建鲤与黄河鲤的杂种优势及相关分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂交育种是目前提供良种的有效途径,国内外的育种大多以经济杂交(即杂种优势利用)为主。建鲤是我国第一个人工育成的优良鲤鱼品种,遗传性状稳定,比其他鲤鱼能普遍增产30%以上。建鲤育成和大面积推广已经十多年,需要通过不断的遗传改良和选育来保持和提高其优良性状。黄河鲤是我国北方的一个地方良种,具有肉质鲜美、抗寒能力强和饲料转化效率高的特点。本研究进行了建鲤自交及建鲤与黄河鲤的正、反杂交试验,对子代的杂种优势及相关的分子生物学进行了分析和研究,籍此为建鲤性状的改良和培育品质更加优良的鲤鱼新品种提供理论指导。研究内容包括:生长比较试验、生长性状的通径分析及子代基因组DNA的遗传差异分析。
     1.生长比较试验
     采用个体标记后的混合养殖试验比较了子代的生长率。157日龄和398日龄测定时,子代群体的绝对增重率、特定生长率均为HJ(黄河鲤♀×建鲤♂)>JH(建鲤♀×黄河鲤♂)>JL(建鲤♀×建鲤♂),各群体中雌、雄鱼的增重率也遵循这样的规律;598日龄时子代的绝对增重率为JL>JH>HJ,JL(♀)>JH(♀)>HJ(♀),JH(♂)>JL(♂)>HJ(♂);JL在后期的生长优势最大且优势主要表现在群体中的雌鱼。试验中雌鱼、雄鱼间生长差异显著,JH(♀)、HJ(♀)一直有优势,JH(♂)、HJ(♂)仅在157日龄测定时有优势,所以JH、HJ的生长优势主要表现在398日龄前,且优势主要表现在群体中的雌鱼。
     群体的肥满度均随日龄增加而增大,在各个时期均以JL最高。157、398日龄时各群体的肥满度大小为JL>HJ>JH;598日龄时JL>JH>HJ。雌、雄鱼的肥满度均以JL最高。
     各群体157和398日龄时体长变异系数、体重变异系数的大小均为HJ>JH>JL;598日龄时JL>HJ>JH。不同日龄时的体长变异系数均小于体重变异系数。子代的生长指标均随日龄增加而增大,398、598日龄时以HJ最大。试验过程中,雌鱼的生长指标均大于雄鱼。
     2.生长性状的通径分析
     体长-体重相关系数和体高-体重相关系数随日龄增加均呈下降趋势。通径分析表明,对儿、HJ而言,398日龄时,体长对体重的决定系数大于体高的决定系数,优势性状为体长;598日龄时,优势性状为体高。对JH而言,体长对体重的决定系数始终大于体高的决定系数。
     就雌、雄鱼而言,398日龄时体长对体重的决定系数均大于体高的决定系数,优势性状为体长;598日龄时,HJ(♀)和JL(♀)的优势性状为体高,JL(♂)、HJ(♂)和JH(♀)的优势性状为体长,JH(♂)中体长、体高对体重的决定系数差异很小。体长和体高对体重的决定系数是子代杂种优势差异的重要原因。
     3.基因组DNA的遗传差异分析
     采用40个随机引物对建鲤、黄河鲤、正交F_1、反交F_1四个群体基因组DNA进行了RAPD分析。结果表明,筛选的33个引物共扩增出155条带,其中105条为多态性条带;引物S472、S18、S478在建鲤上扩增出了与黄河鲤相区别的片断:S18-_(1600),S472-_(300),S478-_(950),可作为鉴别这两群体的特异分子标记。
     建鲤、黄河鲤、正交F_1与反交F_1的多态位点比例分别为:37.33%、42.38%、47.33%、33.33%;建鲤、黄河鲤、正交F_1与反交F_1群体内的遗传相似系数分别为0.8240、0.7921、0.7920、0.8596;基因多样性指数和香农指数的大小程度均为正交F_1>黄河鲤>建鲤>反交F_1,黄河鲤与正交F_1具有较高的遗传变异水平,反交F_1变异最小。正交F_1与亲本(建鲤、黄河鲤)的遗传距离分别为0.2233、0.2436,反交F_1与亲本(建鲤、黄河鲤)的遗传距离分别为0.1749、0.2026,说明JH、HJ均继承了较多JL的遗传物质。
     子代与亲本的RAPD图谱变化主要有4种类型,这些变化若是与某些经济性状相关,则这种DNA序列的差异就是杂种优势产生及强度变化的基础。本试验中,杂种优势的表现与后代的生长阶段有关,分析了影响杂种优势的可能原因,以期为养殖生产提供一定的理论指导。
At present, hybridization is an effective method for developing a fine breed. Economical hybridization (i. e. utilization of heterosis) had been taken as main approach in breeding work conducted in China and abroad. Jian carp(Cyprinus Carpio Var. jian) was the first artificially developed fine breed of common carp with stabilized genetic attributes in China. 30% higher production could be obtained under the same culture method compared with other common carp varieties. Jian carp had been disseminated in large scale for more than a decade, there was a great need to maintain and enhance its fine production related traits through continuous selection and genetic improvement. Huanghe carp(Cyprinus carpio haematopterus Teminck et Schlegel) was a remarkable variety of common carp in northern China, which possessed fine traits such as good meat quality, strong cold resistance and high efficiency of food conversion. In order to provide theoretical guidance for improvement of Jian carp and development of new carp species, self-cross of Jian carp and direct and reciprocal cross between Jian carp and Huanghe carp were conducted. Heterosis of offspring and related molecular biology were compared and studied. This thesis study covered the following aspects: growth comparison, path analysis of growth traits and genetic variation analysis of genome DNA of offspring.
     1. Growth comparison
     Growth rates of offspring from different crosses were compared through communal rearing test with PIT tagged individuals. Comparison of growth performance was conducted for Jian carp and F_1 hybrids of Jian carp and Huanghe carp. The results showed the growth rate of body weight before the age of 157 d and 398 d of different crosses were HJ(Huanghe carp♀×Jian carp♂)>JH(Jian carp♀×Huanghe carp♂)>JL(Jian carp♀×Jian carp♂). Both male and female fishes showed the same results during this period. At the age of 598 d, absolute growth rate of body weight of different crosses were respectively JL>JH>HJ, JL(♀)>JH(♀)>HJ(♀), JH(♂)>JL(♂)>HJ(♂) and the superiority of JL in growth contributed mainly by the female carps was the highest among the offspring. The growth difference between female carps and male ones were significantly different. JH(♀) and HJ(♀) showed the heterosis throughout the cultivation period, while heterosis was maintained only before the age of 157 d in JH(♂) and HJ(♂). So heterosis of JH and HJ was mainly observed before the age of 398 d and it was largely contributed by female individuals.
     The fullness of individuals in the populations increased along with age. JL showed highest degree of fullnesss over other F_1 hybrids throughout the experiment period. At the age of 157 d and 398 d, the degree of fullness of different crosses was JL>HJ>JH. At the age of 598 d, it was JL>JH>HJ. JL maintained the highest fullness in both male and female individuals too.
     Variation coefficient of body length and body weight of different crosses was HJ>JH>JL at the age of 157 d and 398 d and HJ>JH>JL at the age of 598 d. The result also showed that variation coefficient of boby length was smaller than that of body weight. The growth index had the trend to increase with the age of fishes. HJ had the highest growth index at the age of 398 d and 598 d. In the experiment, the female individuals always showed higher growth index than the male ones.
     2. Path analysis on growth traits
     Correlation coefficients of body length to body weight and body height to body weight declined with age of fishes. Path analysis revealed that determination coefficient of body length to body weight was higher than that of body height to body weight in JL and HJ at the age of 398 d, which suggested body length was a dominant trait. Body height became the dominant trait for JL and HJ at the age of 598 d. Determination coefficient of body length to body weight was higher than that of body height to body weight in JH throughout the experiment period.
     At the age of 398 d, determination coefficient of body length to body weight was higher than that of body height to body weight which revealed that body length was the dominant trait for both male and female individuals in all crosses. At the age of 598 d, the dominant traits were respectively body height for HJ(♀) and JL(♀) and body length for JL(♂), HJ(♂)and JH(♀). In the case of JH(♂), the determination coefficients of body length, body height to body weight were almost the same. The determination coefficient of body length and body height to body weight was the important factor to the difference of heterosis among offspring.
     3. Genetic variation analysis on the genome DNA
     40 random primers were used to conduct random amplified polymorphic DNA (RAPD) analyse for the genome DNA of Jian carp, Huanghe carp and their F_1 hybrids. The results showed that 155 bands were produced with 33 selected primers, 105 bands of which were polymorphic. Different amplification bands were produced by primer S18, S472, S478(1600bp, 300bp and 950bp in size, respectively) in Jian carp and Huanghe carp, which could be used as molecular genetic markers to differentiate Jian carp from Huanghe carp.
     For Jian carp, Huanghe carp, direct cross F_1(JH) and reciprocal cross F_1(HJ), the proportions of polymorphic loci were respectively 37.33%, 42.38%, 47.33% and 33.33% and genetic similarity indices were respectively 0.8240, 0.7921, 0.7920 and 0.8569. The order of gene diversity index and Shannon index were JH>Huanghe carp>Jian carp>HJ. Huanghe carp and JH maintained higher degree of intrapopulation genetic variation, while HJ had the smallest degree of genetic variation. The inter-specific genetic distances was respectively 0.2233(JH to Jian carp), 0.2436(JH to Huanghe carp); 0.1749(HJ to Jian carp), 0.2026(HJ to Huanghe carp). The data revealed that F_1 hybrid inherited more genetic material from Jian carp than from Huanghe carp.
     Four variation types were shown by the RAPD maps. If these variations on genome DNA were associated with some economical traits, the differences on DNA sequences were the basis for heterosis production and its intensity vairation. In this experiment, heterosis was correlated with growth stage. Possible reasons that influenced heterosis were analyzed and some theoretical guidance to aquaculture were provided.
引文
[1] Allard R W. Implications of genotype-environment interactions in applied plant breeding [J].Crop Sci, 1964, (4): 503-508.
    [2] Aylifle M A. Heteroduplex molecules forward between allelic sequences cause nonparental RAPD bands[J]. Nucleic Acids Res, 1994,22: 1632-1636.
    [3] Bentsen H B, Eknath A E, Palada-de Vera M S. Genetic improvement of farmed tilapias: growth performance in a complete diallel cross experiment with eight strains of Oreochromis niloticus[J]. Aquac, 1998, 160: 145-173.
    
    [4] Bielawski H P, e. 脊椎动物 DNA, RAPD 标记的重复性扩增[J]. 生物技术通讯, 1995,2: 39.
    [5] Bogyo T P. Lance R C. Genetic models for quantitatively inherited endosperm characters[J]. Heredity, 1998, 60: 61-67.
    [6] Bryden C A, Heath J W, Health D D. Performance and heterosis in farmed and wild Chinook salmon (Oncorhynchus tshaurytscha) hybrid and purebred crosses[J]. Aquac, 2004,235: 249-261.
    [7] Dong Z, E Zhou. Application of the random amplified polymorphic DNA technique in a study of heterosis in common carp Cyprinus carpio L[J]. Aquaculture Research, 1998, 29: 595-600.
    [8] Delourme R, Bouchereau A. Identification of RAPD markers linked to fertility restore geng for Ogura radish cytoplasmic male sterility of rapeseed (brassia napus L)[J]. Theor Appl Genet, 1994, 88: 741-748.
    [9] Dong Z, E Zhou. Application of the random amplified polymorphic DNA technique in a study of heterosis in common carp Cyprinus carpio L[J]. Aquaculture Research, 1998,29: 595-600.
    [10] FAO. The state of world fisheries and aquaculture[R]. Food and Agriculture Organization, Rome. 2005.
    
    [11] Gaffney P M, Bushek D. Genetic aspects of disease resistance in oysters[J]. Shellfish Res, 1996, 15(1): 135-140.
    
    [12] Gareia D K, Benzie J A H . RAPD markers of potencial use in penaeid prawn (Penaeus monodon) breeding programs[J]. Aquaculture, 1995, 130,137-144.
    [13] Godshalk E B, Lee M, Lamkey K R. Relationship of restriction fragment length polymorphis ms to single-cross hybrid performance of maize[J].Theor APP Genet, 1990, 80: 273-280.
    [14] Gu W, Post C M, Aguirre G D. Individual DNA bands obtained by RAPD analysis of canine genomic DNA often contain multiple DNA sequences[J]. J of Heredity, 1999, 90(1): 96-98.
    [15] Hallden, C, M. Hansen, N. O. Nilsson, A. Hjerdin. Competition as a source of errors in RAPD analysis[J]. Theor. Appl. Genet. 1996,93: 1188-1192.
    [16] Hedgecock D. A genetic linkage map of 100 microsatellite markers for the pacific oyster Cmssostrea gigas[J]. Journal of shellfish Research, 2002,21.
    [17] Hedgecock D, Hubert S, Li G A genetic linkage map of 100 microsatellite markers for the Pacific oyster Crassostrea gigas[J]. Shellfish Res, 2002, 21(1): 381.
    [18] Johnson S L. Genetic control of adult pigment stripe development in zebrafish[J]. Dve Biol, 1995, 167: 27-33.
    [19] Jone M A, Strommer J N. Exceptionally high levels of restriction site polymorphism in DNA near the maize AD-HI gene[J] Genetics, 1983, 105: 733-743.
    [20] Klein-Lankhorst R M, Vermunt A. Isolations of molecular markers for tomota (Lycopersicon esculentum) using random amplified polymorphic DNA(RAPD)[J]. Theor Appl Genet, 1991, 83: 108-114.
    [21] Lu, M. Z., A. E. Szmidt, X. R. Wang. Inheritance of RAPD fragments in haploid and diploid tissues of Pinus sylvestris (L)[J]. Hered. 1995, 74: 582-589.
    
    [22] Lynch M. The similarity index and DNA fingerprinting[J]. Mol. Biol. Evo, 1990, 7: 478-484.
    [23] Martin G B, Williams J G K. Rapid identification of markers linked to Pseudomonas resistance gene in tomato by using random primers and near isogenic lines[J]. Proc. Natl. Acad. Sci. USA, 1991, 88: 2336-2340.
    [24] Melchinger A E, Uz H F, School C C. Genetic diversity for restriction fragment length polymorphis ms and its relationship to genetic effects estimated from generation means in four sets of maize inbreds[J]. Crop Sci, 1990,30: 1033-1040.
    [25] Miklas P N, Starely J R. Identification and potencial use of a molecular marker for rust resistance in common bean[J]. Theor Appl Genet, 1993, 85: 745-749.
    [26] Moore S S, Whan V, Davis G P, et al. The development and application of genetic markers for the Kuruma prawn penaeus japonicus[J]. Aquac, 1999, 173: 19-32.
    [27] Novy R G, N Vorsa. Evidence for RAPD heteroduplex formation in cranberry: implications for pedigree and genetic relatedness studies and a source of co-dominant RAPD markers[J]. Theor. Appl. Genet, 1996,92: 840-849.
    [28] Postlethwait J H, Johnson S L, Midson C N. A genetic linkage map for the zebrafish (Danio rerio)[J]. Science, 1994,264: 699-703.
    [29] Poulsen D M E. The use of bulk segregant analysis to identify a RAPD marker linked to leaf rust resistance in barley[J]. Theor Appl Gene, 1995,91: 270-273.
    [30] Qifa Zhang, Y. J.Gao, S.H.Yang. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellite[J] . Theor Appl Genet, 1994, 89: 185-192.
    [31] Romagnoli S, Maddaloni M Livini C. Ralationship between gene expression and hybrid vigor in primary root tips of young maize (Zea May L) plantlets[J] . Theor .Appl. Genet, 1990, 80: 767-775.
    
    [32] Sakamoto T, Danzmann R G, Gharbi K, et al. A microsatellite linkage map of trout (Oncorhynchus mykiss) charactered by sex-specific differences in recombination rates[J]. Genetics, 2000, 155: 1331-1345.
    [33] Shen Y, Yu R, Cao M. Polymorphism of from cytoplasmic male sterile and fetile lines in rice[J]. 浙江农业大学学报 , 1996, 22(5): 441-447.
    [34] Smith, J. F., C. C. Burke, W. L. Wagner. Interspecific hybridization in natural populations of Cyrtandra (Gesneriaceae) on the Hawaiian Islands: evidence from RAPD markers[J]. Plant. Syst. Evol. 1996, 200: 61-77.
    [35] SrivastaraHK. Heterosis and intergenomic complementation mitochondria, chloroplastand nuclus[J]. In: Frankel. R.(ed). Heterosis reappraisal of theory and practice. Springer Beerlin Heidelberg. New York, 1983: 260-286.
    [36] Sun QX. Zhongfu Ni, Zhiyong Liu. Differential gene expression between wheat hybridas and their parent inbreds in seedling Ieaves[J]. Eupbytica, 1999, 106: 117-123.
    
    [37] Tsaftaris AS. Molecular aspects of heterosis in plants[J]. Physiologia plantarum, 1995, 94: 362-370.
    [38] Tsaftaris AS, Kafka M. Mechanisms of heterosis in crop plants[J]. Journal of Crop Production, 1998, 1:95-111.
    [39] Vuylsteke M, Kuiper M, Stam P. Chromosomal regions involved in hybrid performance and heterosis: their AFLP-based identification and practical use in prediction models[J]. Heredity, 2000, 86:208-218.
    [40] Wanger D B, Dong J, Carlson M R. Paternal Leakage of mitochondrial DNA in pinus[J]. Theor Appl Genet, 1991, 62: 510-514.
    [41] Waldbieser G C, Bosworth B G, Nonneman D J, et al. A microsatellite based linkage map for channel catfish, Ictalurua punctatu[J]. Genetics, 2001, 158: 727-734.
    [42] Wang J L, Hill W G, Chartesworth D. Danymics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate[J]. Genet Res, Cambridge, 1999,74: 165-178.
    [43] World Fish Center. Genetic improvement of carp species in Asia [R]. ICLARM Final Report, 2001, 159.
    [44] Xiong LZ, GP Yang, CG Xu, et al. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross[J]. Mol. Breeding, 1998,4: 129-136.
    [45] Xiong LZ, Xu-CG, Saghai-Maroof, et al. Patterns of cytosine methylation in an elite rice hyrids and its parental lines, detected by a methylation-sensitive amplification polymorphism technique[J]. Molecular and General Genetics, 1999, 261 (3): 439-446.
    [46] Young W P, Wheeler P A, Coryell V H, et al. A detailed linkage map of rainbow trout produced using doubled haploids[J]. Genetics, 1998, 148: 1-13.
    [47] Yu z, Guo x .Genetic linkage map of the eastern oyster crassostrea virginica Gmelin[J]. Biol Bull, 2003, 204: 327-338.
    [48] Zhang Y, Stommel J R. RAPD and AFLP tagging mapping of Beta and Beta modifier (Mo-) two genes which influence beta-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill)[J]. Theor Appl Genet, 2000, 100(3-4): 365-375.
    [49] Zhu J Weir B S. Analysis of cytoplasmic and maternal effects[J]. A genetic model for diploid plants and animals. TAG, 1994, 89: 153-159.
    [50] 鲍文奎.机会与风险—40育种研究的思考[J].植物杂志,1990,(4):4-5.
    [51] 曹新川,何良荣,韩路,等.陆地棉产量性状与品质性状的加性和显性相关分析[J].塔里木农恳大学学报,2004,16(4):18-20.
    [52] 岑玉古.淡水鱼类育种概述[J].淡水渔业,1989,(6):35-39.
    [53] 程汉良,潘黔生,马国文,等.鲤鱼育种研究[J].内蒙古民族大学学报(自然科学版),2001,16(1):46-49.
    [54] 陈寅儿,金珊.RAPD技术在水生生物中的研究进展[J].水利渔业,2004,24(6):5.
    [55] 陈洪,杨立青.RAPD技术在异精激发方正银鲫比较研究中的应用[J].科学通报,1994,39(7):661-663.
    [56] 陈海燕,朱海平,傅衍.绍兴鸭血液生化指标与产蛋性状间相关的通径分析[J].生物数学学报,2002,17(3):358-362.
    [57] 董在杰,夏德全,吴婷婷,等.RAPD技术在鱼类杂种优势研究中的应用[J].中国水产科学,1999,6(1):37-40.
    [58] 董在杰,夏德全,吴婷婷,等.兴国红鲤和散鳞镜鲤杂种优势的RAPD分析[J].上海水产大学学报,1999,8(1):31-36.
    [59] 戴启炎.关于遵义地区鲤鱼品改和实施意见[J].贵州水产,1987(1):71-76.
    [60] 方宣钧.作物DNA标记辅助育种[M].北京:科学出版社,2002.
    [61] 冯建新,张西瑞,刘国印,等.选育黄河鲤鱼的经济性状及遗传性能[J].河南水产,1997,第1期:18-21.
    [62] 郭予琦,陈明灿.基因表达与杂种优势遗传机理[J].河南职技师院学报,2001,29(2):7-10.
    [63] 盖钧镒.试验统计方法[M].北京:中国农业出版社,2000.
    [64] 韩贻仁.分子细胞生物学[M].科学出版社,2002,539-577.
    [65] 胡正元,万开军.苎麻主要经济性状的表型相关和通径分析[J].信阳师范学院学报(自然科学版),1996,9(4):382-384.
    [66] IFREMER.指纹法在水产品育种的应用[J].生物技术通报,1996,12:13.
    [67] 雷勃钧,李希臣.外源野生大豆DNA导入栽培大豆及RAPD分子验证[J].中国科学(B),1994,24(6):596-601.
    [68] 李岩,赵宗胜,李大全,等.动物杂种优势遗传机制的研究进展[J].新疆畜牧业,2004(1):57-60.
    [69] 李云玲,孙振兴,张明青.贝类杂交育种技术及其应用[J].齐鲁渔业,2005,22(12):22-24.
    [70] 李莉,郭希明.利用RAPD和AFLP标记初步构建太平洋牡蛎的遗传连锁图谱[J].海洋与湖沼,2003,34(5):541-550.
    [71] 李俊民.鱼类遗传与育种学[M].北京:中国林业出版社,1988.
    [72] 李思发.鱼类繁育群体遗传性能的保护[J].水产学报,1988,12(32):83-290.
    [73] 李思发,王成辉,刘志国,等.三种红鲤生长性状的杂种优势与遗传相关分析[J].水产学报,2006,30(2):176-180.
    [74] 李思发.遗传育种的理论和技术在鲤科鱼类增养殖中的应用[J].水产学报,1983,7(2):175-181.
    [75] 李汝刚,范云六.豌豆种传花叶病毒抗病基因sbm的分子标记[J].科学通报,1996,41(18):1712-1714.
    [76] 梁利群,孙效文.不同鲤鱼种间DNA遗传标记多态性[J].中国水产科学,2000,7(2):20-21.
    [77] 梁利群,孙效文,沈俊宝.RAPD技术及其应用[J].水产学杂志,1995,8(1):90-93.
    [78] 梁利群,孙效文,沈俊宝.鲤鱼抗寒性状的RAPD分析[J].中国水产科学,1997,4(3):89-91.
    [79] 梁利群,孙效文.鲤耐寒性状分子标记在遗传连锁图谱中的定位[J].大连水产学院学报,2003,18(4):278-281.
    [80] 梁慧珍,李卫东,王辉,等.大豆粒状性状的遗传效应分析[J].遗传学报,2005,32(11):1199-1204.
    [81] 楼允东.浅谈我国鱼类育种研究的成就与前景[J].水产科技情报,1986,3:1-4.
    [82] 楼允东.鱼类育种学[M].北京:中国农业出版社,2001,40-43.
    [83] 龙华.物种进化与鱼类育种的发展[J].云南农业大学学报,2005,20(3):319-323.
    [84] 林祥日.我国养殖鱼类育种技术概况[J].淡水渔业,2005,35(4):61-64
    [85] 林红,夏德全,杨弘.鱼类RAPD的影响因素及其最优反应体系的研究[J].江苏农业研究,2000,21(2):25-29.
    [86]林红,夏德全,杨弘.遗传连锁图谱及其在遗传育种中的应用[J].中国水产科学,2000,7(1):95-98.
    [87]林炜,刁丽娟.RAPD技术及其在动物遗传多样性分析中的应用[J].生物学通报,2002,37(3):17-18.
    [88]刘海涛,郑水平,王权,等.黄河鲤杂交一代鱼体成分的研究[J].饲料博览,1999,11(1):3.
    [89]陆萍.分子生物学技术在水产养殖上的应用[J].动物科学与动物医学,2002,19(3):5-7.
    [90]罗俊烈.杂种优势在鱼类生产上的应用[J].动物学杂志,1990,25(3):54-57.
    [91]马大勇,胡红浪,孔杰.近交及其对水产养殖的影响[J].水产学报,2005,29(6):850-855.
    [92]倪中福,孙其信,吴利民.普通小麦优势杂交种及其亲本之间基因表达差异比较研究[J].中国农业大学学报,2000,5(1):1-8.
    [93]彭忠华,顾金春,杨晓容,等.特用玉米主要性状的配合力及相关分析[J].种子,2002,21(6):31-33.
    [94]权娅茹,张本.RAPD技术在我国鱼类研究中的应用[J].生物学通报,2005,40(2):15-17.
    [95]乔德亮.RAPD技术在水产动物种质资源研究中的应用[J].水产科技情报,2001,28(3):112-114.
    [96]任维美译.荷兰《水产养殖》,1993,113.
    [97]宋书娟,李雅轩,郭平仲.RAPD分子标记与群体遗传多态性分析[J].首都师范大学学报(自然科学版),2000,21(2):52-55.
    [98]孙效文,梁利群.鲤鱼的遗传连锁图谱(初报)[J].中国水产科学,2000,7(1):2-5.
    [99]苏洪山.家鱼人工繁殖后代衰退原因的探索[J].淡水渔业,1984(1):4-6.
    [100]谭其猛.蔬菜杂种优势的利用[M].上海:上海科学技术出版社.1982.
    [101]王爱琴,黄世全,戴保威.玉米主要数量性状遗传相关及通径分析[J].种子,2006,25(3):68-70.
    [102]王俊霞,杨光圣,傅廷栋,等.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记[J].作物学报,2000,26(5):575-578.
    [103]王俐,吴衡,卢子靖.鲫鱼人工杂交试验中雄核发育现象的RAPD试验证据[J].复旦大学学报(自然科学版),1997,36(5):565-570.
    [104]王玲玲,宋林生,李红蕾.AFLP和RAPD技术在栉孔扇贝遗传多样性研究中的应用比较[J].动物学杂志,2003,38(4):35-39.
    [105]王得元,王鸣.杂种优势过程性研究的基本模型[J].陕西农业科学,1995(2):30.
    [106]王荣,孟和.杂种优势与分子标记关系的研究[J].畜牧与饲料科学,2005(1):38-40.
    [107]王镜岩.生物化学[M].高等教育出版社,2002.
    [108]吴仲贤.新的绿色革命:揭示杂种优势之密—遗传力[J].农业生物技术学报,2002,10(4):417.
    [109]谢大森,何晓明,彭庆务,等.糯玉米主要农艺性状相关及通径分析[J].江西农业大学学报,2003,25(4):499-500.
    [110]印志同,邓德祥,胡加如,等.玉米自交系性状的遗传相关及通径分析[J].莱阳农学院学报,2005,22(4):283-286.
    [111]于孝东,汪官余.RAPD技术在水产科研中的应用[J].北京水产,2004(3):39-41.
    [112]杨英军,李学强,张国海,等.RAPD的原理及其操作[J].洛阳农业高等专科学校学报,1999,19(3):27.
    [113]杨金水.杂种优势机理探讨[J].作物雄性不育及杂种优势研究进展(Ⅰ).中国农业出版社:北京,1996,1-12.
    [114]殷名称.鱼类生态学[M].中国农业出版社,1993,50-60.
    [115]颜金鹏,刘少军,孙远东,等.异源四倍体鲫鲤雌核发育后代的RAPD分析[J].生物学报,2005,29(3):259-264.
    [116]袁力行,刘新芝,彭泽斌,等.利用分子标记预测玉米杂种优势的研究[J].中国农业科学,2000,33(6):6-12.
    [117]余来宁.我国鱼类遗传育种的现状和展望[A].中美农业科技与发展研讨会论文集[C].1995,22-25.
    [118]岳志芹,孔杰,戴继勋.水产动物遗传连锁图谱的研究现状及应用展望[J].遗传,2004,26(1):97-102.
    [119]袁希汉,汪玉清,侯喜林,等.丝瓜主要农艺性状的相关及通径分析[J].江苏农业学报,2006,22(1):64-67.
    [120]张玉勇,常亚青,宋坚.杂交育种技术在海水养殖贝类中的应用及研究进展[J].水产科学,2005,24(4):39-41.
    [121]张跃,朱新平,罗建仁,等.DNA指纹技术及其在水产上的应用[J].中国水产科学,1998,5(1):80-83.
    [122]张国范,刘晓,缪锋,等.贝类杂交及杂种优势理论和技术研究进展[J].海洋科学,2004,28(7):54-56.
    [123]张建森,孙小异.建鲤育种研究论文集[C].北京:科学出版社,1994,138-140.
    [124]张培业,王睦生,刘桂莲,等.阿尔巴斯白绒母山羊主要经济性状表型相关的分析[J].内蒙古畜牧科学,1995,4:8-10.
    [125]郑水平,王权,王焕来,等.黄河鲤杂交一代与亲本外部形态特征比较[J].水利渔业,1998,第5期:22-23.
    [126]朱健,王建新,龚永生等.我国鲤鱼遗传改良研究概况[J].浙江海洋学院学报(自然科学版),2000,19(3):266-267.
    [127]朱立煌,徐吉臣.用分子标记定位一个未知的抗稻瘟病基因[J].中国科学(B),1994,24(10):1048-1052.
    [128]朱英国.水稻雄性不育生物学[M].武汉:武汉大学出版社,2000.
    [129]周莉,桂建芳.银鲫两个雌核发育克隆间两性生殖子代的遗传多样性分析[J].试验生物学报,2001,34(3):170-176.
    [130]中国农业科学院蚕业研究所.家蚕遗传育种学.北京:科学出版社.1983.
    [131]中国渔业统计年鉴[R].2004.
    [132]左波,熊远著,邓昌彦.杂种优势遗传学基础的研究进展[J].中国畜牧兽医,2002,29(4):34-36.