石膏与碱金属硫酸盐对减水剂与水泥相容性的影响机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效减水剂已经成为制备高性能混凝土和其他先进水泥基复合材料的重要组分,减水剂与水泥的相容性问题也逐渐成为工程和研究关注的焦点。相容性问题可能导致减水效果差;混凝土拌合物泌水离析、坍落度损失快、凝结异常;混凝土强度发展规律异常等现象。这不仅制约着减水剂的使用,还可能对材料的其他性能产生不可预知的不利影响。现有研究对减水剂与水泥的相容性重视程度较低,微观机理研究较少,无法从理论上指导体系相容性的改善。
     本文选取减水剂与水泥相容性机理作为研究课题,通过宏观性能实验、吸附与电化学特性实验、微观结构观察等手段,结合减水剂作用机理、水泥化学相关理论、水化产物微结构、浆体界面化学等,研究胶凝材料中二水石膏含量与碱金属硫酸盐含量两个重要因素对减水剂与水泥相容性各方面指标的影响规律。通过建立模型与理论分析,明确了混凝土拌合物坍落度快速损失、凝结异常、减水剂作用效果差等相容性问题的微观机理。
     泌水现象是相容性问题中较为特殊的一种。本研究从自由溶液量入手,结合浆体显微形貌研究结果,建立模型分析了新拌水泥浆体中浆体各种溶液量的变化规律,及其与流动度和泌水现象的关系;并从微观机理层面明确了浆体泌水条件。最后以自由溶液量为指标研究了二水石膏与碱金属硫酸盐对泌水的影响情况,提出了改善浆体泌水的方法。
     减水剂对水泥水化产物的影响一直是减水剂研究的热点,而且长期存在较多争议,其变化规律和微观机理对解决相容性问题有重要意义。本研究使用TEM-EDX方法,分析掺减水剂的水泥浆体早期水化产物变化;结合XRD、SEM、ESEM微观实验结果和水化产物模型理论,明确了减水剂不会因为严重影响水化产物而造成相容性问题,为相容性问题的研究与解决提供了重要依据。
     本研究的主要贡献在于:明确了二水石膏与碱金属硫酸盐对相容性的影响规律及其微观机理;通过建立浆体溶液模型,揭示了泌水的微观机理;进一步完善了掺有高效减水剂情况下的水泥浆体水化过程与水化产物的相关理论;探讨了系统解决各种相容性问题的理论基础,以指导水泥、高效减水剂、混凝土的生产实践与实际工程中相容性问题的解决。
Superplasticizers have become an important component of highperformance concrete and other advanced cementicious composite materials.Along with its extensive application, the compatibility of cement withsuperplasticizers is becoming an intensive research topic. Incompatibility leadsto some problems of cement paste, such as bad performance of superplasticizers,cement paste bleeding, rapid flow loss, abnormal setting, low strength ofconcrete, etc., which not only restricts the development and application of newsuperplasticizers, but also reduces other properties of advanced cementiciouscomposite materials. However, few existing study focus on the compatibility ofcement with superplasticizers and its mechanisms, which fail to direct theapplication of superplasticizers or improve compatibility.
     The compatibility of cement with superplasticizers is chosen as theresearch topic in this thesis. The performance, adsorption, electrochemistryproperties of superplasticizers and the microstructure of cement paste withsuperplasticizers are studied. Combined with the mechanism of superplasticizerfunctions, cementicious chemistry theory, microstructure of hydration productsand surface chemistry theory in cement paste, the influence of gypsum andalkali sulfate content on the evaluation indicators of compatibility of cementwith superplasticizers is clarified. The mechanisms of bad performance ofsuperplasticizers, cement paste rapid flow loss and abnormal setting arediscussed.
     Bleeding is commonly considered as a special incompatibility problem. Inthis research, free solution amount of cement paste is measured and themicrostructure of cement paste is observed through microscope. Combined withthe change of cement paste flowability, the model of different kinds of solutionin cement paste is raised, and the mechanism of bleeding is clarified. Finally,the free solution amount is considered as an indicator of compatibility. Theinfluence of gypsum and alkali sulfate content on bleeding is investigated through the measurements of free solution. The methods of improving bleedingproblem are raised from the mechanism level.
     The influence of superplasticizers on hydration products is one of the hottopics of the superplasticizer research, which always present obviousdifferences and divergences. However, it is very important to clarify itsmechanism in the research of compatibility. Combined with the results by XRD,SEM and ESEM, TEM methods with its high-accuracy EDX were used toinvestigate the influencing mechanism of superplasticizers on cement hydrationproducts and its secondary effects on the compatibility. The crystallization andmorphology of cement hydration products are not severely influenced bysuperplasticizers. These conclusions provide an important theoretical basis forcompatibility research.
     The main contribution of this thesis is as follows: the influencingmechanism of gypsum and alkali sulfate on compatibility is investigated. Themechanism of bleeding is clarified through the model of cement paste solution.The theory of superplasticizer performance and the theory of cement pastehydration with superplasticizers added are complemented and optimized. Theeffects of superplasticizers on cement hydration products are studied. Animportant theoretical basis for the compatibility research is discussed, which isable to direct the production and application of superplasticizers and improvecompatibility of cement with superplasticizers.
引文
[1]李崇智,新型聚梭酸系减水剂的合成及其性能研究.[博士学位论文],北京:清华大学,2004.6.
    [2]王英等.水泥中石膏对萘系减水剂作用效果的影响研究.水泥工程.2011,1
    [3]吴中伟,廉慧珍著.高性能混凝土.中国铁道出版社,1999:2-5
    [4] Aitcin PC. Cements of Yesterday and Today, Concrete of Tomorrow. Cement and ConcreteResearch.2000,(30):1349-1359.
    [5]陈建奎编著.混凝土外加剂的原理及应用.中国计划出版社.1997,4.
    [6]肖秀芝,混凝土外加剂的现状与发展趋势.福建建材.2003.1
    [7]王子明.“水泥一水一高效减水剂”系统的界面化学现象与流变性能,[博士学位论文],北京工业大学,2008.
    [8]熊大玉.国内减水剂新品种的研究与发展.庆祝外加剂学会成立20周年及第十届全国外加剂学术交流会论文集——混凝土外加剂新进展.南京,2002:13-19.
    [9]陈剑雄.高效减水剂.化学建材.1994,(1):25-32.
    [10]邱学青等.氨基磺酸系高效减水剂的研究现状与发展方向.化工进展.2003.4
    [11]周志威等.聚羧酸系高效减水剂的研究进展.化学建材.2006.4
    [12]熊大玉,王小虹编著.混凝土外加剂.化学工业出版社.2002:10-14.
    [13]郭新秋,方占民,王栋民.含长聚醚侧链基团共聚梭酸(CoPoCa-1)SP分子设计合成与性能评价.庆祝外加剂学会成立20周年及第十届全国外加剂学术交流会论文集——混凝土外加剂新进展.南京:2002:46-51.
    [14]王子明,张瑞艳,王志宏.聚梭酸系高性能减水剂的合成技术,材料导报.2005,19(9):44-46.
    [15]冉千平,游有鳗,周伟玲.梭酸类高效减水剂现状及研究方向.新型建筑材料.2001,(12):25.
    [16]山田一夫. Superplasticizer(高性能PCE减水剂)的国际开发状况,混凝土工学(日),1996,(5):20-23.
    [17] Tseng YC, Wu WL, Huang HL, Hsu KC. New Carboxylic Acid-based Superplasticizer forHigh-performance Concrete,(in):6th CANMET/ACI International Conference onSuperplaticizers and Other Chemical Admixtures in Concrete. Nice: CANMET/ACI.2000.401-413.
    [18]李永德,陈荣军,李祟智.高性能减水剂的研究现状与发展方向.混凝土.2002,(10):10-13.
    [19] Ebner M, Baumgartner J, Ohta A.聚梭酸类减水剂的应用趋势.北京混凝土外加剂.2004,(3):19-22.
    [20]张瑞艳.聚羧酸系高效减水剂的合成及作用机理研究.[硕士学位论文].北京工业大学.2005
    [21]左彦峰.聚羧酸系超塑化剂对新拌混凝土性能的影响及机理研究.[硕士学位论文].北京:中国建筑材料科学研究院材料学专业,2004.
    [22]孔祥明,曹恩祥,侯珊珊.聚羧酸减水剂的研究进展.混凝土世界,2010(05):28-37.
    [23]王悦.硅酸盐水泥与高效减水剂相容性的影响因素研究:[硕士学位论文].北京:清华大学.2007.
    [24]刘秉京.高效减水剂与水泥的适应性.混凝土.2002,(9):20-25
    [25]阎培渝,王悦.利用正交试验方法研究普通硅酸盐水泥与高效减水剂的相容性.水泥技术,2006(1):31-34.
    [26]胡秀春. AF减水剂对水泥的适应性.工业建筑.1983,6.
    [27] S.Chandra, J.Bjornstrom. Influence of cement and super plasticizers type and dosage on thefluidity of cement mortars-Part I. Cement and Concrete Research.2002,32:1605-1611
    [28] S.Chandra, J.Bjornstrom. Influence of cement and super plasticizers type and dosage on thefluidity of cement mortars-Part II. Cement and Concrete Research.2002,32:1613-1619
    [29]陈建奎.混凝土外加剂原理与应用(第二版).北京:中国计划出版社,2004
    [30]王宏伟,王善拔.水泥与减水剂相容性问题雏议.混凝土与水泥制品,2001,4(2):9-11
    [31]王浩,混凝土外加剂与水泥的相容性.山东建材.2005.1
    [32]覃维祖.水泥-高效减水剂相容性及其检测研究.混凝土,1996,(2):11-17
    [33]丁铸,等.水泥与减水剂相容性的研究.水泥技术,1999,(5):13-16
    [34]蔡灿柳,张春晓.工程施工中应重视减水剂与水泥的适应性问题.隧道建设,2003,2(1):24-25
    [35]董健苗,等.水泥与高效减水剂相容性问题研究.广西工学院学报,2001,12(4):43-49
    [36]王端昌.对水泥减水剂适应性的探讨.山西建材,2000,(1):46-48
    [37]袁晓露.矿物掺合料与外加剂对水泥净浆、砂浆流变性能及经时损失的影响:[硕士学位论文].重庆:重庆大学材料学专业,2005
    [38]宋学峰.免振捣自密实混凝土的研究[C].西安建筑科技大学硕士论文,2002.5
    [39]韩松,阎培渝.硫酸盐对萘系减水剂与水泥相容性的影响[J].硅酸盐学报,2010,(09).
    [40]阎培渝,王悦.可溶性碱含量对水泥和高效减水剂相容性的影响.建筑材料学报
    [41]王谦.萘系减水剂吸附与保塑性能的研究:[硕士学位论文].南京:南京工业大学应用化学专业,2003
    [42]张颖发.立窑水泥与萘系减水剂相互适应性的探讨.广东建材,2005,(12):98-100
    [43]吴笑梅,樊粤明,简运康.用Marsh筒法研究水泥与高效减水剂的适应性问题.水泥,2002,(12):12-14
    [44] Nakajima Y, Yamada K.The effect of the kind of calcium sulfate in cements on the dispersingability of polyβ-naphthalene sulfonate condensate super plasticizer. Cement and ConcreteResearch.2004,34:839-844
    [45] Schober I, Mader U. Compatibility of Polycarboxylate Superplasticizers with Cements andCementitious Blends. Superlasticizers and Other Chemical Admixtures in Concrete. Cementand Concrete Research.2002,34:651-658
    [46]蔡希高.高性能混凝土外加剂主导官能团理论.化学建材,1990,(5):26-28.
    [47] Nakajima Y, Goto T, Ymamada K. Cement Characteristics Affecting the Performance ofβ-Naphthalence Sulfonate Super plasticizer. Super plasticizers and Other ChemicalAdmixtures in Concrete. SP-217-21
    [48] Yoshioka K, Tazawa E, Kawai K, Tomoyuki Enohata. Adsorption characteristics of superplasticizers on cement component minerals. Cement and Concrete Research.2002,32:1507-1513
    [49]陈嫣兮,顾德珍.高性能混凝土外加剂的选择原则.建筑技术,1998,(1):1-22
    [50]林燕妮.水泥与高效减水剂相容性的研究.福建建材,2005,(1):25-27
    [51]郭廷辉,赵霄龙,郭京育,薛庆.聚羧酸系高性能减水剂及其应用技术——现状、发展趋势和我们的任务.聚羧酸系高性能减水剂及其应用技术.北京:机械工业出版社,2005
    [52] Spiratos N, Joliceour C. Trends in Concrete Chemical Admixtures for the21st Century. In: V.M. Malhotra. Porceedings of the6th International CANMET/ACI Conference onSuperplasticizer and Other Chemical Admixtures in Concrete. American Concrete Institute.Detroit. SP-195,2000:1-16
    [53]谢楚龙.浅谈减水剂与水泥的相容性.广东建材.2004.5
    [54] Han S, Yan PY, Kong XM. Study on the compatibility of cement-superplasticizer systembased on the amount of free solution. Science China Technological Sciences,2011,54.
    [55]韩松, Plank J. K2SO4对聚羧酸减水剂作用效果的影响机理研究.聚羧酸系高性能减水剂及其应用技术新进展,2011.
    [56] Kim B, Jiang SP, Jolicoeur C, Aitcin PC. The adsorption behaveior of PNS superplasticizerand its relation to fluidity of cement paste. Cement and Concrete Research.2000,30:887-893
    [57] Nawa T, et al. The fiuidity of fly ash-cement paste containing naphthalene sulfonatesuperplasticizer. Cement and Concrete Research34(2004):1017-1024
    [58] Han S, Yan PY. Influence of sulfate and soluble alkali content on the compatibility of cementwith naphthalene superplasticizer.13th International Congress on the Chemistry of Cement,2011.
    [59]王浩,混凝土外加剂与水泥的相容性.山东建材,2005,26(1).
    [60]尤启俊等.防止外加剂对混凝土性能的负面影响.混凝土.2003.9
    [61]孙振平等.水泥含碱量对萘系高效减水剂作用效果的影响.混凝土,2002,(4):6-18
    [62]许泽宁.新型高效减水剂的合成及性能表征.[硕士学位论文].东南大学.2009
    [63]熊卫锋,王栋民,左彦峰,闫艳.聚羧酸系超塑化剂的合成工艺研究.商品混凝土,2007,(02).
    [64]缪昌文,冉千平,洪锦祥,徐静,周栋梁.聚羧酸系高性能减水剂的研究现状及发展趋势.中国材料进展,2009,(11).
    [65] Yamada K, Takahashi T, Hanehara S, Matsuhisa M, Effects of the chemical structure on theproperties of polycarboxylate-type superplasticizer, Cem. Concr. Res.30(2)(2000)197–207.
    [66] Blask O, Honert D. The electrostatic potential of highly filled cement suspensions containingvarious superplasticizers, Seventh CANMET/ACI International Conference onSuperplasticizers and Other Chemical Admixtures in Concrete,2003, pp.87–101, SP-217.
    [67] Plank J, Sachsenhauser B, Impact of molecular structure on zeta potential and adsorbedconformation of α-allyl-ω-methoxypolyethylene glycol-maleic anhydride superplasticizers, J.Adv. Concr. Technol.4(2)(2006)233–239.
    [68] Uchikawa H, Hanehara S, Sawaki D, The role of steric repulsive force in the dispersion ofcement particles in fresh paste prepared with organic admixture, Cem. Concr. Res.27(1997)37–50.
    [69] Sakai E, Kang JK, Daimon M. Action mechanisms of comb-type superplasticizers containinggrafted polyethylene oxide chains.6th CANMET/ACI International Conference onSuperplaticizers and Other Chemical Admixtures in Concrete. Nice: CANMET/ACI.2000:75-90.
    [70]常伟.适用于硫铝酸盐水泥的聚羧酸系高效减水剂的研制.[硕士学位论文]:济南大学.2009
    [71]侯珊珊,孔祥明,曹恩祥,韩松,郝向阳.水泥基体系中聚羧酸系高效减水剂的化学结构对其性能的影响.硅酸盐学报,2010,(09).
    [72] Hanehara S, Yamada K. Interaction between cement and chemical admixture from the point ofcement hydration, absorption behaviour of admixture, and paste rheology. Cement andConcrete Research,29(1999):1159–1165.
    [73] Bensted J, Barnes P. Structure and performance of cements. Second edition,2000.
    [74]袁润章.胶凝材料学.北京:中国建筑工业出版社,1980
    [75]靳志国.高效减水剂对水泥水化性能的作用.山西建筑,2007,33(10).
    [76]陈国忠,彭振华,张蕾红,姜海东.新鲜水泥与外加剂适应性的探讨.混凝土,2003年第4期
    [77] Princea W, Espagnea M, Aiticin PC. Ettringite formation: a crucial step in cement-superplasticizer compatibility. Cement and Concrete research.2003,33:635-641
    [78] Jiang SP, Kim BG, Aitein PC. Importance of adequate soluble alkali content to ensurecement/superplasticizer compatibility. Cement and Concrete Researsh.1999,29:71-78
    [79]韩松,阎培渝.硫酸盐对掺减水剂水泥相容性的影响机理.中国硅酸盐学会水泥分会首届学术年会论文集,2009.
    [80] Ramachandran V.S, Superplasticizers, Progress in Cement and Concrete,1, Part II, ABIBooks, New Delhi,1992, pp.345–375.
    [81]孙振平,王玲.如何安全高效地应用聚羧酸系减水剂[J]混凝土,2007,(06).
    [82]李崇智,冯乃谦,李永德,覃维祖.高性能减水剂的研究现状与展望[J].混凝土与水泥制品,2001,(02).
    [83]胡曙光等.掺高效减水剂混凝土坍落度损失的控制.混凝土与水泥制品.1998.5
    [84]鲍立楠.氨基磺酸系高效减水剂的合成与性能研究.[硕士学位论文].哈尔滨工业大学.2002.
    [85]尚燕,缪昌文,刘加平,冉千平.石膏对水泥表面吸附聚羧酸系超塑化剂的影响[J].建筑材料学报,2010,(04).
    [86] Yamada K, Ogawa S, Hanehara S. Controlling of the adsorption and dispelrsing force ofpolycarboxylate-type superplasticizer by sulfate ion concentrateion in aqueous phase. Cementand Concrete Research.2001,31:375-383
    [87]范磊等.高贝利特水泥与高效减水剂适应性的研究.建材技术与应用,2002,(6)
    [88] Uchikawa H, Sawaki D, Hanehara S. Influence of kind and added timing organic admixturetype and addition time on the composition, structure, and property of fresh cement paste.Cement and Concrete Research,1995,25(2):353-364.
    [89] Plank. J等.超高强混凝土中各组分与聚羧酸系超塑化剂之间的相互作用[J].硅酸盐学报,2010,(09)
    [90]郑荣,减水剂与水泥适应性的探讨.福建建材,2007.
    [91] Asakura E, Yoshida H, H Nakae. Influence of superplasticizer on fluidity of fresh cementpaste with different clinker phase composition.9th International Congress on the Chemistryof Cement Vol4(1992):570-576
    [92]吴红娟,自密实混凝土配合比设计方法研究.[硕士学位论文],天津大学.2005.
    [93] Erdogdu S. Compatibility of superplasticizers with cements different in composition. Cementand Concrete Research,30(2000):767-773.
    [94] Magarotto R, Torresan I and Zeminian N, Effect of alkaline sulfates on performance ofsuperplasticizers,Proceeding of the11th International Congress on the Chemistry of Cement:Cement’s Contribution to development in the21st Century,Durban (South Africa),2003,May11-162003,Ed.G.Grieve and G.Owens,V.2,pp.569-580
    [95]肖军仓,卜建军.粉磨细度对水泥与外加剂相容性的影响.水泥,2006,(1):16-18
    [96] Nawa T, Ichiboji H, et al. Influence of temperature on fluidity of cement paste containingsuperplasticizer with polyethylene oxide graft chains[A],Sixth CANMET/ACI lnternationalConference on Superplasticizers and Other Chemical Admixtures in Concrete[C],Paris,2000:195-210
    [97] Sakai E, Kang JK, Daimon M.Action mechanisms of comb-type superplasticizers containinggrafted polyethylene oxide chains.:6th CANMET/ACI International Conference onSuperplaticizers and Other Chemical Admixtures in Concrete. Nice: CANMET/ACI.2000:75-90.
    [98] Bonen D, et al. The super plasticizer adsorption capacity of cement pastes, Pore soluteioncompositeon, and parameters affecting flow loss. Cement and ConcreteResearch.1995,25:1423-1434
    [99]宋仁义,曹立波.硫酸钠对萘系高效减水剂的分散性能影响的研究.混凝土,2001,(11):29-31
    [100]范磊,隋同波等.高贝利特水泥与高效减水剂适应性的研究.建材技术与应用-试验研究,2002,(6)
    [101]封孝信,冯乃谦.水泥及混凝土中的有害碱与无害碱.混凝土,2000年第10期
    [102]张冠伦,张云理.混凝土外加剂原理及其应用技术.上海:上海科学技术文献出版社,1985:45-48
    [103] Robert J, et al. A simplified view on chemical effects perturbing the action of superpla-sticizers. Cement and Concnae Research,2001,31:1169-1176.
    [104]孙振平,蒋正武,王玉吉,等.水泥碱含量对萘系高效减水剂作用效果的影响.第三届全国高性能混凝土学术研讨会论文集,2001
    [105]肖成平,李梅.水泥中的碱对混凝土坍落度的影响.新世纪水泥导报-试验与研究,2000,4(4):24
    [106] Magarotto R, Moratti F, Zeminian N. Influence of sulfates content in cement on theperformances of superplasticizers, Eighth CANMET/ACI lnternational Conference onSuperplasticizers and Other Chemical Admixtures in Concrete, Paris,2006.195-210
    [107]赵平等.高贝利特水泥与高效减水剂相容性研究.水泥,2000,(5)
    [108]董刚等.石膏对硅酸盐水泥与萘系减水剂相容性的影响.水泥.2009.11
    [109] Moulin EM, Broyer V. Effect of surplasticizer type on the fluidity retention of Portland cementmortars as a function of the C3A level and the nature of added calcium sulfates,Proceedingsof the11th International Congress on the Chemistry of Cement:Cement’s Contribution todevelopment in the21st Century. Durban (South Africa), May11-162003, Ed.G.Grieve andG.Owens, V.2, pp.550-559
    [110]蔡灿柳等.工程施工中应重视减水剂与水泥的适应性问题.水泥,2003,(1)
    [111]吕昌裕.外加剂选择和使用中的一些影响因素.福建建材.2011.4
    [112]戴志宇等.影响混凝土外加剂与水泥适应性的主要因素.山东建材,2006,27(2).
    [113]王福川等.关于混凝土碱含量限值的思考.中国土木工程学会高强与高性能混凝土及其应用专题研讨会.2002.
    [114]王福川.关于混凝土碱含量限值的思考.混凝土.2002.11
    [115] Yamaguchi O, Sugaya H, Nakajima Y. Effect of the cement characteristics and storing in thesilo on the fluidity of cement with superplasticizer. Proceedings of the Beijing InternationalSymposium on Cement and Concrete(Volume2),1998
    [116] Rosquoeta F, Alexisb A, Khelidjb A, Phelipot A. Experimental study of cement grout:Rheological behavior and sedimentation. Cement and Concrete Research.2003,33:713–722.
    [117] Lker B T, Veysel B E. Influence of concrete properties on bleeding and evaporation. Cementand Concrete Research.2004,34:275–281.
    [118] Agarwal SK, Irshad M, Malhotra SK. Compatibility of superplasticizers with different cements.Construction and Building Materials.2000,14:253-259.
    [119] Mohr BJ, Hood K L. Influence of bleed water reabsorption on cement paste autogenousdeformation. Cement and Concrete Research.2010,40:220–225.
    [120] Sakir E. Compatibility of superplasticizers with cements different in composition. Cement andConcrete Research.2000,30:767-773.
    [121]覃维祖.初龄期混凝土的泌水、沉降、塑性收缩与开裂.商品混凝土.2006,01:1-9.
    [122]刘加平,刘建忠,田倩,孔庆刚,游有鲲.外加剂改进混凝土泌水的试验研究.混凝土与水泥制品.2004,04.
    [123] Elke K, Ozlem C, Koenraad V B, Dionys V G. Effect of free water removal from early-agehydrated cement pasteson thermal analysis. Construction and Building Materials,2009,23:3431–3438.
    [124] Zhang P, Wittmann F H, Zhao T J, et al. Visualization and quantification of water movement inporous cement-based materials by real time thermal neutron radiography: Theoretical analysisand experimental study. Sci China Tech Sci,2010,53:1198-1207
    [125] She A M, Yao W. Probing the hydration of composite cement pastes containing fly ash andsilica fume by proton NMR spin-lattice relaxation. Sci China Tech Sci,2010,53:1471-1476.
    [126] Li J Z, Zhang Y, Cui X M. The influence of free water content on dielectric properties of alkaliactive slag cement paste. Journal of Wuhan University of Technology-Mater. Sci. Ed,2007,12:774-777
    [127]赵宇平等,MF减水剂对硅酸盐水泥水化的影响。1980.3.(8):30-37
    [128]吴兆琦.超塑化剂对C3S水化产物CSH的影响.水泥与混凝土研究论文选.北京:中国建筑材料科学研究院,1984.1204—1212.
    [129] Popova A, Geoffroy G. Interactions between polymeric dispersants and calcium silicatehydrates [J]. J Am Ceram Soc,2000,83(10):2556—2560.
    [130] Matsuyama H, Young J. Intercalation of polymers in C SH: a new synthetic approach tobiocomposites. Chem Mater,1999,11(1):16—19.
    [131] Lebaron P, Wang Z, Pinnavaia T. Polymer layered silicatenanocomposites: an overview. ApplClay Sci,1999,15(1):11—29.
    [132] Uchikawa H. Hydration of cement and structure formation andproperties of cement paste inthe presence of organic admixture.Importance of Recent Microstructure Development inCement andConcrete, Sherbrooke, Canada,1994.63—118.
    [133]彭雄义,易聪华.等聚羧酸系减水剂对水泥分散和水化产物的影响,建筑材料学报Vol.13,No.5Oct.,2010578-583
    [134] Guan BH, Ye QQ, Zhang JL, et al. Interaction between α-calcium sulfate hemihydrate andsuperplasticizer from the point of adsorption characteristics, hydration and hardening process.CemConcr Res,2010,40:253–259.
    [135] Plank J, Hirsch C. Impact of zeta potential of early cement hydration phases on superpla-sticizer adsorption. Cem Concr Res,2007,37:537–542.
    [136] Plank, J., Hirsch, C. Superplasticizer adsorption on synthetic ettringite. In:Malhotra, V.M.(Ed.), Seventh CANMET/ACI Conference on Superplasticizers inConcrete. ACI PublicationSP-217,2003. Berlin, Germany, pp.283–297.
    [137] Plank J, Dai Z.Andres,Preparation and characterization of new Ca–Al–polycarboxylatelayereddouble hydroxides. Mater.Lett.60(2006)3614–3617.
    [138] Plank J., Keller H., Andres, P.R., Dai, Z.,2006b. Novel organo-mineral phases obtainedbyintercalation of maleic anhydride-allyl ether copolymers into layered calciumaluminumhydrates. Inorg. Chim. Acta359,4901–4908.
    [139] Flatt RJ, Houst YF. A simplified view on chemical effects perturbing the actionofsuperplasticizers. Cem. Concr. Res.2001,31,1169–1176.
    [140] Han S, Yan PY, Liu RG. Study on the hydration product of cement in early age using TEM.Science China Technological Sciences,2012.
    [141] Li DX. Progress of transmission electron microscopy Ⅰ Development of transmission electronmicroscope and related equipments. Journal of Chinese Electron Microscopy Society,2004,03
    [142] Li DX. Progress of transmission electron microscopy Ⅱ Z-contrast imaging,Sub-angstromtransmission electron microscopy,Aberration-corrected transmission electron microscopy.Journal of Chinese Electron Microscopy Society,2004,03
    [143] Radczewski OE, Mueller HO. Eitel W. Ultra-microscopical investigation of the hydration oflime. Zement,1939(28):693-698
    [144] Radczewski OE, Mueller HO. Eitel W. The hydration of tricalcium silicate. Nature,1939,(27):807.
    [145] Radczewski OE, Mueller HO. Eitel W. The hydration of tricalcium aluminate. Nature,1939,(27):837-838.
    [146] Grudemo. The microstructures of cement gel phases. Trans.Roy.Inst.Technol. Stockholm,Sweden.1965.
    [147] Jennings HM, Balgleish BJ, Pratt PL. Morphological development of hydrating tricalciumsilicate as examined by electron microscopy techniques. J.Am.Ceram.Soc.1981,(64):567-572
    [148] Groves. TEM studies of cement hydration. Mater.Res.Soc.Symp.Proc.1987,(85):3-12
    [149] Richardson, Groves. Models for the composition and structure of calcium silicate hydrate(CSH) gel in hardened tricalcium silicate pastes. Cement and Concrete Research.1992,(22):1001-1010.
    [150] Rodger, Groves, etc. A study of tricalcium silicate hydration from very early to very late stages.Mater.Res.Soc.Symp.Proc.1987,(85):13-20
    [151]张中,测试技术的新进展及其在水泥混凝土材料研究中的应用.中国建材科技,1996,04
    [152] Morin V, Cohen T F. Superplasticizer effects on setting and structuration mechanisms ofultrahigh-performance concrete.Cement and ConcreteResearch,2001,(31):63-71.
    [153] Joana R, Susanna V, Ravindra G. Study of the influence of superplasticizers on the hydrationof cement paste using nuclear magnetic resonance and X-ray diffraction techniques.Cementand Concrete Research,2002,(32):103-108
    [154] Prince W, et al. Interaction between ettringite and a polynaphthalene suffocate superplasticizerin a cementitious paste.Cement and Concrete Research,2002,(32):79-85
    [155]蒋亚清,掺梳形减水剂水泥浆体早期水化产物形貌研究.中国工程科学,2011,09.
    [156] Gallucci E, Mathur P, Scrivener K. Microstructural development of early age hydration shellsaround cement grains. Cement and Concrete Research,2010,(40):4–13
    [157]魏风艳,吕忆农等,粉煤灰水泥基材料的水化产物.硅酸盐学报,2005,01,(33):52-56
    [158]赵晓刚,水化硅酸钙的合成及其组成、结构与形貌.武汉理工大学硕士论文,2010,05
    [159] Taplin JH. A method for following the hydration reaction in Portland cement paste. Austr. J.Appl. Sci.1959,(10):329-345
    [160] Diamond B, et al. Microstructure of hardened cement paste–a new interpretation. J. Am.Ceram. Soc.1993,(76):2993-2999
    [161]缪昌文,等.石膏对水泥表面吸附聚羧酸系超塑化剂的影响.建筑材料学报,2010,(04).
    [162] Yamada K, et al. Controlling of the adsorption and dispersing force of polycaboxylate-typesuperplasticizer by sulfate ion concentration in aqueous phase. Cement and ConcreteResearch,2001,31:375-383.
    [163] Han S, Yan PY, Liu RG. Study on the hydration product of cement in early age using TEM.Science China Technological Sciences,2012.
    [164] Gallucci E, Mathur P, Scrivener K. Microstructural development of early age hydration shellsaround cement grains. Cement and Concrete Research,2010,(40):4–13
    [165] Jolicoeur C, et al. Progress inUnderstanding the Functional Properties of Superplasticizers inFresh Concrete; pp.63–88in Proceedings of the4th Canmet/ACI International ConferenceonSuperplasticizers and Chemical Admixtures, ACI Publication SP-148. Edited by V.M.Malhotra. American Concrete Institute (ACI), Farmington Hills, MI,1994.
    [166] Ramachandran VS. Interaction of Calcium Lignosulfonate with TricalciumSilicate, HydratedTricalcium Silicate and Calcium Hydroxide. Cem. Concr. Res.,2,179–94(1972).
    [167] Alla P, Ghita G,et al, Interactions between Polymeric Dispersants andCalcium SilicateHydrates. J. Am. Ceram. Soc.,83[10]2556–60(2000)
    [168] Matsuyama H, Young J. Intercalation of Polymers in Calcium Silicate Hydrate: A NewSynthetic Approach to Biocomposites, Chem. Mater.,11(1)16–19(1999).
    [169] Matsukawa K, Quantitative Analysis of Interaction between Portland Cements and Superpla-sticizers; Ph.D. Thesis. Purdue University, Lafayette, IN, Dec.1991.
    [170]张文生,王宏霞,叶家元.水化硅酸钙的结构及其变化.硅酸盐学报.2005,35(1):75-79.