碳纤维增强塑料(CFRP)预应力筋砼结构设计基本原则研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维作为一种新型材料,以其密度小、模量高、强度高、刚度高、无磁性等优良性能广泛应用于各种领域,碳纤维预应力筋(CFRP)也以其优良特性应用于土木工程结构中,自从八十年代后期开始,欧、美、日本等国开始采用纤维塑料筋(Fiber Reinforced Plastic)这种新型防腐材料来代替钢筋,并开展了纤维塑料筋的材料特性和结构性能研究。在实验研究和工程应用等方面均取得了很大成果。目前,我国正在大力进行基础设施建设,从防腐性、经济性以及生产的难易程度来看,碳纤维塑料筋在道桥、水工建筑等方面有着很大的应用前景。因此,对其在混凝土结构中应用的研究有着很大的社会效益和经济效应。
     混凝土结构设计方法从以弹性理论为基础的容许应力法发展到极限状态的设计方法,把单一的安全系数改为分项安全系数,把不同的材料和不同的荷载以及不同的工作情况都用不同的安全系数区分开来,使不同的构件具有比较一致的安全可靠性,而部分荷载系数和材料系数是根据统计资料用概率方法确定。
     本文介绍了可靠性理论的基本原理和结构可靠度的计算方法,结构可靠度的计算方法主要有一次二阶矩法、JC法、蒙特卡洛法,并对荷载和结构抗力的统计规律进行分析,分析和总结了国内外碳纤维的基本性能、发展状况以及在工程上的应用情况,得出碳纤维预应力筋的强度分布规律为正态分布的结论,引用加拿大的一座预应力桥梁,运用可靠性理论对其进行可靠度分析,结果证明,运用蒙特卡洛法进行可靠度分析是切实可行的。
     本文所采用的计算方法,同样也适用于土木工程中类似的预应力结构,在工程结构设计中具有重要的参考价值。
The Carbon Fiber as a new material is widely used in all area with its little density, high module, high intensity and high stillness. The Carbon Fiber Reinforced Plastic (CFRP) is also widely used in the civil engineering construction with its high characteristic. Since later 1980, Europe, American and Japan use Fiber Reinforced Plastic to replace steel strand, and study its material and structure properties. Achieving much in experiment research and engineer application. The foreground of CFRP is visible in building and bridge. It is benefit to society and economy to study its application in concrete structure.
    The analysis on concrete structure has developed from the permissible stress method based on elastic theory to the limit-state design. The single safety coefficient was replaced by separate safety coefficient. The safety coefficients were used to discern different material, loads and work conditions. In this way, the reliability in different structures is consistent. Some of the load factors and material factors were defined according to statistical data.
    Some calculating method based on reliability theory such as JC method, MONTE CARLO method are described in this paper, and the statistic regularity for loads and structure resistance is given. The basic performance, development condition and application in the engineering are summarized. A prestressed Canada bridge is used to evaluate its reliability using reliability theory. The results suggest that the reliability analysis using Monte Carlo Method is feasible.
    The calculation method of this text can fit up to the similar prestressed construction in civil engineering as well. It has important reference value in engineering design.
引文
[1] Leadline, Carbon Fiber Tendons Bars. Technical Data Report, Mitsubishi Kasei Corp.. Tokyo,Japan, 1992
    [2] Hamid Saadatmanesh, Fares E. Tannous, Long-Term Behavior of Aramid Fiber Reinforced Plastic (AFRP) Tendons, ACI Materials Journal, V.96,No.3,May-June, 1999
    [3] Bedard, C. Composite Reinforcing Bars: Assessing Their use in Construction. Concrete International, 1992; 14(1)
    [4] Benmodrane B, et al. Flexural Response of Concrete Beams Reinforced with FRP Reinforcing Bars. ACI, 1996, 93(1)
    [5] Javier Malvar L. Tensile and Bond Properties of GFRP Reinforcing Bars. ACI, 1995,92(3)
    [6] Nanni A.FRP Reinforcement for Concrete Structures . Elsevier Science Publlishers, 1993
    [7] Brown V L, Barthdomew C L. Glass Reinforcement in Concrete Members. ConcreteInternational, 1992,14(19)
    [8] Bank, L.C.;Gentry, T.R.;and Barkatt,A., Accelerated Test Methods to Determine the Long-term Behavior of FRP Composite Structures: Environmental Effects, Journalof Reinforced Plastics and Composites, V.14, No.6, 1995
    [9] Clarke, J.L.. The Need for Durable Reinforcement. In Alternative Materials for the Reinforcement and Prestressing of Concrete, ed. By J.L.Clarke, Blacki, 1993
    [10] Tannous. F. E. and Saadatmanesh. H.. Environmental Effects on Mechanical Properties of E-Glass FRP Rebars. ACI Materials journal, V.95, No.2, Mar-Apr. 1998
    [11] State-of-the-Art Report on Fiber Reinforced Plastic Reinforcement for Concrete Structures, ACI 440R-96, American Concrete Institute, Farmington Hills, 1996
    [12] Luc R. Taerwe. FRP Developments and Applications in Europe. Fiber-Reinforced-Plastic(FRP)
    [13] Yuan, W., 2000, Slenderness Effects in FRP-Reinforced Concrete Columns, MS thesis, University of Cincinnati, Cincinnati, Ohio
    [14] Lawrence C. Bank, Moshe Puterman, and Amnon Katz, The Effect of Material; Degradation on Bond Properties of Fiber Reinforced Plastic Reinforcing Bars in Concrete, ACI Materials Journal, May-June, 1998
    
    
    [15].薛伟辰.纤维塑料筋在混凝土结构中的应用.工业建筑,1999.29(2)
    [16] 吴琪琳.碳纤维强度的WEIBULL分析理论,高科技纤维与应用,1999
    [17] 碳纤维预应力混凝土梁.中国第一公路勘测设计研究院
    [18] 吴世伟.结构可靠度分析.人民交通出版社,1990
    [19] 居滋培.可靠性工程.原子能出版社,2000
    [20] 何国伟.可靠性工程概论.国防工业出版社,1989
    [21].日本可靠性研究委员会编.可靠性初级教程.人民邮电出版社,1978
    [22] 许贤敏.碳纤维增强塑料筋束预应力混凝土桥梁.国外公路,1996
    [23] 坪内和夫.可靠性设计.机械工业出版社,1983
    [24] 盐见弘.可靠性工程基础.科学出版社,1982
    [25] 许陇云.可靠性基础及其应用.机械工业部仪表局,1985
    [26] 郭永基.可靠性工程原理.清华大学出版社,2002
    [27] 杨林杰.碳纤维的发展与建议.广西化纤,1999
    [28] 王国全.具有广泛应用前景的碳纤维.今日科技,1998
    [29] 高技术材料—碳纤维.广西化纤通信,2000
    [30] 张俊华.结构可靠性设计与分析.宇航出版社,1989
    [31] 中华人民共和国交通部标准.公路工程技术标准.,1983
    [32] 张建中.“蒙特卡洛法”数学的实践与认识.№1,2,1974
    [33] 贺福、王茂章.碳纤维及其复合材料.科学出版社,1998
    [34] 王善元、张宇光.纤维增强复合材料.中国纺织大学出版社,1998
    [35] 许贤敏.碳纤维增强塑料筋束施加预应力的预制砼大梁.云南交通科技,1996
    [36] 沃西源.国外几种碳纤维性能比较及初步分析.高科技纤维与应用,2000
    [37] R.B.Pipes and B.W. Cole on the off-axis Strength Test for Amisotropic Materials J.Composite Materials, 1973
    [38] 周祖福.复合材料学.武汉工业大学出版社,1995
    [39] 刘云旭.新型材料及其应用.华中理工大学出版社
    [40] 罗丽珊.碳纤维发展状况.广西化纤,1998
    [41] 姜天华.碳纤维复合材料载土木建筑结构中的应用及其前景,2000
    [42] 闻荻江.复合材料原理.武汉工业大学出版社,1998
    [43] 高科技纤维与应用.浅议碳纤维筋基本性能及研究现状,2001
    [44] B.C.Hoskin and A.A.Beker.复合材料原理及其应用.科学出版社,1992
    [45] 王荣国.复合材料概论.哈尔滨工业大学出版社,1999
    [46] 陈雅福.新型建筑材料.中国建材工业出版社,1994
    
    
    [47] 中华人民共和国交通部标准.公路桥涵钢筋混凝土结构设计规范,1983
    [48] 李宏男,赵颖华,黄承逵.纤维增强复合材料在土木工程中的研究与应用.第二届全国土木工程用纤维增强复合材料应用技术学术交流会
    [49] 赵稼祥.碳纤维的发展与应用.先进制造与材料应用技术,1996
    [50] 朱宁.碳纤维的性能与应用.北京纺织,1998;
    [51] 贺福,王淑芳.用韦氏理论评价碳纤维抗拉强度的分散性.高科技纤维与应用,2001
    [52] 王曼霞,赵稼样.碳纤维的发展、问题与对策.全国第十届复合材料学术会议论,文集[C],1998,881-886
    [53] 柯泽豪.碳纤维研究发展之现状与未来.高科技纤维与应用,2000
    [54] 赵稼祥.碳纤维市场及发展.高科技纤维与应用,1998;
    [55] 贺福,王淑芳.用韦氏理论评价碳纤维抗拉强度的分散型.高科技纤维与应用,2001
    [56] 中华人民共和国交通部标准.公路桥涵设计总则及荷载规范,1983;
    [57] 何政,欧进萍.(FRP)筋及其配筋混凝土构件的力学性能与智能特性.第二届全国土木工程用纤维增强复合材料应用技术学术交流会,2000
    [58] 张强,宋安民编译.FRP材料在日本预应力混凝土桥梁及其它结构中的应用.国外桥梁,1996
    [59] 朱泽贺.碳纤维—一种高性能的新兴工业材料.福建轻纺,第138期
    [60] 曾威,黄京群译校.公路桥梁标准规范.美国各州公路和运输工作者协会,1980
    [61] 李国豪、石洞.公路桥梁荷载横向分布计算.人民交通出版社,1987
    [62] 钱钟毅.横向铰接梁板荷载横向分布系数计算图表,1964
    [63] 林元培.梁式桥荷载横向分布计算.华东市政工程设计院,1967
    [64] 林元培.装配式横向铰接梁式板桥横向分布系数的计算.土木工程学报,1996
    [65] 姚玲森,程翔云.钢筋混凝土梁桥.人民交通出版社,1982
    [66] 姚玲森.桥梁工程.人民交通出版社,1997