洁霉素发酵过程控制系统的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洁霉素发酵生产是典型的微生物次级代谢过程,生物反应发酵机理复杂,其发酵水平与国际先进水平相比仍有一定的差距。究其原因,除了菌种因素之外,主要是生产的自动化程度不高,控制水平比国外落后。所以,研究基于计算机控制技术的洁霉素发酵过程控制系统,具有重要的现实意义。
     本文首先介绍了我国抗生素发酵工业及发酵水平状况,着重分析了抗生素发酵过程控制的研究现状与发展趋势。
     其次介绍了洁霉素发酵工艺的过程、发酵过程控制的概念和基本方法,重点分析了发酵过程中的主要发酵参数的控制方法的研究现状。
     根据发酵工艺特点和控制要求,提出了一套基于组态王6.5及S7-300PLC的洁霉素发酵过程控制系统的软硬件解决方案。对控制系统的硬件部分进行设计,对控制系统上、下位机的软件功能进行介绍和整体设计规划。
     重点对OPC技术及其在洁霉素发酵过程控制系统中的应用进行研究。提出了采用OPC技术实现控制系统的硬件与软件,及软件与软件间的数据通信。详细地论述了OPC服务器和OPC客户端的设计方法及主要实现步骤,并实现了组态王软件与OPC服务器的连接。
     针对发酵过程中温度控制具有严重的非线性及滞后性这一难题,本文运用了模糊自适应PID控制,对温度控制环节进行建模并利用MATLAB的simulink进行仿真。
     最后,对全文的工作做了总结。总结了主要完成的工作,分析了存在的问题,并对今后的发展方向进行了展望。
     本文的主要研究成果为:(1)采用OPC技术实现控制系统的软硬件间的数据通信,并对其中的关键技术OPC服务器进行设计,并且实现了组态王软件与OPC服务器的连接。OPC技术在本控制系统中的应用大大提高了系统的可靠性和扩展的灵活性。(2)基于模糊自适应PID控制算法实现了温度的控制,该控制器具有适应性强、响应迅速,控制效果明显优于常规PID控制方法,适合于发酵过程的温度控制领域以及其他的相关控制领域。
Licomycin fermentation production is the typical microorganism secondary metabolism process, its biological response fermentation mechanism is complex and its fermentation level compared to international advanced level still has certain disparity. Look into the causes, besides the mold mushroom spawn factor, the mainly resaon lies in the fact that the automation degree of the production compared to overseas is not high and its control level falls behind. Therefore, the research on process control system of Licomycin ferentation based on the computer control technology, has important realistic meaning.
     Firstly, the paper introduces our country antibiotic fermentation industry and the fermentation level condition, comprehensively analyzes the present situation and development trends about the process control system of antibiotic fermentation.
     Secondly, the paper introduces Licomycin fermentation process, concept and basic method of ferment process control, emphasizes the research of present situation based on the control method of the main fermentation parameter.
     According to the fermentation process characteristic and the control request, a set of software and hardware solutions for one process control system of Licomycin ferentation based on software kingview 6.5 and Simatic PLC has been proposed and realized. It includes the design of the hardware of the control system, the introduce of the description of the software function for the master and the salve machine ,and the design plan of the Software part.
     This paper conducts the research on the OPC technology and its application in the process control system of Licomycin ferentation. It proposes to realize data communication of control system, between hardware and software or between software and software by using OPC technology. It elaborates in detail the design method and the main realization step of OPC server and OPC customer, moreover has realized connection between software kingview and the OPC server.
     Aim at the difficult problem that the temperature control has serious nonlinearity and lagging in the fermentation process, this paper has utilized the fuzzy auto-adapted PID control for carrying on the modelling to the temperature control and carried on the simulation by using MATLAB simulink.
     Finally, It makes a summary to the full work.It Summaries the work which mainly be complete, danalyzes the existing problem, and carries on the forecast to the next development direction in the future.
     The production of the paper follows: (1) The data communication of control system between software and hardware is realized by using the OPC technology, the key technical problem is settled successfully by designing OPC server, moreover it has realized connection between software kingview and the OPC server. (2) The temperature controller is realized based on the fuzzy auto-adapted PID control, which has the strong compatibility and rapid response, and has more obvious effect of control than the conventional PID control method, and suits to the temperature control domain of fermentative process and all that correlation control domains.
引文
[1]张克旭.代谢控制发酵.中国轻工业出版社,1998
    [2]俞俊,唐孝宣.生物工艺学.华东化工学院出版社,1991
    [3]王树青.发酵过程控制的新发展.化工自动化及仪表,1995.22(4):3-10
    [4]花强,杨琛.生化反应过程模型库设计方案.无锡轻工大学学报,1996,15(2/A)
    [5]岑沛霖,蔡谨.工业微生物学.北京:化学工业出版社,2001.219-223
    [6]王树青.生化反应过程模型化及计算机控制.杭州:浙江大学出版社,1998:113-151
    [7]张嗣良等.微生物次级代谢产物的生产控制研究—以青霉索发酵生产为例.华尔化工学院生物化学工程研究所
    [8]姬宪法.洁霉素发酵过程补料专家控制系统的研究:[硕士论文].洛阳:洛阳工学院,2001:33-34
    [9]张嗣良.发酵工程控制概论.上海:华东华工学院生化工程研究所,1988:121-124
    [10]于树青,元英进.生化过程与自动化技术.化学工业出版社,1995,5:2-3
    [11]范茂兴.氨基酸发酵微机控制系统.无锡轻工业学院学报,1994,13(1):57-66
    [12]杨一兵.人工智能方法在生化控制中的应用:[硕士论文].浙江:浙江大学,1996
    [13]曾一江.啤酒发酵温度的模糊控制研究.计算机自动测量控制,2000,8(3):30-32
    [14]姜长洪等.大型谷氨酸发酵过程的DCS控制.化工自动化及仪表,1996,23(2):18-22
    [15]徐玲,须文波.发酵过程溶解氧的Fuzzy-PID控制.自动化仪表,1999,20(3):29-30
    [16]苏春玉.DCS集散系统在金霉素发酵过程中的运用.化工自动化及仪表,1999,26(2):18-19
    [17]胡真.补料分批发酵过程计算机控制系统的开发和应用.化工自动化及仪表,1999:26(5):12-15
    [18]盛炳乾.氨基酸发酵过程优化控制.自动化仪表,1997;18(11):30-33
    [19]陆文清等.核黄素产生菌的补料发酵.无锡轻工大学学报,2000;19(3):240-243
    [20]王树青.发酵过程自动化.化工自动化及仪表,1993;20(1):101-105
    [21]宋伯生.PLC编程实用指南.北京:机械工业出版社,2007.2
    [22]组态王6.3用户手册,北京亚控自动化软件科技公司
    [23]OPC技术介绍(一).自动化博览,2002年第3期
    [24]OPC技术介绍(二).自动化博览,2002年第4期:60-61
    [25]杨庆柏.OPC技术及其应用方向.沈阳电力高等专科学校学报,2003年10月第5卷第4期
    [26]陈迪泉.OPC技术与服务器开发.广东通信技术,2005,5
    [27]蔡翔云,郑小虎,姜麟.OPC规范及开发应用.昆明理工大学学报,27卷3期:1-7
    [28]庞炎新,龚飞.OPC Server的开发要点.仪器仪表学报,2001年6月第22卷第3期增刊:497-500
    [29]曹建,杨邦荣.基于模板库技术的OPC服务器.电力系统自动化.2001,12:60-62
    [30]潘爱民.COM原理与应用.北京:清华大学出版社,1999
    [31]马欣,李京,程峥嵘.OPC服务器与客户的设计.自动化仪表,2002年7月第23卷第7期;68-70
    [32]花新峰.OPC数据访问客户端开发方法讨论.现代电子技术,2005年第19期总第210期
    [33]刘国平,柳林林,刘利云.基于OPC服务器自动化接口的客户端程序的设计.自动化技
    术与应用,2005年第24卷第9期
    [34]陶永华.新型PID控制及其应用.北京:机械工业出版社,2002.11
    [35]诸静,金耀初.模糊控制原理与应用.北京:机械工业出版社,1995:8-9
    [36]王学慧、田成.微机模糊控制理论及其应用.电子工业出版社,1987
    [37]王畅.模糊控制算法在计算机对发酵过程罐温控制中的应用.长沙电力学院学报(自然科学版),1999;14(4):321-324.
    [38]林小峰,廖志伟,黎毛欣.模糊推理在电阻炉温度控制中的应用.电子技术应用,1999(3),23-25
    [39]鞠丽叶,于飞,刘喜梅.自适应预测控制在炉温控制中的应用.青岛科技大学学报(自然科学版),2004(1),24-28
    [40]吕剑虹,陈来九.模糊PID控制器在汽温控制系统中的应用研究.中国机电工程学报,1995,(15)1:16-21
    [41]张志涌.精通MATLAB(5.3版).北京:北京航空航天大学出版社,2000
    [42]徐昕,李涛,伯晓晨等.MATLAB工具箱应用指南.北京:电子工业出版社,2000
    [43]闻新,周露,李东江.MATLAB模糊逻辑工具箱的分析与应用.北京:科学出版社,2001
    [44]王建军.变电站实时监控系统组态软件的设计与实现.西安交通大学:[硕士论文],2000.22-27
    [45]HANG CC,ASTROM KJ,HO W K Refinements of the Ziegler Nichols tuning formula J,IEE Proc.1991,138(2):111-118
    [46]Robert Luedeking and Edgar L.Piret.2000.A Kinetic Study of the Lactic Acid Fermentation.Batch Process at Controlled PH.Biotechnol Bioeng 67:636-643
    [47]RaulConejeros,Vassilios S.Vassiliadis.2000.Dynamic Biochemicak Reaction Process Analysis and Pathway Modification Predictions.Biotechnol Bioeng 68:285-296
    [48]Terhi Siimes et al.1995.Real-Time Fuzzy-Knowledge-Based Control of Baker's Yeast Production.Biotechnol Bioeng 45:135-142
    [49]A.JOHNSON 1987.The Control of Fed-batch Fermentation Process-A Survey.Biotechnol Bioeng 23:691-705
    [50]Yoichi Kitsuta et al 1994.Fuzzy Supervisory Control of Glutamic Acid Production.Biotechnol Bioeng 44:87-94
    [51]C.H.Wong et al.Fuzzy relational predictive identification.Fuzzy Sets and Systems.2000,113:417-426
    [52]Katarina K.B,et al.Fuzzy Predictive Control of Highly Nonlinear pH process.Computers chem.Engng.1997,21:S613-S618
    [53] Linkens D. A., et al., Long-range predictive control using fuzzy process models. Trans IChemE, 1996, 74 Part A:77~88
    [54] Sanjeev Dhir et al.2000.Dynamic Optimization of Hybridoma Growth in a Fed-Batch Bioreactor.Biotechnol Bioeng 67:197—205
    [55] Yoichi Kitsuta et al. 1994 Fuzzy Supervisory Control of Glutamic Acid Production. Biotechnol Bioeng 44: 87~94
    [56] Qin Zhang et al. 1994 A Prototype Neural Network Supervised Control System for Bacillus thuringiensis Fermentations.Biotechnol Bioeng 43: 483~489