基于纤维素聚集态结构差异的麦草高值化利用技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外生产微晶纤维素主要以棉花和木材为原料,经制浆工艺分离出纤维素纤维,再进一步提纯得到精制纤维素,即棉浆粕和木浆粕,最后通过酸水解、干燥、粉碎等一系列工艺制得微晶纤维素。由于我国棉花和木材资源匮乏,极大地限制了微晶纤维素的生产规模,且成本较高;另外,目前的生产工艺中半纤维素和纤维素无定形区降解后均被作为废弃物而排放,既污染了环境,又浪费了资源。本课题以资源丰富、成本廉价的小麦秸秆为原料,利用麦草中纤维素和木素化学性质的不同,采用可回收利用的有机溶剂体系热分解麦草,溶解木素,分离出粗纤维素;再经低污染的全无氯精制技术分离残余木素和半纤维素,得到高纯度纤维素;利用纤维素结晶区和无定形区天然聚集态结构的差异,采取了区别利用的思路,通过降解分离高纯度纤维素的无定形区,保留其结晶区用于制备高附加值产品合成革用微晶纤维素,降解的纤维素无定形区转化为葡萄糖可用于发酵制备纤维素乙醇,有效避开了目前生物质利用研究中结晶区可及度低、酶解困难的技术壁垒,实现了纤维素的资源化和能源化共利用。溶解分离出的木素用于改性制备水泥减水剂。从而初步形成农秸秆的多组分、多结构和多产品联产的高值化利用技术体系。既解决了棉花资源的紧缺问题,又充分利用了农业废弃物―小麦秸秆,因此,具有较大的潜在经济价值和社会效益。
     本课题研究过程中,采用易回收再利用的乙醇乙酸二元有机溶剂体系热分解麦草,溶解木素,分离获取粗纤维素。乙醇/乙酸溶剂热分解分离麦草的最佳工艺为:乙醇水溶液浓度(v/v)55%,乙酸用量以2%(相对乙醇,v/v)为宜。液比1∶8,最高温度195℃,保温时间为60min;获得的粗纤维素得率和α-纤维素分别为49.84%和83.77%,卡伯值为20.3。
     为了提高纤维素纯度,本课题采用臭氧、过氧化氢和木聚糖酶等化学处理和生物技术相结合的全无氯工艺技术进行无污染精制,以获得高纯度的精制纤维素。结果表明,该技术路线对麦草粗纤维素精制效果明显,O3处理有助于残余木素的脱除,H2O2精制段有利于产品白度的提高,而木聚糖酶处理则有效地降低了半纤维素含量,最终达到了精制的要求。其中,O3处理段的最佳工艺为:浆浓为45%,pH为2时,O3处理的最佳用量为1.2%;H2O2精制段的最佳处理条件为:浆浓12%,柠檬酸三钠用量1.0%,H2O2用量为3%,NaOH用量为1.8%,精制温度70℃,处理时间120min。木聚糖酶最佳用量为1.5IU·g-1;精制后纤维素产品的指标为:α-纤维素含量为94.67%,聚戊糖含量为4.29%,白度为86.1%ISO,聚合度为628,结晶度为27.36%,灰分为2.07%。精制纤维素的最终得率为87.31%。
     利用纤维素结晶区和无定形区天然结构的差异,研究了盐酸水解技术分离精制纤维素的结晶区。盐酸水解的最佳水解工艺参数为:盐酸浓度2mol/L、最佳固液比1:15、水解温度70℃、水解时间90min。水解纤维素得率为79.68%。为了进一步提高酸水解过程对纤维素无定形区的选择性,本课题探索了过渡金属离子助催化酸水解技术和机理,以获得更高结晶度的水解纤维素。结果表明,Fe3+比Cu2+具有更佳的酸水解催化选择性。其对应的最佳工艺条件为:Fe3+浓度0.4mol/L,盐酸浓度2.5mol/L,反应温度80℃,反应时间55min,固液比1:15。该条件下水解纤维素结晶度可达到81.94%,比无金属离子催化下提高了31.04%,而得率可达到86.89%。其机理为:金属离子催化提高了酸水解速率,促使无定形区更快地被水解,使体系中更多的酸作用在无定形区降解上,作用于结晶区的酸用量则相对减少,使结晶区得到了一定保护。
     鉴于麦草原料灰分较大,尤其是SiO2含量较高,本课题采用碱处理除硅技术降低灰分含量,并研究了后续的粉碎工艺。结果表明,此工艺下微晶纤维素灰分含量由2.05%降为0.32%,下降率达84.39%。碱处理最佳工艺条件为:碱用量15%,温度80℃,微晶纤维素浓度10%,处理时间30min。粉碎工艺研究发现,采用行星式球磨机对微晶纤维素的粒度控制较好,在料球比为1:1条件下,最佳粉碎时间为100min,所得微晶纤维素的平均粒径为23.33μm。
     采用IR、XRD、SEM-EDS、TGA、激光粒度仪等技术手段对合成革用麦草微晶纤维素的结构和性能进行了表征,并与相关国家行业标准进行比较,完全达到标准的要求。经核工业二〇三所分析检测中心分析鉴定,其各项检测指标均符合中华人民共和国合成革用微晶纤维素林业行业标准(LY/T1333-1999)。对产品进行了实验室应用试验,结果表明,自制麦草微晶纤维素作为PU合成革移膜填料,其透气性、抗张强度和撕裂强度较国产合成革微晶纤维素的使用效果更佳。经昆山华富合成革有限公司生产应用试验证明,自制合成革用微晶纤维素与进口木质微晶纤维素对比,除膨胀率、拉伸负荷(横向)和断裂伸长率(横向)稍低外,其余各项指标均达到甚至超过了进口德国的木质微晶纤维素,较国内中高档合成革用微晶纤维素具有更好的应用效果。
     分析相应的PU合成革产品微观结构发现,添加两种国产微晶纤维素的合成革产品断面结构中表层孔隙粗大且数量较多,尤其是国产木质微晶纤维素Ⅱ,但凝聚层中间部分微孔数量很少,结构较致密;添加德国微晶纤维素和麦草微晶纤维素的PU合成革表层部分孔隙较小,但在PU凝聚层中间部位,分布着更多的微孔。对比而言,德国微晶纤维素和自制麦草微晶纤维素添加后更有利于改善PU合成革凝聚层的微观结构,提高了产品的强度和透气性能。
     通过蒸馏回收麦草热分解废液中的乙醇后,将析出的木素先进行羟甲基化活化,然后进行了磺化改性,制备出了改性乙醇木素水泥减水剂,并对产品的结构和应用性能进行表征和研究。结果表明,改性乙醇木素水泥减水剂使用效果较佳,水泥减水剂掺量为5%时,水泥净浆流动度可达208mm,减水率为14.9%,比市售木素磺酸钠减水剂高出30.7%;掺加改性乙醇木素的砂浆抗压强度随龄期的增长而下降;其3天抗压强度比比木素磺酸钠高13.8%,7天抗压强度比比木素磺酸钠高9.9%。磺化改性的最佳条件为:磺化剂/木素质量比为1:3,温度为95℃,pH为11,时间3h。
     最后,本课题初步探索了酸水解废液和碱处理废液的混合中和发酵技术,以转化其中的葡萄糖为生物质乙醇。酸性废液和碱性废液混合至pH为5.0(酿酒酵母最适宜pH)时,所需酸、碱废液的体积比为2.83:1,此时混合废液中还原糖含量约为20.60g/L。结果表明,还原糖初始浓度越高,乙醇产量越高。混合废液发酵制备乙醇的最佳工艺条件为:酿酒酵母接种量10%,发酵温度34℃,发酵时间72h,pH为5.0。
The major resources for microcrystalline cellulose products are cotton andwood. Cellulose fibers are isolated from the biomass through the pulping process.After purification, refined cellulose is obtained in the form of cotton pulp andwood pulp. Microcrystalline cellulose is produced after acid hydrolysis, drying,grinding, and other process. Due to the shortage of cotton and wood resources inour country, the production scale of microcrystalline cellulose is limitedextremely, and the cost is very high. Besides, the degradation products of theamorphous regions of hemicellulose and cellulose generated in producing processare emitted as litters currently, which are a pollution of environment and a wasteof resources. Wheat straw is a plentiful and cheap resource, is employed as theraw material in this dissertation study. Considered the differences on chemicalproperties of cellulose and lignin of wheat straw, the crude cellulose is firstseparated from lignin using recyclable organic solvent system. The organicsolvent thermally decompose the wheat straw and lignin is dissolved. The highpurity cellulose is obtained using low-pollution TCF refining technology toseparate residual lignin and hemi cellulose. The amorphous regions of high puritycellulose are separated from crystal regions by degradation by considering t thedifferences on the natural aggregation structures of crystal and amorphousregions. The crystal regions from high purity cellulose are used in producesynthetic leather, microcrystalline cellulose, which is a high value-added product.The amorphous regions from high purity cellulose are converted into glucose,which can be used in producing cellulose ethanol by fermentation. The wholeprocess employed in this study fulfills the use of cellulose as and in energy fields.This can be achieved by avoiding current technical barriers of biomass utilization,including low accessibility to crystalline regions and difficulty in enzymatichydrolysis. Lignin separated by dissolving is used in preparation of modifiedcement water reducer. This study helps utilization agricultural wheat straw,including multi-component, multi-structure, and multi-product cogeneration. By this not only the problem of cotton shortage is solved, but the wheat straw, whichis a kind of agriculture waste, is made to full use. Therefore, the process in thestudy has great potential in both economic value and social benefits.
     This study take advantage of ethanol-acetic solvent system, which is arecyclable binary organic solvent, to have wheat straw thermally decomposed andlignin is dissolved to get crude cellulose. The optimum process conditions ofethanol-acetic solvent thermal decomposition of wheat straw is that ethanolaqueous concentration is55%(v/v), acetic acid dosage is2%v/v of ethanol,liquid ratio is1:8, the highest temperature is195°C,holing time is60min. Thecrude cellulose yield and α-cellulose content are49.84%and83.77%, and theKappa number is20.3after the treatment.
     In order to increase the purity of cellulose, this study uses the Chlorine-freeand non-polluting process, which is a combination of ozone, hydrogen peroxide,and xylanase treatment, to obtain high purity cellulose. The results show that theprocessing of wheat straw to refine crude cellulose is excellent by following thistechnology. O3treatment is helpful in removing of residual lignin. H2O2refiningis useful in enhancement of whiteness. The xylanase treatment reduces thecontents of hemi cellulose efficiently. The final result of refining meets therequirement. The optimum process conditions of O3treatment are that pulpconcentration is45%, pH is2, and O3dosage is1.2%. The optimum processconditions of H2O2treatment are that pulp concentration is12%, tri-sodiumcitrate dosage is1.0%, H2O2dosage is3%, NaOH dosage is1.8%, refiningtemperature is70°C, and treatment time is120min. The optimum xylanasedosage is1.5IU·g-1. The parameter of refined cellulose are that α-cellulosecontent is94.67%, Pentosan content is4.29%,whiteness is86.1%ISO, degree ofpolymerization is628, crystallinity is27.36%, ash content is2.07%. The yield ofrefined cellulose is87.31%.
     The study on separation and refining of cellulose amorphous region usinghydrochloric acid hydrolysis technology is carried out based on the differences onthe natural structures of crystal and amorphous regions of cellulose. The optimumprocess conditions of hydrochloric acid hydrolysis are that HCl concentration of2mol/L, solid and liquid ratio is1:15, hydrolysis temperature is70°C, and hydrolysis time is90min. The cellulose yield after hydrolysis is79.68%. In orderto enhance the selectivity of acid hydrolysis to cellulose amorphous regions, thisstudy explore the technology and mechanism of transition metal ion assistedcatalytic acid hydrolysis with the purpose of getting hydrolyzed cellulose withhigher crystallinity. The results show that Fe3+has higher selectivity of acidhydrolysis than Cu2+. The optimum process conditions are that Fe3+concentrationis0.4mol/L, HCl concentration is2.5mol/L,reaction temperature is80°C,reaction time is55min, solid and liquid ratio is1:15. In this condition, thecrystallinity of hydrolyzed cellulose can reach81.94%, which is31.04%higherthan acid hydrolysis without the co catalysis of metal ions. The yield is86.89%.The mechanism is that metal ion catalysts increase the rate of acid hydrolysis,and promote the hydrolysis of amorphous regions. It results in most of the acid inthe system is consumed by degradation of the amorphous regions rather than onthe crystal regions, which protect the crystal regions to some extent.
     In consideration that wheat straw has high ash content, especially high SiO2content, this study try to reduce ash content using base treatment of silicon, anddoes some research on subsequent grinding process. The results show that ashcontent of microcrystalline cellulose is reduced from2.05%to0.32%, which is areduction of84.39%using this process. The optimum process conditions of basetreatment are that base dosage is15%, temperature is80°C, microcrystalcellulose is10%, and the treatment time is30min. The study of grinding processshows that the granularity of microcrystalline cellulose can be controlledefficiently by using a planetary ball mill. The optimum grinding time is100minin condition that the pellet ratio is1:1. The average particle size obtainedmicrocrystalline cellulose is23.33μm.
     The characterizations of wheat straw microcrystalline cellulose are carriedout using IR, XRD, SEM-EDS, TGA, and laser particle size analyzer. The resultsare in agreement with certain national standard accurately. After the appraisalfrom analysis testing center of No.203Nuclear Industry Research Institute, allthe parameters met the requirements of Chinese forestry industry standards ofsynthetic leather microcrystalline cellulose (LY/T1333-1999). The obtainedwheat straw microcrystalline cellulose undergoes application test. The results show that the permeability, tensile strength, and shear strength of homemadewheat straw microcrystalline cellulose as shift membrane packing of PUsynthetic leather is better than other synthetic leather microcrystalline cellulosemade in China. After the test from Huafu synthetic leather Co., Ltd. in Kunshan,expansion ratio, the tensile load (transverse), and fracture elongation (transverse)of homemade synthetic leather of microcrystalline cellulose are slightly lowerthan lignin microcrystalline cellulose from imports. However, the othercharacteristics are better than the lignin microcrystalline cellulose from Germany.The homemade synthetic leather of microcrystalline cellulose has better qualityand can be used in different applications than the domestic synthetic leather ofmiddle and top grade.
     The analysis of the microstructure of PU synthetic leather product showsthat sectional structure of synthetic leather, which is added with domesticmicrocrystalline cellulose, has a large number of coarse pores on the surface,especially for the domestic lignin microcrystalline cellulose II. But the middlepart of the coacervate contains a small amount of the pores, and has a densestructure. PU synthetic leathers added with microcrystalline cellulose fromGermany and wheat straw microcrystalline cellulose have smaller pores on thesurface, but more micropores in the middle part of the coacervate. Therefore,microcrystalline cellulose from Germany and homemade wheat strawmicrocrystalline cellulose are helpful with the improvement of the coacervatemicrostructure of PU synthetic leather, which results in the enhancement ofstrength and permeability.
     The liquid waste solution of wheat straw thermal decomposition is distilledto collect ethanol. The precipitated lignin from the liquid waste undergoeshydroxymethyl activation and sulfonation. The structures and properties ofobtained modified ethanol lignin cement water reducer are characterized andstudied. The results show that ethanol lignin cement water reducer has goodresults. Cement paste fluidity reaches208mm when5%of cement water reduceris added. The water reduction rate is14.9%in this situation, which is30.7%higher than sodium lignosulphonate water reducer that has been used currently.The compressive strength of mortar mixed with modified ethanol lignin decreases with the growth age. The3-day and7-day compressive strength ratio of mortar is13.8%and9.9%higher than mortar mixed with sodium ligninsulfonate separately.The optimum sulfonation conditions are that weight ratio of sulfonation agent andlignin is1:3, the temperature is95°C, pH is11, and the time is3h.
     At last, this study explores the conversion of glucose into biobased ethanolby using mixed-neutralizing fermentation technology from the waste liquid fromacid hydrolysis and alkaline treatment. The pH of the mixture of acid and alkalinewaste liquids reaches5.0(the most suitable pH for Saccharomyces cerevisiae),when the volume ratio of waste acid and alkaline is2.83:1. In this condition,reducing sugar content in the mixed waste liquid is around20.60g/L. It showsthat the higher the concentration of reducing sugar, the higher the ethanolproduction. The optimum process condition of ethanol producing fromfermentation of mixed waste liquid and the amount of yeast inoculation is10%,fermentation temperature is34°C, fermentation time is72h, and the pH is5.0.
引文
[1]于建仁,张曾,迟聪聪.生物质精炼与制浆造纸工业相结合的研究[J].中国造纸,2008,23(1):80-84.
    [2] CHHALLENGES OF LIGNOCELLULOSIC ETHANOL TECHNOLOGIES[J].Conference of the4thInternational Symposium on Emerging Technologies of Pulpingand Papermaking,2010,11:1298-1301.
    [3] Some Recent Advances in Hydrolysis of Biomass in Hot-Compressed Water and ItsComparisons with Other Hydrolysis Methods [J].Energy&Fuels,2008,22:46-60.
    [4]宋金涛,梁日忠.纤维素类生物质炼制燃料乙醇的多产品共生模式研究[J].现代化工,2009,29(7):80-84.
    [5]舟丹.欧美大力发展生物燃气.中外能源.2012,17(7):34
    [6]中国科学院能源科学学科发展战略研究组.2011~2020年我国能源科学学科发展战略报告.2010.5
    [7]闫逢柱,乔娟.国际生物质能源发展的评价动机、支持措施及对世界粮食供求影响视角[J].财贸研究,2009,3:53-59.
    [8] Lynn Wringt,Bob Boundy,Bob Perlack.Biomass Energy Data Book:Edition1[R].U.S.Department of Energy,2006,1-2.
    [9] Dick Wingerson,Inventions and Innovations Final Report:Completing Pre-Pilot Tasks ToScale Up Biomass Fractionation Pretreatment Apparatus From Batch To Continuous
    [R].U.S. Department of Energy,2004,2-3.
    [10]张云.麦草纤维低污染制备合成革用微晶纤维素工艺研究.陕西科技大学硕士学位论文.2011.5
    [11]张伯坤.麦草无污染分解制备微晶纤维素工艺研究.陕西科技大学硕士学位论文.2011.5
    [12]樊喜斌.法国生物质能源管理及其借鉴,林业经济.2012,6:123-128
    [13]丹麦生物质生产将翻三倍以促进环保.新能源产业.2012,17(7):34(简讯)
    [14]小宫山宏,迫田章义,松村幸彦.日本生物质综合战略[M].北京:中国环境科学出版社,2005:14-15,49-69.
    [15]董玉平,王理鹏,邓波,陆萍,申树云.国内外生物质能源开发利用技术.山东大学学报(工学版).2007,37(3):64-69
    [16]高虎.中国促进可再生能源政策与未来发展展望.国家发改革能源研究所(报告)
    [17]袁振宏,罗文等.生物质能产业现状及发展前景[J].化工进展,2009,10:1687-1692
    [18]曹建业.美国纤维素乙醇产业化前景[J].全球科技经济瞭望,2007(12):44-47
    [19]邱红.我国农作物秸秆的利用现状及特点[J].农机使用及维修,2009(1):102.
    [20]刘金鹏,鞠美庭,刘英华.中国农业秸秆资源化技术及产业发展分析.生态经济,2011,5:136-141
    [21]袁振宏,罗文等.生物质能产业现状及发展前景[J].化工进展,2009,10:1687-1692
    [22]韩乞佳,闺巧娟等.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002,18(3):87-91
    [23]邱红.我国农作物秸秆的利用现状及特点[J].农机使用及维修,2009(1):102.
    [24]高利伟,马林等.中国作物秸秆养分资源数量估算及其利用状况[J].农业工程学报,2009,25(7):173-178
    [25]衰振宏,吕鹏梅,孔晓英.生物质能源开发与应用现状和前景[J].生物质化学工程,2006,1:18-19
    [26]吴少杰.秸杆焚燃污染与生物质能的开发利用[J].工业安全与环保,2008,34(5):54-55.
    [27]毕于运,王亚静等.我国秸秆焚烧的现状危害与禁烧管理对策[J].安徽农业科学,2009,37(27):13181-13184.
    [28] Qing Zhang,Jun Huang,Gang Yu.Polychlorinated dibenzo-p-dioxins and dibenzofuransemissions from open burning of crop residues in China between1997and2004[J].Environmental Pollution,2008(151):39-46
    [29]高述超.我国秸秆人造板发展概况及建议.林产工业.2007,34(4):5-7
    [30]沈文星,周定国.秸秆人造板的产业化问题.林业科学.2007,43(3):103-107
    [31]凤山,马心.农作物秸秆板工业在国内外的发展近况[J].林产工业.2003,(6):3-6.
    [32]于文吉,王天佑.我国非木材入造板的发展现状和存在问题[J].人造板通讯,2004,(12):5-7.
    [33]徐衣显,刘晓,王伟.我国生物质废物污染现状与资源化发展趋势.再生资源与循环经济.2008,1(5):31-34
    [34]张玉峰.生物质能源的开发与利用[J].生物学教学,2008,33(7):2-3
    [35] Bin Yang,Yanpin Lu.The promise of cellulosic ethanol production in China [J].Journal ofChemical Technology and Biotechnology,2007(82):6-10.
    [36]李滨,徐文辉,周楠.生物质资源及其利用技术.2011,24(1):21-23
    [37]彭建.农作物秸秆综合利用途径[J].现代农业科技,2008(7):150
    [38] BRIDGWATER A V, PEACOCKE G V C. Fast pyrolysis processing for biomass [J].Renewable and Sustainable Energy Reviews,2004(4):71-73.
    [39] CAGLAR A, DEM IRBAS A. Conversion of cotton cocoon shell to liquid p roducts bysupercritical fluid extraction and low pressure pyrolysis in the p resence of alkalis[J].Energy Conversion and Management,2001(42):1095-1104
    [40] DEMIRBAS A. Mechanisms of liquefaction and pyrolysis reaction of biomass[J]. EnergyConversion and Management,2000(41):633-646
    [41]廖益强,黄彪,陆则坚.生物质资源热化学转化技术研究现状.生物质化学工程.2008,42(2):50-54
    [42] ALEXANDER L B, DAV ID C D. Design and characterization of an entrained flowreactor for the study of biomass pyrolysis chemistry at high heating rates [J]. Energy&Fuels,2001(15):1286-1294
    [43] SCURLOCK JM O, DAYTON D C, HUMESB, et al. An overloaded biomass resource [J].Biomass&Bioenergy,2000(19):229-244
    [44] DEMIRBAS A. Biomass resource facilities and biomass conversion process for fuel andchemicals[J]. Energy Conversion and Management,2001(42):1357-1371
    [45]彭建.农作物秸秆综合利用途径[J].现代农业科技,2008(7):150
    [46] TURN S, KINOSH ITA C, ZHANG Z, et al. An experimental investigation of hydrogen production from biomass gasification[J]. Int J Hydrogen Energy,1998,23(8):641-648.
    [47] RAPAGNA S, FOSCOLO P U. Catalytic gasification of biomass of p roduce hydrogenrich gas[J]. Int J Hydrogen Energy,1998,23(7):551-557.
    [48]闫桂焕,孙立,许敏,等.生物质热化学转化制氢技术[J].可再生能源,2004(4):33-36.
    [49]蒋剑春.生物质能源转化技术与应用[J].生物质化学工程,2007,41(3):59-65.
    [50]匡廷云,白克智,杨秀山.我国生物质能发展战略的几点意见[J].化学进展,2007,19(8):1060-1063.
    [51]刘贞先,伊晓路,孙立,等.中国生物质废弃物利用现状分析[J].环境科学与管理,2007,32(2):104-106.
    [52]高善民,乔青安,许璞等.微晶纤维素的制备及性质研究[J].功能材料,2007增刊,38:2891-2894.
    [53]李小芳,丁恩勇,黎国康.一种棒状纳米微晶纤维素的物性研究[J].纤维素科学与技术,2001,9(2):29-36.
    [54] LI Xiaofang,DING Enyong,LI Guokang.A method of preparing spherical nano-crystalcellulose with mixed crystalline forms of celluloseⅠandⅡ [J].Chinese Journal ofPolymer Science,2001,3:291-296.
    [55]王宗德,胡庆国.微晶纤维素的特性及其应用[J].江西林业科技,2000,1:26-28.
    [56] David N S H,Nobuo S.Wood and Cellulose Chemistry [M].New York:MarcelDekker,1991:55-60.
    [57]王宗德,范国荣,黄敏等.杉木木材纤维素及其开发利用的研究[J].江西林业科技,2003,5:1-3
    [58]罗明生.药剂辅料大全[M].成都:四川科技出版社,1993:742-744.
    [59]黎国康,丁恩勇,李小芳等.纳米微晶纤维素Ⅱ的制备与表征研究[J].纤维素科学与技术,2002,10(2):12-19.
    [60] DONG X M,GRAY D G.Effects of counterions on ordered phase formation insuspensions of charged rodlike cellulose crystallites [J].Langmuir,1997,13:2404-2409.
    [61]中国建材网: http://www.cppia.com.cn/cppia1/zdbd/20111017111855.htm.
    [62]袁毅,张黎明,高文远.穿龙薯蓣微晶纤维素的制备及其理化性质研究.生物质化学工程,2007,41(4):22-26.
    [63]陈家楠,谢春雷,颜少琼,阮金月,胡钧.稻草微晶纤维素的制备及其形态结构[J].纤维素科学与技术,1993,1(3):34-361
    [64]范国荣,朱新传,卢平英等.杉木微晶纤维素制备工艺的研究.江西林业科技,2005,(3):3-4.
    [65] YingTing Guan, Yi Li1Fabrication of cotton nano-powder and its textile application,Chinese Science Bulletin,2008,53(23):3735-3740.
    [66] Mohamed El2Sakhawy,Mohammad L1Hassan1Physical and mechanical properties ofmicrocrystalline cellulose prepared from agricultural residues. Proc Estonian Acad. Sci.Chem.,2006,55(2):78.84.
    [67] Paralikar, K. M., Bhatawdekar, S. P. Microcrystalline cellulose from bagasse pulp.Biological Wastes,1988,(24):75-77.
    [68] Foster A.,Agblevor,Maha M.,Ibrahim,Waleed K.,ElZawawy. Coupled acid and enzymemediated production of microcrystalline cellulose from corn cob and cotton gin waste.Cellulose,2007,(14):247-256.
    [69] De Rodriguez N L G,Thielemans W,Dufresne A. Cellulose,2006,13:261-270
    [70] Moran J I,Alvarez V A,Cyras V P,Vazquez A. Cellulose,2008,15:149-159
    [71] Leitner J,Hinterstoisser B,Wastyn M,Keckes J,Gindl W.Cellulose,2007,14:419-425
    [72] Alemdar A,Sain M. Biores. Technol.,2008,99(6):1664-1671
    [73] Wang B,Sain M. Polymer International,2007,56(4):538-546
    [74]魏鹏程,林昌志,李成贵.湿法PU革微孔剂的制备及其应用.聚氨酯工业,1999,14(3):28.
    [75]侯永发,李淑秀,杨维生.合成革MCC微孔剂的研制和应用.林产化工通讯,1994(3):16.
    [76]侯永发,吴庄,周霁.木浆纤维素粉的研制及其在合成革生产中的应用[J].林产化学与工业,1985,5(2):35-43.
    [77]范浩军,袁继新.人造革/合成革材料及工艺学.中国轻工业出版社.2010.7
    [78]张云,张美云,李金宝,张伯坤.麦草秸秆微晶纤维素的制备工艺[J].纸和造纸,2011,30(4):35-37
    [79]许凤,孙润仓,詹怀宇.有机溶剂制浆技术研究进展,中国造纸学报,2004,19(2):152-155
    [80]徐金霞,浅谈有机溶剂法制浆,广西轻工业,2011,2:12-13
    [81]刘仁丽,商德发.有机溶剂制浆技术进展,化学工程师,2002,3
    [82]秦梦华.有机溶剂制浆,天津造纸,1997,3:25-28
    [83]周学飞.制浆漂白清洁新技术[M],中国轻工业出版社,2004,5:362-377
    [84] Yongjian Xu, Kecheng Li, Meiyun Zhang,Lignin Precipitation on the Fibre Surface in theEthanol-Based Organosolv Pulping,Colloids and Surfaces A: Physicochemical andEngineering Aspects,2007.7,301(1-3):255-263
    [85] Meiyun Zhang,Yongjian Xu,Kecheng Li, Removal of residual lignin of ethanol-basedorganosolv pulp by an alkali extraction process,Journal of Applied PolymerScience,2007,106:630-636
    [86]徐永建,张美云,李可成.乙醇法制浆木素沉淀现象及机理,中国造纸学报,2008,23(1):1-8
    [87]张美云,徐永建,蒲文娟,非木材纤维自催化乙醇制浆的研究进展.中华纸业,2007,28(6):77-79
    [88] Li Jinbao, Zhang Meiyun, Yang Yaling, Jia Lingying. Research on pollution-freeseparation of wheat straw cellulose by ethanol/acetic acid solvent system[J]. AdvancedMaterials Research.2011.284,786-790
    [89]徐永建,麦草乙醇法制浆木素物理化学行为及纤维表面化学的研究,陕西科技大学博士学位论文,2007.12
    [90]张伯坤,张美云,李金宝.乙酸添加量对乙醇法分离麦草纤维素的影响[J].中华纸业.2009,30(24):42-44
    [91] Luc Lapierre, Zh-i Hua Jiang. Highlights of current and emerging technologies forbleaching(Chemi) mechanical and Chemical and Chemical pulps [J]1Pulp&PaperCanada,2003(10):214-219
    [92] Hans U, Sulse, ChreesonMoodley1Progress in bleaching to top brightness with lowreversion [J].TAPPSA Journal,2005(3):496-502
    [93]许英,许杰.带臭氧漂段的TCF漂白技术.国际造纸,2010,29(5):4-8
    [94]邓继泽.溶解浆的市场及工艺技术(续).国际造纸,2012,31(4):58-66
    [95] A A Shatalov,H Pereira.Ozone-based TCF bleaching of organosolv pulps[J].BioresourceTechnology,2008,99:472-478.
    [96] C W Dence,D W Reeve.Chemistry of chemical pulp bleaching[C].Pulp BleachingPrinciples and Practice, Atlanta: TAPPI Press,1996:125-159.
    [97] Li Jinbao, Zhang Meiyun, Xiu Huijuan, Zhang Yun. Preparation and characterization ofwheat straw MCC. Advanced Materials Research.2011.239,102-107
    [98]李肖建,刘红霞,韦春,吕建,潘冬明,党晓东.剑麻纤维素微晶的制备与表征.高分子材料科学与工程.2012,28(8):160-166
    [99] Bhatnagar A, Sain M. Processing of cellulose nanofiber reinforced composites [J]. Journalof Reinf orced Plast ics and Composites,2005,24:1259-1269
    [100] Deraman M, Zakaria S, Murshidi J A. Estimation of crystallinity and crystallite size ofcellulose in benzylated fibres of oil palm empty fruit bunches by X-ray dif fraction[J]. J.Appl. Phys.,2001,40:311-315.
    [101] Li Jinbao, Zhang Meiyun, Yang Yaling. Study on preparation process of microcrystallinecellulose from wheat straw,4th ISETPP,2010.11,233-236
    [102] Nguyen Quang A, Tucker,Melvin P..Dilute acid/metal salt hydrolysis of lignocellulosics.US6423145,2002
    [103]伯永科,崔海信,刘琪,蔡鸿昌.基于金属盐助催化剂的秸秆纤维素稀酸水解研究,中国农学通报,2008,24(9):435-438
    [104]颜涌捷,任铮伟.纤维素连续催化水解研究.太阳能学报,1999,20(1):57-58
    [105]庄新姝,王树荣,骆仲泱,等.纤维素低浓度酸水解试验及产物分析研究.太阳能学报,2006,27(5):521-522
    [106]国家林业局.中华人民共和国林业行业标准《合成革用微晶纤维素》(LY/T1333-1999).1999年8月16日发布
    [107] Zhang Yun, Zhang Meiyun, Li Jinbao, Zhang Bokun. Research on the desiliconizationprocess of wheat straw microcrystalline cellulose. Journal of Biobased Materials andBioenergy,2011,5(2):203-208
    [108]中国塑料加工工业协会人造革合成革专业委员会,聚氨酯(PU)合成革助剂产业的现状及发展.国外塑料,2009,27(12):36-40
    [109]李金宝,张美云,刘银山.合成革用麦草微晶纤维素的制备及其表征.功能材料.2011,42(9):1609-1609
    [110]曹咏梅,黄科林,吴睿,王春,刘宇宏,黄尚顺,何推良,李卫国.微晶纤维素的性质、应用及市场前景.企业科技与发展,2009,12:48-51
    [111]庞煜霞.木素磺酸盐对水泥水化过程的影响及作用机理研究.华南理工大学博士学位论文,2003.6
    [112]姜洪洋,王立久,王晴.改性木钙的研制及性能分析.混凝土.1999(5):27-30
    [113]杨伯科主编.混凝土实用新技术手册[M].吉林科学技术出版社,1998
    [114]张云理,卞葆芝编.混凝土外加剂产品及应用[M].北京:中国铁道出版社,1994
    [115]曹建武,张美云,李金宝.麦草乙醇木素改性制备水泥减水剂的研究.纸和造纸,2010,29(12):40-42
    [116] Cao Jianwu, Zhang Meiyun, Li Jinbao. Separation and structural characterization oflignin from black liquid of pollution-free decomposition of wheat straw.4thISETPP.2010.11,387-390
    [117]卢璋,吴佩刚,顾德珍.混凝土外加剂概论[M].清华大学出版社,1985
    [118] Shunsuke Hanehara,Kazuo Yamada.Interaction between cement and chemical admixturefrom the point of cement hydration,absorption behavior of admixture,and pasterheology[J].Cement and Concrete Research.1999(29):1159-1165
    [119] Zhor,J.,Bremner,T. W. Influence of lignosulfonate molecular weight frations onproperties offresh cement[J].Am. Concr.1nst.1997(173):78l-805
    [120]屈志中编译.苏联对改性木质素磺酸盐改性减水剂的研制[J].工业建筑.1990(8):57-59
    [121] Li Jinbao, Zhang Meiyun, Xiu Huijuan, Cao Jianwu. Preparation of cementwater-reducer by sulfonation modifying of wheat straw hydroxymethyl ethanol lignin.Advanced Materials Research.2011.250,1011-1016
    [122] Lundquist K, etal. Isolation of Lignin by Means of liquid-liquid extraction. SvenskPapperstidn,1977,80:143
    [123]曹建武,麦草无污染分解液中木素的分离和改性研究,陕西科技大学硕士学位论文,2011.6
    [124] Hiroshi U, shunsuke H, tokuhiko S, et al. Effect of admixture on hydration of cement,absorptive behavior of admixture fluidity and setting of fresh cement paste[J].Cementand Concrete Research,1992,22(6):1115-1129.