基于成像链分析的光谱成像系统设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光谱成像技术是一种将光谱探测与成像技术相结合的新型探测手段,可以同时获得目标的空间信息和光谱信息。自上世纪80年代诞生至今,该技术已在军事、农业、地质、环境、生化等领域得到了成功应用。本文对光谱成像系统的整体优化设计问题展开研究,提出一种基于成像链分析的光谱成像系统设计方法,对光谱成像过程中的各个环节进行建模,实现成像仿真和分析,并将成像仿真和分析的结果运用到光谱成像系统设计的各个阶段。本文主要的研究内容包括:
     1.对目前光谱成像技术和成像链分析方法的研究进行总结,介绍国内外的发展现状,讨论如何将成像链分析方法应用到光谱成像系统设计之中;
     2.介绍光谱成像的基本理论,分析目前流行的光谱成像技术的原理及特性;
     3.对遥感应用中的光谱成像链进行建模,用数学表达式描述典型的光谱成像系统的成像链模型;
     4.利用光谱成像链的数学模型,在MATLAB环境下设计一种基于成像链分析的光谱成像系统的成像仿真、分析和性能评估软件ISAPET (Image Simulation,Analysis and Performance Evaluation Tool),介绍该软件的结构和功能,以几种典型的光谱成像原理为例,介绍成像仿真和分析的具体实现方法;
     5.介绍光谱成像系统仿真软件ISAPET在光谱成像系统设计中的应用;
     6.以一种滤光片阵列型机载光谱成像系统的设计为例,具体介绍基于成像链分析的光谱成像系统设计方法的实现,并研制了原理样机,通过实验分析、比较成像仿真和真实成像的结果。
     本文的研究工作表明,将成像仿真和分析方法运用到光谱成像系统的设计中,能够很好的辅助光谱成像系统的整体优化设计,缩短研制周期。利用成像仿真和分析方法能够从系统整体设计角度进行全局优化,提高设计效率。随着人们对于光谱成像系统要求的不断提高,基于成像链分析的光谱成像系统设计方法在光谱成像系统的整体设计中也会发挥越来越大的作用。
Spectral imaging is a cutting-edge technique which combines spectroscopy andimaging technology to detect the world. It simultaneously captures both spatial andspectral information from the objects of interest. Since its birth dated back to the1980’s, imaging spectroscopy has found successful applications in many fields, e.g.military, agriculture, geology, environmental sciences, biology and etc. This thesisfocuses on the research of spectral imaging system design and global optimization. Adesign method based on the image chain analysis is presented. In this design strategy,each link in the image chain of spectral imaging process is mathematically modeledfor the image simulation and analysis. During the R&D phase of spectral imagingsystems, the simulation and analysis results are made use of to help support the design.The main research aspects in this thesis include:
     1. Summarizing the state-of-the-art researches in spectral imaging and imagechain analysis and discussing the prospect of applying the image chain approach tothe design of spectral imaging systems.
     2. Introducing basic theories in spectral imaging and analyzing the currentspectral imaging technologies and their pros and cons.
     3. Modeling the image chain of spectral imaging mathematically in itsapplication in remote sensing.
     4. Designing a software package called ISAPET (Image Simulation, Analysisand Performance Evaluation Tool) in MATLAB based on the mathematical models ofspectral imaging systems. Its architecture and function are introduced in detail. Forseveral kinds of spectral imaging systems, simulation examples are presented toillustrate the implementation of ISAPET’s basic functions.
     5. Introducing the applications of ISAPET in spectral imaging system design.
     6. Illustrating the design methods of spectral imaging systems based on theimage chain approach in detail by taking a filter-array-type airborne imagingspectrometer for example. A prototype was built up with the very design result.Experiments were carried out to compare the actual results and the simulation results.
     It would be concluded that by applying the image simulation and analysismethods in spectral imaging system design, global optimization can be achieved toassist in designing the whole system, shortening the design cycle and improving thedesign efficiency. With the rising requirements for higher spatial and spectralresolutions in spectral imaging applications, the design strategy based on image chainapproach will play more and more important roles in spectral imaging system design.
引文
[1] A.F.H. Goetz, G. Vane, J.E. Solomon, et al. Imaging Spectrometry for EarthRemote Sensing. Science.1985,228(4704):1147.
    [2] G.A. Shaw, H.K. Burke. Spectral Imaging for Remote Sensing. LincolnLaboratory Journal.2003,14(1):3-28.
    [3] R.A. Neville, C. Nadeau, J. Levesque, et al. Hyperspectral Imagery for MineralExploration: Comparison of Data From Two Airborne Sensors.1998.
    [4]张宗贵,王润生.基于谱学的成像光谱遥感技术发展与应用.国土资源遥感.2000,(3):16-24.
    [5]崔廷伟,马毅,张杰.航空高光谱遥感的发展与应用.遥感技术与应用.2003,18(2):118-122.
    [6] J. Clevers. The Use of Imaging Spectrometry for Agricultural Applications. ISPRSJournal of Photogrammetry and Remote Sensing.1999,54(5-6):299-304.
    [7] J.E. McFee, H.T. Ripley, R. Buxton, et al. Preliminary Study of Detection ofBuried Landmines Using a Programmable Hyperspectral Imager.1996.
    [8] R. Anderson. Military Utility of Multispectral and Hyperspectral Sensors. DTICDocument,1994.
    [9] F.D. van der Meer, H.M.A. van der Werff, F.J.A. van Ruitenbeek, et al. Multi-and Hyperspectral Geologic Remote Sensing: A review. International Journal ofApplied Earth Onservation and Geoinformation.2012,14(1):112-128.
    [10] J.R. Schott. Remote Sensing: the Image Chain Approach2rd Edition. OxfordUniversity Press, USA,2007.
    [11] R.E. Fiete. Modeling the Imaging Chain of Digital Cameras. Washington:SPIEPress, USA,2010.
    [12] G. Alexander F. H. Three Decades of Hyperspectral Remote Sensing of the Earth:A Personal View. Remote Sensing of Environment.2009,113, Supplement1:S5-S16.
    [13] S.L. Ustin, J. McDonald, M.E. Schaepman. A Review of the Contributions ofAlexander FH Goetz to Imaging Spectroscopy.2006.
    [14] G. Vane, W. Porter, J. Reimer, et al. AVIRIS Performance During the1987Flight Season: an AVIRIS Project Assessment and Summary of theNASA-sponsored Performance Evaluation.1988.
    [15] R.O. Green, M.L. Eastwood, C.M. Sarture, et al. Imaging Spectroscopy and theAirborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing ofEnvironment.1998,65(3):227-248.
    [16] R.J. Birk, T.B. McCord. Airborne Hyperspectral Sensor Systems. Aerospace andElectronic Systems Magazine, IEEE.1994,9(10):26-33.
    [17]吕群波.干涉光谱成像数据处理技术.西安:中国科学院研究生院(西安光学精密机械研究所).2007.
    [18]袁艳.成像光谱理论与技术研究.西安:中国科学院研究生院(西安光学精密机械研究所).2005.
    [19] K.I. Itten. The Emergence of Imaging Spectrometer. The6th EARSel SIGImaging Spectrometer Workshop.2009.
    [20] S. Holzwarth, A. Muller, M. Habermeyer, et al. HySens-DAIS7915/ROSISImaging Spectrometers at DLR.2003.
    [21] http://www.laserfocusworld.com/articles/print/volume-42/issue-7/features/imaging-spectrometers-imaging-spectrometers-go-commercial.html.
    [22] K.I. Itten, F. Dell Endice, A. Hueni, et al. APEX-The Hyperspectral ESAAirborne Prism Experiment. Sensors.2008,8(10):6235-6259.
    [23] M. Jehle, A. Hueni, A. Damm, et al. APEX-Current Status, Performance andValidation Concept. Sensors,2010IEEE.2010.
    [24] M.E. Schaepman, D. Schlapfer, K.I. Itten. APEX-A New Pushbroom ImagingSpectrometer for Imaging SpectroscopyApplications: Current Design and Status. Geoscience and Remote SensingSymposium,2000. Proceedings. IGARSS2000. IEEE2000International.2000.
    [25] P. D Odorico, E. Alberti, M.E. Schaepman. In-flight Spectral PerformanceMonitoring of the Airborne Prism Experiment. Applied optics.2010,49(16):3082-3091.
    [26] L. Hamlin, R.O. Green, P. Mouroulis, et al. Imaging Spectrometer ScienceMeasurements for Terrestrial Ecology: AVIRIS and New Developments.2011.
    [27] P.E. Ardanuy, D. Han, V.V. Salomonson. The Moderate Resolution ImagingSpectrometer (MODIS) Science and Data System Requirements. Geoscience andRemote Sensing, IEEE Transactions on.1991,29(1):75-88.
    [28] J. Pearlman, S. Carman, C. Segal, et al. Overview of the Hyperion ImagingSpectrometer for the NASA EO-1mission. Geoscience and Remote SensingSymposium,2001. IGARSS '01. IEEE2001International.2001.
    [29] J.L. Bezy, G. Gourmelon, R. Bessudo, et al. The ENVISAT Medium ResolutionImaging Spectrometer (MERIS). Geoscience and Remote Sensing Symposium,1999. IGARSS '99Proceedings. IEEE1999International.1999.
    [30] B. Van Mol, K. Ruddick, Others. The Compact High Resolution ImagingSpectrometer (CHRIS): the Future of Hyperspectral Satellite Sensors. Imagery ofOostende Coastal and Inland Waters.2004.
    [31] W. Heldens, U. Heiden, T. Esch, et al. Can the Future EnMAP MissionContribute to Urban Applications? A Literature Survey. Remote Sensing.2011,3(9):1817-1846.
    [32] J.F. Silny, T.G. Chrien. Large Format Imaging Spectrometers for FutureHyperspectral Landsat Mission.2011.
    [33] G.P. Asner, R.G. Knox, R.O. Green, et al. The Flora Mission for EcosystemComposition, Disturbance and Productivity. Center for AeroSpace Information(CASI), National Aeronautics and Space Administration (NASA), Hanover, Md.NASA Technical Report, Document20050180313.2005.
    [34] R.O. Green, C. Pieters, P. Mouroulis, et al. The Moon Mineralogy Mapper (M3)Imaging Spectrometer for Lunar Science: Instrument Description, Calibration,On-orbit Measurements, Science Data Calibration and On-orbit Validation.Journal of Geophysical Research.2011,116(E00G19):1-31.
    [35]朱军,葛之江,沈中. Mighty-Ⅱ.1星载干涉型超光谱成像仪.航天器工程.2006,(2):51-57.
    [36] P.G. Lucey, K.A. Horton, T.J. Williams, et al. SMIFTS: A Cryogenically Cooled,Spatially Modulated Imaging Infrared Interferometer Spectrometer.1993.
    [37] L.J. Otten III, E.W. Butler, J.B. Rafert. The Design of an Airborne FourierTransform Visible Hyperspectral Imaging System for Light Aircraft EnvironmentRemote Sensing. Proc. of SPIE.1995.
    [38] L.J. Otten III, R.G. Sellar, J.B. Rafert. MightySat II.1Fourier-transformhyperspectral imager payload performance. Proceedings of SPIE-TheInternational Society for Optical Engineering.1995.
    [39]刘银年,薛永祺,王建宇,等.实用型模块化成像光谱仪.红外与毫米波学报.2002,21(1):9-13.
    [40]郑亲波,危峻. SZ-3中分辨率成像光谱仪.大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集.2004.
    [41]赵葆常,杨建峰,常凌颖,等.嫦娥一号卫星成像光谱仪光学系统设计与在轨评估.光子学报.2009,(3):479-483.
    [42]相里斌,王忠厚,刘学斌,等.环境减灾-1A卫星空间调制型干涉光谱成像仪技术.航天器工程.2009,(6):43-49.
    [43]相里斌.干涉成像光谱技术研究,博士后工作报告.西安:西北大学现代物理研究所,中国科学院西安光机所,1997.
    [44] A. Barducci, F. Castagnoli, G. Castellini, et al. ALISEO on MIOSat: AnAerospace Imaging Interferometer for Earth Observation. InternationalGeoscience and Remote Sensing Symposium (IGARSS).2009.
    [45] R. Ng. Digital Light Field Photography. Palo Alto: Stanford University.2006.
    [46] R. Horstmeyer, R. Athale, G. Euliss. Modified Light Field Architecture forReconfigurable Multimode Imaging. Proceedings of SPIE-The InternationalSociety for Optical Engineering.2009.
    [47] A.A. Wagadarikar, N.P. Pitsianis, X. Sun, et al. Spectral Image Estimation forCoded Aperture Snapshot Spectral Imagers. Proceedings of SPIE-TheInternational Society for Optical Engineering.2008.
    [48] M.K. Jakubowski, D. Pogorzala, T.J. Hattenberger, et al. Synthetic DataGeneration of High Resolution, Hyperspectral Data Using DIRSIG. Proceedingsof SPIE-The International Society for Optical Engineering.2007.
    [49] R.D. Fiete. Image Chain Analysis for Space Imaging Systems. Journal ofImaging Science and Technology.2007,51(2):103-109.
    [50] S.A. Cota, J.T. Bell, R.H. Boucher, et al. PICASSO: An End-to-end ImageSimulation Tool for Space and Airborne Imaging Systems. Journal of AppliedRemote Sensing.2010,4(1).
    [51] A. B ner, M. Schaepman, D. Schl pfer, et al. The Simulation of APEX Data: theSENSOR Approach. Imaging Spectrometry V, Denver, SPIE.1999,3753:235-246.
    [52]李宏升.超光谱成像仪成像链的调制传递函数研究.长春:中国科学院研究生院(长春光学精密机械与物理研究所).2006.
    [1] M. Descour, E. Dereniak. Computed-tomography Imaging Spectrometer:Experimental Calibration and Reconstruction Results. Applied optics.1995,34(22):4817-4826.
    [2] A.A. Wagadarikar, N.P. Pitsianis, X. Sun, et al. Spectral Image Estimation forCoded Aperture Snapshot Spectral Imagers.2008.
    [3]吕群波.干涉光谱成像数据处理技术.西安:中国科学院研究生院(西安光学精密机械研究所).2007.
    [4]袁艳.成像光谱理论与技术研究.西安:中国科学院研究生院(西安光学精密机械研究所).2005.
    [5] J. Wilford, J. Creasey. Landsat Thematic Mapper. Geophysical and RemoteSensing Methods for Regolith Exploration.2002:6-12.
    [6] R.O. Green, M.L. Eastwood, C.M. Sarture, et al. Imaging Spectroscopy and theAirborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing ofEnvironment.1998,65(3):227-248.
    [7] J.D. Elwell, G.W. Cantwell, D.K. Scott, et al. A Geosynchronous Imaging FourierTransform Spectrometer (GIFTS) for Hyperspectral Atmospheric RemoteSensing: Instrument Overview and Preliminary Performance Results.2006.
    [8] R.G. Sellar, G.D. Boreman. Classification of Imaging Spectrometers for RemoteSensing Applications. Optical Engineering.2005,44:13602.
    [9] R.G. Sellar, G.D. Boreman, L.E. Kirkland. Comparison of Signal CollectionAbilities of Different Classes of Imaging Spectrometers.2002.
    [10]郑玉权,禹秉熙.成像光谱仪分光技术概览.遥感学报.2002,(1):75-80.
    [11] M. Herring, T. Chrien, V. Duval, et al. Imaging Spectrometry-Concepts andSystem Tradeoffs.1993.
    [12] P. Mouroulis, D.A. Thomas, T.G. Chrien, et al. Trade Studies inMulti-Hyperspectral Imaging Systems Final Report. Jet Propulsion Laboratoryfiles (29October1998).1998.
    [13] H. Arguello, G. Arce. Code Aperture Design for Compressive Spectral Imaging.2010.
    [14] N. Gat. Imaging Spectroscopy Using Tunable Filters: A Review. Society ofPhoto-Optical Instrumentation Engineers (SPIE) Conference Series.2000.
    [15] M.E. Martin, M. Wabuyele, M. Panjehpour, et al. An AOTF-basedDual-modality Hyperspectral Imaging System (DMHSI) Capable of SimultaneousFluorescence and Reflectance Imaging. Medical Engineering& Physics.2006,28(2):149-155.
    [16]王之江等.实用光学技术手册.第一版.北京:机械工业出版社,2007.
    [17] P.Z. Mouroulis. Spectral and Spatial Uniformity in Pushbroom ImagingSpectrometers. Society of Photo-Optical Instrumentation Engineers (SPIE)Conference Series.1999.
    [18] W.C. Miller, G. Hare, D.C. Strain, et al. A New Spectrophotometer Employing aGlass Fery Prism. J. Opt. Soc. Am.1949,39(5):377-386.
    [19]张云翠,刘龙,曹冠英,等. Fery棱镜光谱仪设计.红外与激光工程.2009,(2):287-289.
    [20] D.W. Warren, J.A. Hackwell, J.J. Gutierrez. Compact Prism SpectrographsBased on Aplanatic Principles. Opt Eng.1997,36(4):1174-1182.
    [21]程欣,洪永丰,张葆,等.插入Féry棱镜的小型Offner超光谱成像系统的设计.光学精密工程.2010,18(8):1773-1780.
    [22]郁道银,谈恒英.工程光学.第二版.北京:机械工业出版社,2006.
    [23] P. Mouroulis, D.W. Wilson, P.D. Maker, et al. Convex Grating Types forConcentric Imaging Spectrometers. Appl. Opt.1998,37(31):7200-7208.
    [24] P. Mouroulis, R.O. Green, D.W. Wilson. Optical Design of a Coastal OceanImaging Spectrometer. Opt. Express.2008,16(12):9087-9096.
    [25]相里斌.干涉成像光谱技术研究,博士后工作报告.西安:西北大学现代物理研究所,中国科学院西安光机所,1997.
    [26] R. Horton. HEIFTS-Design, Modeling and Recent Experimental Results.2001.
    [27]付强,相里斌,吕群波,等.大孔径静态干涉成像光谱仪中双通道Mach-Zehnder横向剪切干涉仪的设计.光谱学与光谱分析.2012,(2):553-557.
    [28] K. Kubala. Computational Imaging Technologies.2010.
    [29] G. Wetzstein, I. Ihrke, D. Lanman, et al. Computational Plenoptic Imaging.2011.
    [30] R. Raskar. Computational Photography.2009.
    [31] R. Horstmeyer, G. Euliss, R. Athale. Flexible Multimodal Camera Using a LightField Architecture.2009.
    [32] R. Ng. Digital Light Field Photography. Palo Alto: Stanford University.2006.
    [1] J.R. Schott. Remote Sensing: the Image Chain Approach2rd Edition. OxfordUniversity Press, USA,2007.
    [2] R.E. Fiete. Modeling the Imaging Chain of Digital Cameras. Washington:SPIEPress, USA,2010.
    [3] G.P. Anderson, F.X. Kneizys, E.P. Shettle, et al. UV spectral simulations usingLOWTRAN7.1990.
    [4] A. Berk, G.P. Anderson, L.S. Bernstein, et al. MODTRAN4radiative transfermodeling for atmospheric correction. Society of Photo-Optical InstrumentationEngineers (SPIE) Conference Series.1999.
    [5] E.F. Vermote, D. Tanre, J.L. Deuze, et al. Second Simulation of the SatelliteSignal in the Solar Spectrum,6S: An Overview. IEEE Transactions onGeoscience and Remote Sensing.1997,35:675-686.
    [6]郁道银,谈恒英.工程光学.第二版.北京:机械工业出版社,2006.
    [7]顾德门.傅里叶光学导论.第三版.北京:电子工业出版社,2006.
    [8] W.J. Smith. Modern Optical Engineering.3rd Edition. New York:McGraw-HillPress,2000.
    [9] R.E. Fischer, B. Tadic-Galeb, P.R. Yoder. Optical System Design.2nd Edition.New York:McGraw-Hill Press,2008.
    [10] A.A. Wagadarikar, N.P. Pitsianis, X. Sun, et al. Spectral Image Estimation forCoded Aperture Snapshot Spectral Imagers.2008.
    [11] G.C. Holst. CCD Arrays, Cameras, and Displays.2nd Edition. Washington:SPIE,1998.
    [12] R.L. Easton Jr. Fourier Methods in Imaging.2ed Edition. Chichester:Wiley,2010.
    [13] R. Sandau. Digital Airborne Camera Introduction and Technology. NewYork:Springer,2010.
    [14] R. Sandau. High resolution mapping with small satellites. Presented Paper,ISPRS.2004.
    [15] R. Sandau. Potential and Shortcoming of Small Satellite for TopographicMapping.2006.
    [16]冈萨雷斯,伍兹.数字图像处理.第二版.北京:电子工业出版社,2007.
    [1] S. Westin. ISO12233Test Chart.2009.
    [2] H. Hwang, Y.W. Choi, S. Kwak, et al. MTF Assessment of High ResolutionSatellite Images Using ISO12233Slanted-Edge Method.2008.
    [3] A. Berk, G.P. Anderson, L.S. Bernstein, et al. MODTRAN4radiative transfermodeling for atmospheric correction. Society of Photo-Optical InstrumentationEngineers (SPIE) Conference Series.1999.
    [4] G.C. Holst. CCD Arrays, Cameras, and Displays.2nd Edition. Washington:SPIE,1998.
    [5] Gonzalez Rafael C.,Woods Richard E.数字图像处理.第二版.北京:电子工业出版社,2007.
    [6]罗华飞. MATLAB GUI设计学习笔记.北京:北京航空航天大学出版社,2009.
    [1] P.D. Burns, D. Williams. Using Slanted Edge Analysis for Color RegistrationMeasurement.1999.
    [2] P.D. Burns. Slanted-edge MTF for Digital Camera and Scanner Analysis.2000.
    [3] P.D. Burns, D. Williams. Refined Slanted-Edge Measurement for PracticalCamera and Scanner Testing.2002.
    [4] M. Estribeau, P. Magnan. Fast MTF Measurement of CMOS Imagers Using ISO12233Slanted-Edge Methodology.2004.
    [5] D. Williams, P. Burns. Diagnostics for Digital Capture Using MTF.2001.
    [6] D. Williams. Benchmarking of the ISO12233Slanted-Edge Spatial FrequencyResponse Plug-in.1998.
    [1] R.E. Fiete. Modeling the Imaging Chain of Digital Cameras. Washington:SPIEPress, USA,2010.