~5He预平衡发射双微分截面的研究及中子~(14)N反应双微分截面文档的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近,在研究中子诱导的轻核反应总中子出射的双微分截面理论中,预平衡反应中~5He发射的可能性被揭示了出来。确立~5He发射的可能性以后,为了在理论上描述~5He的预平衡发射,便需要给出~5He预平衡发射的双微分截面理论公式。基于“pick-up”机制,利用计算d,t,~3He,α等复杂粒子预平衡出射双微分截面的理论方法,把它推广到用来描述不稳定核~5He的发射,建立了描述预平衡反应中~5He发射的双微分截面理论公式。完善了统计理论中包含~5He在内的预平衡发射各种复杂粒子双微分截面的理论模型。
     计算分析表明,对于低能核反应,~5He发射中的[1,4]组态为主要项,即一个出射中子拾取复合核中费米海下的四个核子形成~5He发射.出射粒子分布的朝前性是预平衡反应的特征之一,入射中子能量越高,复杂粒子发射的朝前性越强;在相同的入射能情况下,复杂粒子发射的朝前性弱于单粒子发射的朝前性。这是由于复杂粒子发射中包含了拾取费米海下的核子,而费米海下核子的运动是各向同性的,这使得复杂粒子发射的朝前性减弱。出射的复杂粒子发射朝前性的强弱主要取决于复杂粒子集团中每个核子的平均动量的大小,平均动量越大,朝前性会越强.以n+~(14)N反应为例,讨论了预平衡反应中~5He发射的特点。结果表明~5He出射的朝前性强于α粒子而弱于中子。~5He发射后自发崩裂为一个中子和一个α粒子,计算了n+~(14)N反应中~5He发射后崩裂的中子和α粒子的能谱范围,从~5He崩裂出来的中子主要贡献在总出射中子谱的低能区域。
     在统一的Hauser-Feshbach和激子模型理论基础上,发展了一个新的轻核反应理论模型。使用在这个新理论模型基础上编写的LUNF程序,对n+~(14)N反应出射粒子的双微分截面进行了计算和分析。新的理论模型可以严格保证预平衡反应过程中的角动量和宇称守恒。并建立了严格的运动学公式以保证核反应过程中的能量平衡。计算结果显示理论计算能够很好的符合实验测量值,说明新的轻核反应理论模型可以描述好1p壳轻核反应行为。
     利用LUNF程序计算了n+~(14)N反应,结果表明n+~(14)N反应的反应机制非常复杂,在入射能En=14.2MeV时,便有超过一百个对应于不同分立能级的分反应道开启,由于与n+~(14)N反应有关的核素的能级纲图给出的分立能级足够高,因此在计算过程中全部使用分立能级,没有使用连续能级。在理论计算中,严格考虑了复合核到剩余核分立能级预平衡发射时的角动量守恒和宇称守恒。对反应中~5He的发射也进行了分析,结果表明~5He发射在中子入射能比较高时有比较重要的作用,从~5He发射崩裂出来的中子贡献于总出射中子谱的低能部分。
     对于n+~(14)N反应,预平衡反应机制占主导地位,这也和其它的1p壳轻核相一致,例如~(6,7)Li,~(12)C,~(16)O和~(10)B等。因此仅考虑平衡态发射理论,例如Hauser-Feshbach模型,不能够描述好1p壳轻核反应。将利用新的轻核模型理论计算的结果和ENDF/B-VI库利用Kalbach系统学方法给出的双微分截面谱进行了比较,结果表明利用Kalbach系统学方法不能得到出射粒子的能量特征谱。轻核反应中剩余核的反冲效应非常明显,严格的运动学公式不仅能保证核反应过程中的能量平衡,并且能够给出二次出射粒子的能谱的合理形状。这为建立中子数据库中双微分截面文档提供了运动学的理论基础。
     由于缺少理论方法,以往国内外的核数据库中~(14)N的中子核数据文档中没能建立双微分截面文档.现在利用LUNF程序,在符合中子双微分截面实验测量数据的基础上,制作出了以ENDF/B-VI库格式形式的在中子入射能量20MeV以下的双微分截面数据文档.由于核工程应用需要,又将能量范围提高到30MeV。在吸收ENDF/B-VI库数据文档的基础上,给出能量区间10~(-5)eV到30MeV包含双微分截面数据文档的全套~(14)N中子数据.制作出的n+~(14)N全套核数据各项检查均达到要求,可以提供核工程应用。
In recent years, the total outgoing neutron double-differential cross sections of neutron induced light nuclear reactions have been calculated by using a new nuclear reaction model. In these researches, the possibility of 5He emission was revealed. In order to describe the ~5He emission, the theoretical formula of the double-differential cross section of ~5He emission needs to be established. Based on the pick-up mechanism in pre-equilibrium emission processes, used for calculating the formula of d, t, ~3He andαemissions, the theoretical formula of double-differential cross section of ~5He is obtained, which complete the description of the double-differential cross section of composite particle emissions in the pre-equilibrium statistical model.
     In the case of low incident energies, the configuration [1, 4] is the dominant part in the reaction processes, which means one nucleon above the Fermi sea and the others in the Fermi sea. The calculated results indicate that for a composite particle, the higher of the incident energy is, the stronger of the forward tendency is. When there is the same incident energy, the forward tendency of a composite particle is weaker than the single particle's. This is because of the motion of the nucleons in the Fermi sea is isotropic; the picked-up particles should counteract the forward tendency of the outgoing single particle. The calculated results show that the forward tendency is determined by the average momentum per nucleon in the emitted composite particles. The larger of the average momentum is, the stronger of the forward tendency is. Besides the reason mentioned above, the forward tendency also depends on the form of integrated factor.
     As an example, the reactions of n+~(14)N have been calculated; the results show that the forward tendency of ~5He is stronger than that of theαparticle but weaker than the single neutron's. ~5He is unstable, it will be separated into one neutron and oneα-particle spontaneously. The double-differential cross sections of the outgoing neutron and theα-particle in the center of mass system have been calculated, the results show that the energy ranges of the outgoing neutron and the a-particle spectra contribute to the low energy spectrum in the total outgoing energy spectrum.
     By using a new reaction model for the 1-p shell light nuclei, the double-differential cross sections of n+~(14)N reactions have been analyzed. This new model keeps angular momentum and parity conservation properly in the pre-equilibrium emission. Meanwhile, the energy balance for variety particles emission is strictly considered by the accurate kinematics. The calculated results agree fairly with the double-differential measurements. It is affirmed that the new model is able to describe the behavior of 1-p shell light nuclear reactions well.
     Based on the new model, the LUNF code has been established. Using the LUNF code, the double-differential cross sections of n+~(14)N reactions have been calculated. The reaction mechanism of n+~(14)N is very complex, there are more than one hundred partial reaction channels opened even at incident neutron energy of 14.2MeV. In the model calculation, all the residual states are discrete levels without continuous state. The particle emissions from the compound nucleus to the residual nuclei's discrete levels in pre-equilibrium mechanism are taken into account with the angular momentum and parity conservation. ~5He emission in the n+~(14)N reaction has been considered, when the incident energy is high, the neutron from the ~5He separating contributes to the total outgoing neutron energy spectra in the low energy region.
     In the case of n+~(14)N reaction, the pre-equilibrium mechanism dominates the whole reaction processes, which is the same as other 1-p shell light nuclei, like ~(6,7)Li, ~(10)B, ~(10)C, and ~(16)O. Thus, only the equilibrium theory could not work well, like Hauser-Feshbach model, of the 1-p shell light nuclear reaction. Meanwhile, from the comparison of the outgoing neutron angular-energy spactra obtained by using this new model and Kalbach Systematics, the results of the comparison indicate that the Kalbach Systematics could not give the correct energy spectrum of the outgoing particles. For the 1-p shell light nucleus, the mass of the compound nucleus is so light that the recoil effect of the particle emission is very strong. Thus, the accurate kinemics plays an important role, which not only keeps the energy balance, but also to produce the correct shapes of the partial outgoing spectra in the secondary particle emission processes for reproducing the double-differential measurements. Therefore, the accurate kinemics is the one of the key point to set up file-6 for double-differential cross sections in the neutron library with full energy balance.
     Lack of suitable theoretical method, there is no files-6 for double-differential cross sections of ~(14)N in the worldwide neutron data libraries. Now, a light nuclear reaction model is proposed, and the LUNF code is developed accordingly. In terms of fitting the experiment measured data with LUNF code, the files-6 for double-differential cross sections of n+~(14)N reactions at incident energies up to 30MeV have been established in the ENDF format. And utilizing the data in the ENDF/B-Ⅵneutron library, the total file of neutron induced ~(14)N reactions including file-6 for double-differential cross sections in the energy range 10~(-5)eV to 30MeV can be established, which could provide the application in the nuclear engineering.
引文
1 H.Bohr Neutron Capture and Nuclear Constitution. Nature, 1936, 137:344.
    2 V.F.Weisskopf Statistics and Nuclear Reactions. Phys.Rev.1937, 52:295.
    3 V.F.Weisskopf and D.H.Ewing On the Yield of Nucear Reactions with Heavy Elenents. Phys.Rev.1940, 57:472.
    4 W.Hauser and H.Feshbach The Inelastic Scattering of Neutrons. Phys.Rev. 1952, 87:366.
    5 J.J.Griffin Statistical Model of Intermediate Structure. Phys.Rev.Lett, 1966, 17:478.
    6 GMantzouranis, H.A.Weidenmuller and D.Agassi Generalized Exciton Model for the Description of Preequilibrium Angular Distributions. Z.Phys.,1976, A276:145.
    7 GMantzouranis, D.Agassi and H.A.Weidenmuller Angular Distribution of Nucleons in Nucleon-induced Preequilibrium Reactions. Phys.Lett.B,1975, 57:220.
    8 J.S.Zhang A Semi-Classical Theory of Multi-Step Nuclear Reaction Process. Proc. Beijing Int. Symoposium on Fast Neutron Physics, Beijing, China, 9-13 Sep.1991, World Scientific, Singapore, 1922,201.
    9 J.S.Zhang A Unified Hauser-Feshbach and Exciton Model for Calculating Double Differential Cross Section of Neutron-Induced Reactions Below 20MeV, Nucl.Sci.Eng., 1993,114:55.
    10 GMantzouranis, H.A.Weidenmuller and D.Agassi Generalized Exciton Model for the Description of Preequilibrium Angular Distributions. Z.Phys., 1976, A276:145.
    11 GMantzouranis, D.Agassi and H.A.Weidenmuller Angular Distribution of Nucleons in Nucleon-induced Preequilibrium Reactions. Phys.Lett.B,1975, 57:220.
    12 K.Kikuchi and M. Kawai Nuclear Matter and Nuclear Reaction. North-Holland, Amsterdam, 1968, 33.
    13 Sun Ziyang, Wang Shunuan, Zhang Jingshang and Zhuo Yizhong Angular Distribution Calculation based on the Exciton Model Taking Account of the Influence of the Fermi Motion and the Pauli Principle. Z.Phys.A,1982,305:61.
    14 A.Iwamoto and K.Harada Mechanism of Cluster Emission in Nucleon-induced Preequilibrium Reactions. Phys.Rev.C, 1982,26:1821.
    15 K. Sato, A.Iwamoto and K.Harada Preequilibrium emission of Light Composite Particles in the Framework of the Exciton Model. Phys.Rev.C, 1983,28:1527.
    16 Zhang Jingshang, Wen Yuanqi, Wang Shunuan and Shi Xiangjun Formation and Emission of Light Particles in Fast Neutron Induced Reaction-A Unified Compound Pre-Equilibrium Model. Commun.Theor.Phys. (Beijing,China)1988, 10:33.
    17 Zhang Jingshang, Yan Shiwei and Wang Cuilan. The Pick-up Mechanism in Composite Particle Emission Processes. Z.Phys.A,1993, 344:251.
    18 Zhang Jingshang and Wen Yuanqi A Theoretical Method for Calculating the Double Differential Cross Section of Composite Particles. Chin.J.Nucl.Phys.,1991, 13:129.
    19 Zhang Jingshang A Method for Calculating the Double-Differential Cross Section of Alpha-Particle Emission. Nucl.Sci.Eng., 1994, 116:35.
    20 J.S.Zhang, Possibility of ~5He emission in neutron induced reactions Science in China Ser.G 2004, 47:137.
    21 J.F.Duan, Y.L.Yan and J.S.Zhang. Pre-formation Probability of ~5He Cluster in Pre-equilibrium Mechanism. Commun.Theor.Phys. (Beijing,China)2004, 42:587.
    22 Y. L. Yan, J. F. Duan, et al, Double-Differential Cross Section of~5 He Emission. Commun. Theor. Phys. (Beijing, China) 2005, 43: 299.
    23 P. G. Young and E. D. Arthur. GNASH: A Pre-Equilibrium Statistical Nuclear Model Code for Calculation of Cross Section and Emission Spectra, LA-0947 Los Alamos Scientific Laboratory, 1977.
    24 P. G. Young, E. D. Arthur and M. B. Chadwick. Comprehensive Nuclear Model Calculations: Theory and Use of the GNASH code, LA-UR-96-3739, 1996.
    25 C. Y. Fu. Approximation of Precompound Effect in Hauser-Feshbach Codes for Calculating Double Differential (n, nx) Cross Sections, Nucl. Sci. Eng., 1998, 100: 61.
    26 J. S. Zhang A Unified Hauser-Feshbach and Exciton Model for Calculating Double Differential Cross Section of Neutron-lnduced Reactions Below 20MeV, Nucl. Sci. Eng., 1993, 114: 55.
    27 J. S. Zhang User Manual of UNF Code, CNDC-0032, Beijing, 2001
    28 J. S. Zhang A Unified Hauser-Feshbach and Exciton Model for Calculating Double Differential Cross Section of Neutron-Induced Reactions Below 20MeV, Nucl. Sci. Eng., 1993, 114: 55.
    29 Y. Ericoson The Statistical Model and Nuclear Level Densities. Adv. Phys., 1960, 9: 425.
    30 EC. Williams Particle-hole State Density in the Uniform Spacing Model. Nucl. Phys. A 1971, 166: 231.
    31 张竞上,杨显俊 多粒子空穴态密度中泡利原理效应.高能物理与核物理,1989,13:822.
    32 J. S. Zhang and X. J. Yang The Pauli Exclusion Effect in Multiparticle and Hole Atate Densities. Z. Phys. A, 1988, 329: 89.
    33 王竹溪,郭敦仁:特殊函数概论.北京:北京大学出版社 2000年,235页.
    34 K. Kikuchi, M. Kawai,: Nuclear matter and nuclear reaction. Amsterdam: North-land 1968.
    35 Z. Y. Sun, S. N. Wang, J. S. Zhang, Y. Z. Zhuo, Angular Distribution Calculation Based on the Exciteon Model Taking Account of the Influce of the Fermi Motion and the Pauli Principle. Z. Phys. A, 1982, 305: 61.
    36 申庆彪 低能和中能核反应理论.北京:科学出版社 2005年,691页.
    37 J. F. Duan, Y. L. Yan and J. S. Zhang. Pre-formation Probability of ~5He Cluster in Pre-equilibrium Mechanism. Commun. Theor. Phys. (Beijing, China)2004, 42: 587.
    38 J. S. Zhang. A Method for Calculating Double Differerntial Cross Sections of α Particle Emissions. Commun. Theor. Phys. (Beijing, China) 1994, 21: 199.
    39 Y. L. Yan, J. F. Duan, et al, Double-Differential Cross Section of 5He Emission. Commun. Theor. Phys. (Beijing, China)2005, 43: 299.
    40 J. S. Zhang, Possibility of ~5He emission in neutron induced reactions Science in China Ser. G 2004, 47: 137.
    41 J. F. Duan, Y. L. Yan and J. S. Zhang. Pre-formation Probability of ~5He Cluster in Pre-equilibrium Mechanism. Commun. Theor. Phys. (Beijing, China)2004, 42: 587.
    42 丁大钊,叶春堂,赵志祥等,中子物理学,北京:原子能出版社,2001,292-396页.
    43 Y. L. Yan, J. F. Duan, et al, Analysis of Neutron Double-Differential Cross Section of n+~(14)N at 14.2MeV. Commun. Theor. Phys. (Beijing, China)2005, 44: 128.
    44 J. S. Zhang, Y. L. Han and L. G. Cao. Model Calculation of n+~(12)C Reactions from 4.8 to 20MeV Nucl. Sci. Eng. 1999, 133: 218.
    45 J. S. Zhang, Y. L. Han and X. L. Fan, Theoretical Analysis of the Neutron Double Differential Cross Section of n+~(16) O at 14.1 MeV, Commun. Theor. Phys. (Beijing, China)2001, 35: 579.
    46 J.S.Zhang, Theoretical Analysis of the Neutron Double-Differential Cross Section of n+~(11)B at 14.2MeV, Commun.Theor.Phys.(Beijing,China)2003,39:83.
    47 M.Baba, et al, Scattering of 14.1MeV Neutrons From ~(10)B,~(11)B,C,N,O,F and Si Conf. on Nuclear Data for Basic and Applied Science, Santa Fe 1, 1985,223.
    48 R.B.Firestone and V.S.Shirley, Table of Isotopes 8th, John Wiley&Sons(1996).
    49 J.F.Duan, Y.L.Yan, et al, Further Analysis of Neutron Double-Differential Cross Section of n+~(16)O at 14.1 MeV, Commun.Theor.Phys. (Beijing,China)2005, 44:701.
    50 J.S.Zhang and Y.L.Han, Theoretical Analysis of the Neutron Double-Differential Cross Section of n+~6Li at 14.2MeV. Commun.Theor.Phys.(Beijing,China) 2001, 36:437.
    51 J.S.Zhang and Y.L.Han, Theoretical Analysis of the Neutron Double-Differential Cross Section of n+~7Li at 14.2MeV. Commun.Theor.Phys.(Beijing,China) 2001, 37:465.
    52 J.S.Zhang, Y.L.Han and L.G.Cao, Model Calculation of n+~(12)C Reactions from 4.8 to 20MeV Nucl.Sci.Eng. 1999, 133:218.
    53 J.S.Zhang, Y.L.Han and X.L.Fan, Theoretical Analysis of the Neutron Double Differential Cross Section of n+~(15)O at 14.1MeV, Commun.Theor.Phys. (Beijing,China)2001,35:579.
    54 J.S.Zhang, Theoretical Analysis of the Neutron Double-Differential Cross Section of n+~(10)B at 14.2MeV. Commun.Theor.Phys.(Beijing,China) 2003, 39:433.
    55 C. Kalbach Systematics of Continuum Angular Distribution: Extensions to Higher Energies. Phys.Rev.C, 1988, 37:2350.
    56 D.GFoster Jr and D.W.Glasgow. Neutron Total Cross Sections, 2.5-15MeV. Phys.Rev.C, 1971 3:576.
    57 C.H Johnson et al. Total Neutron Cross Sections of ~(14)N, Ge, Se, Cd and Hg. Oak Ridge National Lab. Reports, 1365, 1953.
    58 A.Gibert et al. Influence of Molecular Bindings on the Diffusion of Thermal Neutrons Through Nitrogen. Helv.PhysicaActa, 1946, 19:493.
    59 L.Koester et al. Experimental Study on p-wave Neutron Strength Functions for Light Nuclei. Zeit. fuerPhysik 330(1988)387.
    60 J.J.Hinchey et al. The Total Neutron Cross Section of Nitrogen Phys.Rev. 1952, 86:483.
    61 GN.Maslov, F.Nasyrov and N.F.Pashkin The Experimental Cross Sections of the Nuclear Reactions for 14 MeV Neutrons. Ser.Yad.Kon. 1972, 9:50.
    62 I.Angeli et al. Total Neutron Cross Sections at 14.7 MeV for N,O,Ar,Ca,Co,Ni,Cu, Zn,Ga, Ge,I,Cs,Ce,Pb,Bi. Acta Physica Hung. 1971, 30:115.
    63 F.GPerey and W.E.Kinney Nitrogen neutron elastic and inelastic scattering cross sections from 4.34 to 8.56 MeV Oak Ridge National Lab. Reports, 4805, 1974.
    64 M.Goldhaber and GBrigss Scattering of Slow Neutrons Pro.Roy.Soc.A 1937, 162:127.
    65 J.A.Templon et al. Neutron Scattering Cross Sections from ~(14)N and ~9Be at 11, 14, AND 17 MeV. Nucl.Sci.Eng. 1985, 91:451.
    66 J.Chardine et al. Neutron Elastic and Inelastic Scattering from ~(14)N Between 7.7 and 13.5 MeV Centre D'etudes Nucleaires,Saclay,Reports, 2506 ,1986.
    67 A.Gibert, R.Keller and J.Rossel Influence of Molecular Bindings on the Diffusion of Thermal Neutrons Through Nitrogen. Helv.Physica Acta, 1946, 19:493.
    68 R.A.Sigg Fast Neutron Induced Reaction Cross Section and Their Systematics. Dissertation Abstr. B 1976,37:2237.
    69 E.B.Paul and R.L.Clarke Cross Section Measurements of Reactions Induced by Neutros of the 14.5 MeV Energy. Canadian J. of Physics, 1953, 31:267.
    
    70 L.A.Rayburn 14.4 MeV (n,2n) Cross Sections. Phys.Rev. 1961, 122:168.
    
    71 H.Ishikawa Determination of 14N(n,2n)13N Reaction Cross Section for 14.7 MeV Neutrons. J.of Nucl.Sci.Tech., 1970, 7:534.
    
    72 M.Bormann et al. Some Excitation Functions of Neutron Induced Reactions in the Energy Range 12.6-19.6 MeV. Nucl. Phys. 1965, 63:438.
    
    73 T.Katoh, K.Kawade and H.Yamamoto. Measerment of Activation Cross Sections. JAERI-M-89-083,Tokai Reports, 1989.
    
    74 J.E.Strain et al. 14MeV Neutron Reactions. Oak Ridge National Lab. Reports, 3672 , 1965.
    
    75 N.W.Golchert, D.GGardner and J.Sedlet. Cross Section of Some Reactions of ~(99)T_C with 14.1 MeV Neutrons. Nucl.Phys. 1965,73:349.
    
    76 J.Araminowicz and J.Dresler Investigation of the (n,2n) Reactions at 14.6 MeV for 42 nuclides. INR-1464, Progress report, 14,1973.
    
    77 J.C.Robertson, BAudric and P.Kolkowski Some Activation Cross Sections at 14.78 MeV. J. of Nuclear Energy, 1973,27:531.
    
    78 A.Pasquarelli Meserment of Cross Sections for, (n,p) and (n, alpha) Reactions at 14.7MeV. Nucl.Phys. A 1967, 93:218.
    
    79 J.Csikai and GPeto Influence of Direct Inelastic Scattering on (n,2n) Cross Sections. Acta Phys.Hung. 1967,23:87.
    
    80 J.H.Mc Crary et al.. (n,2n) Cross Sections of ~(14)N, ~(19)F, ~(63)Cu, ~(65)CU and ~(121)Sb in the Energy Region of 13.5 MeV to 15.2 MeV. Bull.ofthe Amer.Phys.Soc, 5,246(HA5), 1960.
    
    81 J.D.Dudley and C.M.Class. ~(14)N (n,2n) ~(13)N Cross Section Measurement With 14 MeV Neutrons Phys.Rev. 1954,94:807.
    
    82 B.Grimeland et al. Cross Sections of Some Reactions Induced in Nitrogen, Phoshorus, Copper and Bromide With Neutrons of Energy 14.8 MeV. Phys.Rev.B1965, 137:878.
    
    83 T.B.Ryves et al. Cross Section Measurements of ~(14)N(n,2n)~(13)N, ~(19)F(n,2n)~(18)F, ~(54)Fe(n,2n)~(53)Fe, ~(27)Al(n,p)~(27)Mg and ~(27)Al(n,a)~(24)Na Between 14.7 and 19.0 MeV. Jour, of Phys, Pt.G,4,(11)1783, 1978.
    
    84 M.Cevolani and S.Petralia Cross Section Measurement of (n, 2n) Reactions on 14.1 MeV Neutrons. Nuovo Cimentol962, 26:1328.
    
    85 J.M.Ferguson and W.E.Thompson. Cross Sections for the (n, 2n) Reaction in ~(14)N, ~(31)P, ~(63)Cu and ~(141)Pr. Phys.Rev. 1960, 118:228.
    
    86 GL.Morgan Cross Sections for the ~(14)N(n,p), ~(14)N(n,alpha-0) and ~(14)N(n,alpha-l) Reactions from 0.5 to 15MeV.Nucl.Sci.Eng. 1979, 70:163.
    
    87 F.Gabbard et al. The disintegration of nitrogen by fast neutrons. Nucl.Phys. 1959, 14:277.
    
    88 H.Felber and H.Friedmann Determination of the Cross Section ~(14)N(n,p)~(14)C for 14.7MeV of Neutrons by A Measerment of the Activity of ~(14)C. Zeit. fuer Physik 1976, 276:75.
    
    89 R.Batchelor. The Nitrogen (n, p) Cross Section. AERE-N/R-370, 1949.
    
    90 M.Baba et al. Large Solid-Angle Spectrometer For Studies of Double-Differential Charged Particle and Neutron Emission Cross Sections. JINR-E3-95-307, Reports, 191, 1995.
    
    91 J.H.Coon and R.A.Nobles. Disintegration of ~3He and 14N by Thermal Neutrons. Phys.Rev. 1949, 75:1358.
    92 C.H.Johnson et al.. Interaction of Fast Neutrons With Nitrogen. Phys.Rev. 1950, 80:818.
    
    93 W.Bollmann and W.Zuenti. Cross Section Measurements of The ~(14)N(n, a) and The ~(14)N(n, p) Process by Means of Monoenergetic D-D Neutrons. Helv.Physica Acta, 1951, 24:517.
    
    94 T.Shima et al.Experimental Studies of keVEnergy Neutron Induced Reactions Relevant to Astrohysics and Nuclear Physics. JAERI-97-004, Reports,131, 1996.
    
    95 E.Baldinger and P.Huber Helv.Physica Acta, 1939,12:330.
    
    96 GC.Hanna et al. Thermal Neutron Cross Sections and Resonance Integrals of the Reactions ~(17)O(n, alpha)~(14)C, ~(36)Ar(n, alpha)~(33)S and ~(14)N(n, p)~(14)C. Canadian J. of Physics 1961, 39:1784.
    
    97 P.Cuer et al. Determination of The Cross Section for Reactions of Thermal Neutrons on Nitrogen. J. de Physique 1951, 12:6.
    
    98 E.L.Fireman Measurement of The (n, ~3H) Cross Section in Nitrogen and Its Relationship to the Tritium Production in the Atmosphere. Phys.Rev. 1953, 91:922.
    
    99 A.Suhaimi Studies of (n, t) Reactions on Light Nuclei. JUEL-2196, Reports, 1988.
    
    100 GX.Morgan Cross Sections for the ~(14)N(n,p), ~(14)N(n,alpha-0) and ~(14)N(n,alpha-l) Reactions from 0.5 to 15MeV. Nud.Sci.Eng. 1979, 70:163.
    
    101 W.Bollmann and W.Zuenti. Cross Section Measurements of The ~(14)N(n, a) and The ~(14)N(n, p) Process by Means of Monoenergetic D-D Neutrons. Helv.Physica Acta, 1951, 24:517.
    
    102 F.Gabbard, H.Bichsel and T.W.Bonner The disintegration of nitrogen by fast neutrons. Nucl. Phys. 1959, 14:277.
    
    103 C.H.Johnson et al. Interaction of Fast Neutrons With Nitrogen. Phys.Rev. 1950, 80:818.
    
    104 B.Leroux et al. Study of The (n, alpha) Reactions on The Nuclei ~(16)O and ~(14)N at 14.9 MeV. NuclJPhys.A 1968, 116:196.
    
    105 GSchmidt et al. Desintegration of Nitrogen by Fast Neutrons. Nucl.Phys.A 1967, 103:238.
    
    106 J.L.Fowler and C.H.Johnson Differntial Elastic Scatttering Cross Sections for Neutrons on Nitrogen. Phys.Rev. 1955, 98:728.
    
    107 J.Chardine et al. Neutron Elastic and Inelastic Scattering from ~(14)N Between 7.7 and 13.5 MeV Centre D'etudes Nucleaires,Saclay,Reports, 2506 ,1986.
    
    108 J.A.Templon et al. Neutron Scattering Cross Sections from ~(14)Nand ~9Be at 11, RAND 17MeV. Nucl.Sci.Eng. 1985,91:451.
    
    109 M.Hyakutake et al. Elastic and Inelastic Scattering of 14.1 MeV Neutrons by ~(14)N. Japanese Peports to E.A.N.D.C., 1971,22:30.
    
    110 B.Lundberg, S.Schwarz and H.O.Zetterstroem Elastic Scattering of 14.8 MeV Neutrons From ~(14)N and ~(16)O. Arkiv foer Fysikl967, 34:247.
    
    111 N.Olsson, E.Ramstroem and B.Trostell Neutron Elastic and Inelastic Scattering From Beryllium, Nitrogen and Oxygen at En=21.6 MeV. Nucl. Phys. A509(1989)161.
    
    112 F.GPerey and W.E.Kinney Nitrogen neutron elastic and inelastic scattering cross sections from 4.34 to 8.56 MeV. Oak Ridge National Lab. Reports, 4805, 1974.