J].强度与环境,2000;27(2):1~7.
    [131] 张启伟.基于环境振动测量值的悬索桥结构动力模型修正[J].振动工程学报,2002;15:74~78.
    [132] 夏品奇,Brownjohn JWM.斜拉桥有限元建模与模型修正[J].振动工程学报,2003;16:219~223.
    [133] Yang Q F, Li Y, Li J B. Dynamic analysis and structural modification of engine block[A]. In: Proc. of the 9th Int. Modal Analysis Conf.[C], 1991.
    [134] 李俊保,杨庆佛.柴油机机体振动响应有限元分析[J].内燃机工程,1995;16(3):9~16.
    [135] 陈国平.折线型非线性振动响应计算的时域有限元分段求解[J].计算力学学报,2000;17(4):417~421.
    [136] 尹立中,徐孝城,谭志勇.再入飞行器壳体气动噪声响应分析和试验验证[J].强度与环境,2003;29(2):5~9.
    [137] Zbang Q W, Chang C C, Chang T Y P. Finite element model updating for structures using parametric constraints[J]. Earthq. Eng. & Struct. Dynam., 2000; 29(7): 927~944.
    [138] Nayfeh A H, Raouf R A. Nonlinear oscillation of circular cylindrical shells[J]. Int. J. Solids & Struct., 1987; 23(11): 1625~1638.
    [139] Nayfeh A H, Raouf R A. Nonlinear forced response of infinitely long circular cylindrical shells[J]. ASME, J. Appl. Mech., 1987; 54(3): 571~577.