自锚式悬索桥地震非线性时程响应分析和简化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市桥梁向美观、大跨的方向发展,自锚式悬索桥的建造逐渐增多,这种桥梁的结构力学行为和性能成为研究热点,论文对自锚式悬索桥地震响应的研究正是基于这样的背景。考虑作为生命线工程的桥梁结构,在地震灾害发生后所造成的严重后果,同时现有设计规范不能适用于此类桥型的抗震分析,论文全面分析自锚式悬索桥动力特性和地震响应的研究现状,详细研究自锚式悬索桥地震分析方法,总结并概括自锚式悬索桥动力特性和地震响应研究的最新成果。针对自锚式悬索桥自由振动特性和地震激励下结构响应,详细推导了自锚式悬索桥自由振动微分方程,对多种激励方式下自锚式悬索桥非线性时程响应进行深入研究,提出自锚式悬索桥地震响应的简化计算方法。论文主要开展了以下几方面的研究工作:
     (1)应用广义泛函变分原理,采用经典解析方法推导自锚式悬索桥自由振动微分方程。考虑到自锚式悬索桥不同于普通地锚式悬索桥的特点,综合考虑大缆纵向变形、加劲梁压弯耦合效应、剪切和垂跨比等多种因素影响,根据Hamilton原理,应用广义泛函变分方法推导三跨连续自锚式悬索桥自由振动微分方程,针对常见自锚式悬索桥的结构特征,对微分方程进行简化,推导这类桥梁的纵向振动频率计算公式、竖向振动频率计算公式以及自由扭转振动的振型计算公式和简化后的横向振动简化微分方程,研究加劲梁和桥塔与边墩之间约束强弱等边界条件对自由振动特性的影响。
     (2)推导自锚式悬索桥考虑几何非线性和初始内力等因素的加劲梁单元刚度矩阵和缆索单元刚度矩阵表达形式。论文研究分析了采用有限元方法计算自锚式悬索桥地震响应时加劲梁单元和缆索单元的刚度矩阵的构成。考虑自锚式悬索桥加劲梁承受轴向压力的结构受力特点,推导加劲梁单元刚度矩阵的表达式;忽略大变形刚度矩阵,计入线刚度矩阵和几何刚度矩阵,推导缆索单元刚度矩阵表达式;研究整体坐标系下缆索单元刚度矩阵的转换方法。在地震响应分析中,针对缆索支撑结构的单元刚度矩阵不同于一般结构的特点,对由于荷载作用下的结构大位移、缆索自重垂度和缆索初始内力等因素产生自锚式悬索桥的几何非线性,采用Newton-Raphson迭代法、Ernst公式和叠加初始内力产生的几何刚度项分别考虑。
     (3)采用二维相干函数模型和三角级数法编制人工地震波生成程序,利用大质量法详细研究不同激励方式下自锚式悬索桥非线性时程响应。基于二维相干模型,假定静力非线性平衡状态为桥梁结构地震响应分析的初始状态,详细研究人工地震波功率谱模型和部分相干函数模型后,选择Hao二维相干函数模型,考虑垂直地震波传播方向各支点影响,编制出可综合考虑频率对视波速影响以及不同支点间非平稳调制函数差异等因素的人工地震波生成程序,并合成实桥的六个支点的地震加速度时程。分别研究考虑几何非线性、行波效应和部分相干效应的多点激励,应用大质量法和所生成的人工地震波,详细分析结构在强地震荷载作用下桥塔、墩柱地震响应特性,最后考虑材料非线性、几何非线性等因素,对自锚式悬索桥在多维一致激励、多维非一致激励下的结构响应进行分析。分析研究表明:在静力非线性平衡状态下,几何非线性对自锚式悬索桥地震响应影响较小;行波效应会使弯矩极值滞后,加劲梁跨中位移随着地震波传播速度而增大,考虑行波效应时桥塔、加劲梁的弯矩均比考虑一致激励的弯矩大;考虑垂直地震波传播方向各支点间的二维相干效应对塔、梁交接处和塔底弯矩和位移有一定影响,但二维相干效应不显著,故对于自锚式悬索桥地震响应仅考虑一维相干效应,二维相干影响可忽略;材料塑性使能量耗散,对结构地震响应峰值的有一定影响。
     (4)归纳总结出影响自锚式悬索桥地震响应的4个无量纲参数,研究加劲梁参数与垂跨比参数的基准值和塔梁参数、桥塔参数的设计计算曲线与表格。详细研究自锚式悬索桥加劲梁的主跨长度、宽度、高度、桥塔高度、桥塔根部单柱截面尺寸、垂跨比和阻尼比等结构参数对自锚式悬索桥地震响应的影响,分析总结上述各个结构参数的影响趋势和相关性,进一步优选并将相关结构参数组合为4个无量纲参数:加劲梁参数k_1、塔梁参数k_2、桥塔参数k_3和垂跨比k_4。充分考虑桥梁主要尺寸的变化范围和不同地震激励模式,通过大量的结构地震响应计算分析,在确定加劲梁参数基准值为0.037和垂跨比基准值0.125的基础上,详细计算分析塔梁参数和桥塔参数,得到自锚式悬索桥与这两个结构参数相关数值曲线和表格,可供结构方案设计或初步设计参考使用。
     (5)研究自锚式悬索桥加劲梁参数和垂跨比的计算修正系数,提出自锚式悬索桥地震响应的简化计算方法,并验证其可行性。研究加劲梁参数和垂跨比对自锚式悬索桥地震响应的影响,通过对这两个结构参数的修正,即加劲梁宽度修正系数k_β和垂跨比修正系数k_λ,给出加劲梁宽度修正系数和垂跨比修正系数相关图表。基于弹性概念采用根据应力和位移评价地震响应的原则,提出采用加劲梁参数、塔梁参数、桥塔参数和垂跨比4个参数的自锚式悬索桥地震响应的简化计算方法,由此可简便地计算恒载应力和地震荷载总应力与恒载应力的比率(塔根应力放大因子)、塔加劲梁交接处桥塔恒载应力与地震荷载产生总应力与恒载应力的比率(塔梁交接处桥塔应力放大因子)、地震作用下加劲梁跨中最大竖向位移和塔顶最大水平位移。论文通过对5座实桥计算比较,初步验证自锚式悬索桥地震响应简化计算方法的可行性。
As the development of city bridge is changing to beautiful and long, the construction of self-anchored suspension bridge is more and more. To study on structure mechanics behavior and performance of this bridge structure is becoming hot point and the thesis that studies on seismic response of self-anchored suspension bridge is based on this background. Considering bridge structure as life-line and disastrous consequence after seismic and the current specified criteria to be not fit for analysis seismic of this style bridge, the thesis roundly analyzes current situation research of dynamic feature and seismic response and studies on resistance seismic analysis method of self-anchored suspension bridge in detail, and it summarizes recently-researched achievement of self-anchored suspension bridge free vibration and seismic response. Aimed at free vibration and structure response under seismic excitation of self-anchored suspension bridge, the thesis achieves differential equation of self-anchored suspension bridge free vibration, and under different excitation deep analyzes response of non-linear time-history, and brings forward simplified approach that analyzes seismic response of self-anchored suspension bridge. The chief research works of the thesis are as follows:
     (1) Application of generalized variation principle and classic analytical method, the thesis presents differential equation of self-anchored suspension bridge free vibration, and studies on boundary constraint conditions (such as connection of stuffiness girder, tower and side pier each other) affection to free vibration. Considering self-anchored suspension bridge characteristic, which is different to ordinary suspension bridge, synthetically taking into account longitudinal displacement of cable, coupling effect of stiffness girder axial and flexural action, shearing and ratio of rise to span etc., according to Hamilton principle, the thesis applies of generalized variational principle to present differential equation of self-anchored suspension bridge free vibration. Aimed at structural feature of usual three-span continual self-anchored suspension bridge, simplified differential equation, free vibration frequency formulas of longitude and vertical is achieved, and the thesis still presents formula of torsional vibration style and simplified differential equation of transverse vibration.
     (2) Considering geometric non-linearity and initial load, the thesis presents element stiffness matrix expression of stiffness girder and cable. When based on FEA to analyze seismic response of self-anchored suspension bridge, it studies on stiffness girder and cable element stiffness matrix's component. Taking into account structural characteristic that stiffness girder bears axial compression, it presents expression of girder element stiffness matrix. Neglecting large-displacement stiffness matrix, considering linear and geometric stiffness matrix, it presents expression of cable element stiffness matrix. The thesis still studies on conversion of cable element stiffness matrix under global coordinates. In the analysis of seismic response, aimed at structural element stiffness matrix's characteristic that the structure to be supported by cable is different to others, for geometric nonlinear factors which is brought forth by structural large-displacement, self-load's rise to span of cable and initial load etc., the thesis applies to Newton-Raphson's iterative method, Ernst's formula and addition geometric stiffness matrix which is brought forth by initial load to take into account, respectively.
     (3) Based on 2D-coherence function model and triangular series method, the thesis programs to produce artificial seismic wave, and under different seismic excitations to apply of great mass method, it analyzes nonlinear time-history response of self-anchored suspension bridge in detail. Based on 2D-coherence model, assumed static nonlinear balance to be as initial state of bridge structure seismic response analysis, after studying on PSD (power spectral density) function model of artificial seismic wave and incoherence function model, considering effect of vertical seismic wave promulgating direction to other supported points, selecting Hao's 2D-coherence model, applying of triangular series method and MATLAB the thesis achieves artificial seismic wave program and produces six points artificial seismic acceleration waves of the actual bridge. Considering geometric non-linearity, wave passage effect and incoherence effect, it studies on multi-support excitation. Applying of great mass method and artificial seismic wave, under strong shock, the paper analyzes seismic response character of towers and piers in detail. At last, considering material and geometric nonlinear, it analyzes self-anchored suspension bridge structural response under multi-dimension uniform and non-uniform excitation. Under static nonlinear balance state, it shows that the effect of geometric nonlinear is little to seismic response; the time that the moment occurs to crest value can be lagged and the girder mid-span displacement will increase as seismic wave promulgating velocity increase; comparing with uniform excitation, when taking into account wave passage effect, moment of tower and girder is larger than that of uniform excitation; considering every support point's coherence effect each other which their connecting lines are vertical with seismic wave promulgating direction, it will affect moment of tower bottom and girder tower's interface and displacement, but 2D coherence effect is not obvious, so 2D coherence effect may be neglected and only considered 1D coherence effect in the seismic response analysis; plastic material may disseminate energy, and it can affect structural crest value of seismic response.
     (4) Summarizing four dimensionless parameters which affect seismic response of self-anchored suspension bridge, studying on reference value of girder and ratio of rise to span parameters, presenting design curves and tables which corresponding tower girder parameter and tower parameter. Studying on effect of parameters, which include main-span, girder's width and height, tower's height, area of single tower bottom, ratio of rise to span and damping ratio etc. parameters. Through analyzing those parameters' affection current and relativity and furthermore optimum seeking to constitute, the thesis presents four dimensionless parameters, which are girder parameter k_1, tower girder parameter k_2, tower parameter k_3 and ratio of rise to span ratio k_4. Adequately considering variation range of bridge's dimension and different seismic excitation model, based on girder parameter and ration of rise to span parameter to be 0.037 and 0.125 respectively, through enough analyzing, calculating tower girder and tower parameters in detail, the thesis achieves curves and tables that are correlation with the above-mentioned two parameters, and the curves and tables may be used in structural plan design or initial design.
     (5) Studying on amended parameters correlation with girder and ration of rise to span, presenting simplified approach to analyze seismic response of self-anchored suspension bridge and checking its feasibility. Analyzing affection of girder and ration of rise to span parameters to seismic response, through two structural amended parameters, that is, girder width amended parameter k_B and ration of rise to span amended parameter k_λ, the thesis achieves correlation tables. Based on elastic concept and applied of stress and displacement to estimate seismic response, presenting simplified approach that applies of girder, tower girder, tower and ration of rise to span parameters to analyze seismic response of self-anchored suspension bridge. The approach may expediently calculate amplification factor of tower bottom that is specific value total stress to be produced by dead-load stress and seismic stress with dead-load stress, and amplification factor of tower and girder interface that is specific value total stress to be produced by dead-load stress and seismic stress with dead-load stress, and under seismic effect it may still calculate maximal vertical displacement of mid-span and maximal horizontal displacement on the tower top. Through five actual self-anchored suspension bridges to check, it may draw a conclusion that simplified approach is feasible to analyze seismic response of self-anchored suspension bridge.
引文
[1] 张哲,窦鹏,石磊,刘春城.自锚式悬索桥的发展综述[J].世界桥梁,2003.1
    [2] Man-Chung Tang. San Francisco-Oakland Bay Bridge Design Concepts and Alternatives[A]. IABSE 2004
    [3] 楼庄鸿.楼庄鸿桥梁论文集[M].北京:人民交通出版社,2004.11
    [4] 邱文亮.自锚式悬索桥非线性分析与试验研究[D].大连:大连理工大学学位论文,2004
    [5] 潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001.10
    [6] 林家浩,张亚辉.随机过程的虚拟激励法[M].北京:科学出版社,2004.9
    [7] 黄龙生,刘勇生,何度心.9WCEE有关桥梁抗震研究论文综述[J].世界地震工程,1990.4
    [8] 孙立民,范立础.阪神地震后日本桥梁抗震设计规范的改订[J].同济大学学报,2001.1
    [9] 范立础,胡世德。叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.5
    [10] 李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2002.3修订版
    [11] 谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态,2003.10
    [12] 王涛,李瑞华.结构抗震设计理论的发展过程和方向[J].技术交流,2005.5
    [13] 蔡健,周靖,禹奇才.建筑抗震设计理论研究进展(J).广州大学学报(自然科学版),2005.2
    [14] 赵岩.桥梁抗震的线性非线性分析方法研究[D].大连:大连理工大学学位论文,2003
    [15] 林家浩,钟万勰,张亚辉.大跨度结构抗震计算的随机振动方法[J].建筑结构学报,2000.2
    [16] 曹晖,赖明,白绍良.小波理论在结构抗震研究中的应用探讨[J].世界地震工程,2001.9
    [17] 叶燎原,肖梅玲.基于小波变换的地震反应分析[J].世界地震工程,2001.6
    [18] Yamu J. Kuwamura H. Application of wavelets to analysis and simulation of earthquake motions[J]. Earthquake Engineering and Structural Dynamics, 1999.28
    [19] 李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用[M].北京:科学出版社,2004.12
    [20] Mounir K. Berrah, Eduardo Kausel. a Modal Combination Rule for Spatially Varying Seismic Motions[J]. Earthquake Engineering and Structural Dynamics, Vol.22 791~800 (1993)
    [21] Michel Kahan, Rene-Jean Gibert, Pierre-Yves Bard. influence of seismic waves spatial variability on bridges-a sensitivity analysis [J]. Earthquake Engineering and Structural Dynamics, Vol.25 795—814 (1996)
    [22] Ahmed M. Abdel Ghaffar , Lawrence I.Rubin. Suspension Bridges Response to Multiple-Support Excitations[J]. Journal of Structural Engineering Mechanics Division, Vol.108 No.EM2, 419—435, 1982.4
    [23] Ahmed M. Abdel Ghaffar , Lawrence I.Rubin. Lateral Earthquake Response of Suspension Bridges [J]. Journal of Structural Engineering, Vol.109, No.3 664-675 (March, 1983)
    [24] Ernesto Heredia-Zavoni, Erik H. Vanmarcke. Seismic Random-Vibration Analysis of Multi Support Structural Systems [J]. Journal of StructuralEngineering Mechanics, Vol.120, No.5 1107—1128 (May, 1994)
    [25] G. O. Maldonado, M. P. Singh. an Improved Response Spectrum Method forCaculating Seismic Design Response Part 2: Non-Classically Damped Structures [J]. Earthquake Engineering and Structural Dynamics, Vol.20 637—649 (1991)
    [26] Mohammed Ettouney, Adam Hapiy, Ruben Gajer. Frequency-domain Analysis of Long-Span Bridges Subjected to Nonuniform Seismic Motions[J]. Journal of Bridge Engineering, 577—586 NOV/DEC. 2001
    [27] R. A. Burdisso, M. P. Singh. Multiply Supported Secondary Systems Part I: Response Spectrum Analysis[J]. Earthquake Engineering and Structural Dynamics, Vol.15 53—72 (1987)
    [28] M. P. Singh, R. A. Burdisso. Multiply Supported Secondary Systems Part II: Seismis Inputs[J]. Earthquake Engineering and Structural Dynamics, Vol.15 73-90 (1987)
    [29] Aly S. Nazmy, Ahmedm M. Abdel-Ghaffar. Non-linear Earthquake Response Analysis of Long-span Cable-stayed Bridges : Theory[J]. Earthquake Engineering and Structural Dynamics, Vol.19 45—62 (1990)
    [30] Aly S. Nazmy, Ahmedm M. Abdel-Ghaffar. Non-linear Earthquake Response Analysis of Long-span Cable-stayed Bridges: Applications[J]. Earthquake Engineering and Structural Dynamics, Vol.1963—76 (1990)
    [31] Mounir Berrah, Eduardo Kausel. Response Spectrum Analysis of Structures Subjected to Spatially Varying Motions[J]. Earthquake Engineering and Structural Dynamics, Vol.21 461—470 (1992)
    [32] Said M. Allam, T. K. Datta. Response Spectrum Analysis of Suspension for Random Ground Motions[J]. Journal of Bridge Engineering, NOV./DEC. 2002, 325—337
    [33] Armen Der Kiureghhan, Ansgar Neuenhofer. Response Spectrum Method for Multi-support Seismic Excitations [J]. Earthquake Engineering and Structural Dynamics, Vol.21 713—740 (1992)
    [34] Robert K. Wen. Seismic Response of and Design Aids for Arch Bridges[J]. Journal of Structural Engineering, Vol.119 No.10 Oct.1993
    [35] Andrew C. Guyader. A Statistical Approach to Equivalent Linearization with Application to Performance-Based Engineering[D]. California Institute of Technology, 2003
    [36] Charles Morton Krousgrill, Jr. A Linearization Technique for the Dynamic Response of Nonlinear Continua[D] California Institute of Technology, 1981
    [37] P-T. Dimitrios Spanos. Linearization Technique for Non-linear Dynamical Systems[D]. California Institute of Technology, 1977
    [38] 孙建梅、叶继红、程文濃.多点输入反应谱方法的简化[J].东南大学学报(自然科学版),Vol.33 No.5,647~651,2003.9
    [39] 陈道政,刘先明,叶正强,叶继红,李爱群.大跨度空间网格结构多点输入反应谱计算方法的研究[J].应用力学学报,Vol.22 No.3,409~413,2005.9
    [40] 刘先明,叶继红,李爱群.多点输入反应谱法的研究[J].土木工程学报,Vol.38 No.3,17~22,2005.3
    [41] 李忠献,黄健,丁阳,史志利.不同地震激励下大跨度斜拉桥地震反应分析[J].中国公路学报,Vol.18 No.3,2005.7
    [42] 刘洪兵,朱晞.大跨度斜拉桥多支承激励地震响应分析[J].土木工程学报,Vol.34 No.6,38~44,2001.12
    [43] 曹一山,朱晞.一种评价桥梁结构抗震性能的简化方法[J],北方交通大学学报,Vol.28 No.4,63~67,2004.8
    [44] 彭大文,黄朝光,王忠.单塔悬索桥的地震响应研究[J].中国公路学报,Vol.10 No.4,55~63,1997.12
    [45] 丰硕,项贻强,谢旭.超大跨度悬索桥的动力特性及地震反应分析[J].公路交通科技,Vol.22 No.8,31~35,2005.8
    [46] 赵灿晖.大跨度桥梁地震响应分析中的非一致激励模型[J].西南交通大学学报,Vol.37 No.3,236~240,2002.6
    [47] 李志岭,秦权.用Ritz法分析江阴悬索桥地震反应的影响[J].工程力学,Vol.20 No.1,32~36,2003.2
    [48] 刘洪兵,范立础.大跨桥梁考虑地形及多点激励的地震响应分析[J].同济大学学报,Vol.31 No.6,641~646,2003.6
    [49] 陈幼平,周宏业.天津永和桥地震反应的非线性效应分析[J].土木工程学报,Vol.30 No.3,16~22,1997.6
    [50] 李丽,蒋泽汉,邱新林,王振领.斜拉桥地震响应非线性时程分析[J].西南交通大学学报,Vol.37 增刊,39~43,2002.11
    [51] 王君杰,王前信,江近仁.大跨拱桥在空间地震动下的响应[J].振动工程学报,Vol.8 No.2,119~126,1995.6
    [52] 郑史雄,周述华,丁桂保.大跨度钢管拱桥的地震反应性能[J].西南交通大学学报,Vol.34 No.3,320~324,1999.6
    [53] 李涛.大跨度钢管混凝土拱的抗震分析[J].公路,10~13,1996.1
    [54] 郑家树,金邦元.大跨度钢管混凝土拱桥空间地震反应分析[J].西南交通大学学报,Vol.38 No.1,53~56,2003.2
    [55] 林家浩,钟万勰,张亚辉.大跨度结构抗震计算的随机振动方法[J].建筑结构学报,Vol.21 No.1,2002.2
    [56] 张文首,林家浩.大跨度结构考虑行波效应时平稳随机地震响应的闭合解[J].固体力学学报,Vol.25 No.4,446~450,2004.12
    [57] 李建俊、林家浩、张文首,张宏宝.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用,Vol.12 No.4,445~452,1995.11
    [58] 张亚辉、赵岩,张春宇.大跨度桥梁抗震分析的空间效应[J].中国铁道科学,Vol.23 No.6,90~94,2002.12
    [59] 张亚辉,林家浩.香港青马大桥抗震分析[J].应用力学学报,Vol.19 No.3,25~30,2002.9
    [60] 张亚辉、李丽媛,陈艳,林家浩.大跨度结构地震行波效应研究[J].大连理工大学学报,Vol.45 No.4,480~486,2005.7
    [61] 柳春光,林皋.桥梁结构push-over方法抗震性能研究[J].大连理工大学学报,Vol.45 No.3,395~400,2005.5
    [62] 崔高航.桥梁push-over方法研究[D].中国地震工程局工程力学研究所硕士学位论文,2003
    [63] 刘春城,郭立文,石磊.自锚式悬索桥空间耦合自由振动分析的理论研究[J]北华大学学报(自然科学版),Vol.4 No.1,84~88,2003.1
    [64] 刘春城,张哲,石磊.自锚式悬索桥的纵向地震反应研究[J] 武汉理工大学学报(交通科学与工程版),Vol.26 No.5,607~610,2002.10
    [65] 刘春城,张哲,石磊.压弯耦合效应下自锚式悬索桥自由振动研究[J] 哈尔滨工业大学学报,Vol.36 No.1,109~111,2004.1
    [66] 刘春城,张哲,石磊.虚拟激励法在自锚式悬索桥竖向地震反应分析中的应用[J]东南大学学报(自然科学版),Vol.33 No.4,522~525,2003.7
    [67] 刘春城.混凝土自锚式悬索桥三维地震反应研究[D].大连:大连理工大学博士学位论文,2003
    [68] 杨孟刚,胡建华,陈政清。独塔自锚式悬索桥地震响应分析[J] 中南大学学报(自然科学版),Vol.36 No.1,133~137,2005.1
    [69] 杨孟刚.磁流变阻尼器在大跨度桥梁上的减震理论研究[D].长沙:中南大学博士学位论文,2004
    [70] 丰硕,项贻强,谢旭,黄志义.自锚式悬索桥动力特性及结构参数影响规律研究[J]世界桥梁,50~53,2004.4
    [71] 张宏斌,孔宪京,张哲.自锚式悬索桥动力特性分析[J]公路交通科技,Vol.21 No.7,66~69,2004.7
    [72] 何胜春,郑献章,陈学军.自锚式悬索桥结构抗震分析[J] 浙江交通科技28~34,2004.2
    [73] 张启伟、冯敏棉.自锚式混凝土悬索桥的动力分析[J] 同济大学学报(自然科学版),Vol.12,1562~1566,2004.12
    [74] Cole C. McDaniel, Frieder Seihle. Influence of Inelastic Tower Links on Cable-Supported Bridge Response[J] Journal of Bridge Engineering, Vol. 10. No. 3,May.2005
    [75] 屈爱平,高淑英.梁-墩-桩基的动力特性研究[J].西南交通大学学报,Vol.36No.6 2001.12,641~644
    [76] 韩艳,陈政清.茅草街大桥动力特性有限元模拟与分析[J].公路,2003.3,66~69
    [77] R.W.克拉夫,J.彭津 著,王光远等 译,结构动力学[M].北京:科学出版社,1981
    [78] 陈仁福.大跨悬索桥理论[M].成都:西南交通大学出版社,1994
    [79] 小西一郎 著,戴振藩 译.钢桥(第五册) [M].北京:中国铁道出版社,1981
    [80] 小西一郎 著,张健峰译.钢桥(第九册) [M].北京:中国铁道出版社,
    [81] Ahrned M. Abdel Ghaffar. Free Lateral Vibrations of Suspension Bridges [J]. ASCE, Vol.104No.ST3, 1978.3, 503~525
    [82] Ahmed M. Abdel Ghaffar. Suspension Bridge Vibration: Continum Formulation[J]. ASCE, Vol.108 No.EM6, 1982.3, 1215~1232
    [83] Ahmed M. Abdel Ghaffar. Free Torsional Vibrations of Suspension Bridges [J]. ASCE, Vol.105No.ST4, 1979.3, 767~788
    [84] Ahmed M. Abdel Ghaffar. Vertial Vibrations Analysis of Suspension Bridges [J]. ASCE, Vol.106No.ST10, 1980.3, 2053~2075
    [85] A. M. Abdel Ghaffar, G.W. Housner. An analysis of the dynamic characteristics of a suspension bridge by ambient vibration measurements[R]. Pasadena California, 1977.1
    [86] 梁立孚.变分原理及其应用[M].哈尔滨:哈尔滨工程大学出版社,2005
    [87] 张汝清.固体力学变分原理及其应用[M].重庆:重庆大学出版社,1991
    [88] 胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981,
    [89] 卓家寿.弹塑性力学中的广义变分原理(第二版) [M].北京:中国水利水电出版社,2002
    [90] 林家浩,屈乃泗,孙焕纯.计算结构动力学[M].北京:高等教育出版社,1989
    [91] 同济大学数学教研室.高等数学[M].北京:高等教育出版社,1996
    [92] 蔡金标,凌道盛,徐兴.大跨度悬索桥振动分析的组合单元法[J].中国公路学报,2003.10,Vol.16 No.4,59~62
    [93] 戴晓春.自锚式悬索桥计算分析研究[D].成都:西南交通大学硕士学位论文,2005
    [94] 张哲,邱文亮.一座240m混凝土自锚式吊桥方案设计[J].东北公路,2003.4,Vol.26 No.4,91~92
    [95] 张洪金.混凝土自锚式悬索桥的力学性能分析与试验研究[D].大连:大连理工大学硕士学位论文,2004
    [96] 常付平.自锚式吊拉组合索桥的力学性能研究与分析[D].大连:大连理工大学硕士学位论文,2003
    [97] Fleming J F. Nonlinear Static Analysis of Cable-Stayed Bridge Structures[J].Comput. & Struct., Vol.10, 1979
    [98] Nazmy A S , Abdel-Ghaffar A M. Three-Dimensional Nonlinear Analysis of Cable-Stayed Bridge [J].Comput. & Struct., Vol.34 (2), 1990.257~271
    [99] Nazmy A S , Abdel-Ghaffar A M. Nonlinear Earthquake-Response Analysis of Long-Span Cable-Stayed Bridge [J].EESD., Vol.19, 1990.45~62
    [100] Aly Sadey Nazmy. Nonlinear Earthquake-Response Analysis of Long-Span Cable-Stayed Bridges Subjected to Multiple-Support Excitation[D].Princeton University, 1987
    [101] Saafan S A. Theoretical Analysis of Suspension Bridges[J].ASCE, ST92 (4), 1966
    [102] 潘家英,程庆国.大跨度悬索桥有限位移分析[J].土木工程学报,Vol.27(1),1994
    [103] 唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学博士学位论文,2003
    [104] 曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社,2005.3
    [105] 石磊.混凝土自锚式悬索桥设计理论研究[D].大连:大连理工大学博士学位论文,2004
    [106] 洪锦如.桥梁结构计算力学[M].上海:同济大学出版社,1998
    [107] 虞庐松.大跨度桥梁非线性地震反应研究[D].成都:西南交通大学博士学位论文,1999
    [108] 张哲.混凝土自锚式悬索桥[M].北京:人民交通出版社,2005
    [109] 范立础.桥梁抗震[M].上海:同济大学出版社,1997.11
    [110] 伍小平,冯启民,焦双健,李鸿晶.大跨度斜拉管线桥地震反应分析[J].地震工程与工程振动,Vol.21 No.3,2001.9:49~54
    [111] 王应良.大跨度斜拉桥考虑几何非线性的静、动力分析和钢箱梁的第二体系应力研究[D].成都:西南交通大学博士学位论文,2000
    [112] 秦权,孙晓燕,贺瑞,丁志峰,温国樑.特大跨钢桥对非一致地震地面运动的反应和人工波质量[A].北京:2006钢桥科技论坛全国学术会议交流论文集,2006.12,P46~59
    [113] Aly Sadek Nazmy. Nonlinear Earthquake-response Analysis of Cable-stayed Bridges Subjected to Multiple-support Excitations [D]. Princeton University, 1987.10
    [114] 朱镜清.结构抗震分析原理[M].北京:地震出版社,2002
    [115] 华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1997.6
    [116] 罗喜恒,消汝诚,项海帆.几何非线性问题求解的改进算法[J].公路交通科技,2005.12:P75~77
    [117] 欧进萍,王光远.结构随机振动[M].北京:高等教育出版社,1998
    [118] 杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动,Vol.14 No.4,1994.12,P1~5
    [119] 杜修力,胡晓,陈厚群.强震地运动随机过程模拟[J].地震学报,Vol.17No.1,1995.2,P103~109
    [120] 史志利,大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D].天津:天津大学博士学位论文,2004
    [121] M. Amin, A. H-S. Ang. Nonstationary Stochastic Model of Earthquake Motions[J]. ASCE, Voi. 94 EM2,1968, P559~584
    [122] 陈英俊,甘幼琛,于希哲.结构随机振动[M].北京:人民交通出版社,1993.6
    [123] 赵灿晖.大跨度钢管混凝土拱桥地震响应研究[D].成都:西南交通大学博士学位论文,2001
    [124] 梁嘉庆.大跨空间结构在非一致地震输入下的弹性响应分析[D].南京:东南大学硕士学位论文,2004
    [125] 张翠红.大跨度斜拉桥多点激励效应研究[D].南京:东南大学硕士学位论文,2004
    [126] Shinozuka M, Deodatis G. Stochastic Process Methods for Earthquake Ground Motion[J]. Probabilistic Engineering Mechanics, 1988, 3,03 P114-123
    [127] H. Hao. Effects of Spatial Varition of Ground Motion on Large Multiply-supported Structures[R]. No. UCB/EERC-89-06, 1989
    [128] 屈铁军,王前信.空间多点地震动合成(Ⅰ)基本公式[J].地震工程与工程振动,Vol.18 No.1,1998.3,P8~15
    [129] 邓建中,葛仁杰,程正兴.计算方法[M].西安:西安交通大学出版社,1985.5
    [130] 屈铁军,王前信.空间多点地震动合成(Ⅱ)合成实例[J].地震工程与工程振动,Vol.18 No.2,1998.6,P25~32
    [131] 绍兴县滨海大桥专题报告—悬索桥结构抗震分析报告[R].浙江省交通规划设计研究院,2004.3
    [132] 张治勇,孙柏涛,宋天舒.新抗震规范地震动功率谱模型参数的研究[J].世界地震工程,Vol.16 No.3,2000.9,P33~38
    [133] 李宏男,结构多维抗震理论[M].北京:科学出版社,2006.7
    [134] 谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.1
    [135] 沈聚敏,周锡元,高小旺,刘晶波。抗震工程学[M].北京:中国建筑工业出版社,2000
    [136] 王志清.P1水准下某悬索桥地震响应分析[D].武汉:华中科技大学硕士学位论文,2005.11
    [137] 博嘉科技.有限元基础分析ansys融会与贯通[M].北京:中国水利水电出版社,2002
    [138] 小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004
    [139] 吴东.多点激励下大跨度桥梁的地震反应分析[D].成都:西南交通大学硕士学位论文,2006
    [140] 葛军.钢筋混凝土超长结构地震行为行波效应研究[D].成都:四川大学硕士学位论文,2005
    [141] 谢开仲.大跨度钢管混凝土拱桥非线性地震反应分析与研究[D].广西:广西大学博士学位论文,2005
    [142] 黄侨,郑一峰,李光俊.预弯组合梁非线性全过程分析方法[J].中国公路学报,Vol.19 No.4,2006.7,P88~93
    [143] S. D. Kwon, S. P. Chang, Y. S. Kim, S. Y. Park. Aerodynamic Stability of Self-anchored Double Deck Suspension Bridge [J]. Journal of Wind Engineering and Industrial Aerodynamic, 54/55 (1995) : 25~34
    [144] Ho-Kyung Kim, Myeong-Jae Lee, Sung-Pil Chang. Non-linear Shape-finding Analysis of a Self-anchored Suspension Bridge[J]. Engineering Structure, 24 (2004) : 1547~1559
    [145] John A. Ochsendorf, David P. Billington. Self-anchored Suspension Bridges[J]. Journal of Bridge Engineering, Vol. 4 No. 3 August. 1999:151~156
    [146] 张哲,孙立刚.抚顺万新桥锚固跨应力分析[J].武汉理工大学学报,Vol.26,No.9 2004.9:54~56
    [147] 陈长明,樊铁石,石占良.钢筋混凝土自锚式悬索桥施工[J].公路,2004.12:54~56
    [148] 徐惠纯.桂林市丽泽自锚式悬索桥施工技术[J].铁道标准设计,2004(4):29~31
    [149] 魏华,陈妙统,徐栋.国内最大跨径钢筋混凝土主梁自锚式悬索桥[J].结构工程师,2004(3):77~82
    [150] 张明.天津第一座自锚式悬索桥—子牙河大桥简介[J].天津建设科技,2004(2):22~23
    [151] 张哲,石磊,黄才良,刘春城.延吉市布尔哈通河局子街自锚式混凝土悬索桥设计[J].公路,2003.8(下):85~86
    [152] 楼庄鸿.自锚式悬索桥[J].中外公路,Vol.22 No.3(2002.6):49~51
    [153] 乔东祥.自锚式悬索桥建造概况介绍[J].交通标准化,2004.8:78~81
    [154] 颜娟.自锚式悬索桥[J].国外桥梁,2002.1:20~22
    [155] 叶爱君.桥梁抗震[M].北京:人民交通出版社,2002
    [156] 李爱群,高振世.工程结构抗震设计[M].北京:中国建筑工业出版社,2005
    [157] 中华人民共和国国家标准.建筑结构抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社,2002
    [158] 中华人民共和国交通部部颁标准.《公路工程抗震设计规范》(JTJ004-89)[S].北京:人民交通出版社,1999.9
    [159] 秦权,楼磊.非经典阻尼对悬索桥地震反应的影响[J].土木工程学报,Vol.32No.3(1999.6):17~22
    [160] 吴永礼.计算固体力学方法[M].北京:科学出版社,2003
    [161] 乔仕奇,房浩,王兵,陈翼军.柔性悬索桥主梁施工工艺研究与分析[J].城市道路防洪,2006.7第4期,P100~102
    [162] 边定伟,何维利,李健刚,陈翼军.自锚式悬索桥钢加劲梁的设计[A].中国钢结构协会桥梁钢结构分会第五次学术年会论文集,2006.10,P171~184