骨头磨削过程传热及其反问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经外科手术已进入微创时代。经鼻入路进入颅底进行肿瘤摘除手术,以鼻腔为天然通道,避免了开颅过程对正常组织结构造成的破坏,对患者的创伤小、术后恢复快,受到了神经外科界的广泛关注。骨头磨削是经鼻颅底肿瘤摘除手术中常见的和基本的手术操作之一,磨削过程产生的热量会对骨头及邻近的脑神经和血管结构等关键组织带来热损伤,而目前有关神经外科骨头磨削热问题的研究还非常少。
     本文采用实验和数值模拟相结合的方法,对采用微型球形磨具的骨头磨削过程的传热问题及其反问题进行了研究。建立了骨头磨削过程产热模型并对骨头磨削过程的瞬态温度场进行了数值模拟;在此基础上,结合磨削过程的实验研究结果,研究了磨削过程的瞬态热流强度及其空间分布的反演问题,并依据反演结果,重构了骨头磨削过程的三维瞬态温度场;通过磨削实验,研究了磨削过程电机占空比与磨削热之间的函数关系,初步建立了磨削热实时估算模型,为磨削过程骨头温度的实时监控奠定了基础;最后,对加入冷却液的磨削热问题进行了研究。本文的具体研究内容及获得的主要结果包括:
     (1)针对采用微型球形磨具的骨头磨削过程,借助于机械磨削理论估算了磨具与骨头接触表面的热流分配系数,建立了骨头磨削过程的三维瞬态有限元热分析模型,通过数值仿真试验讨论了磨具运动方向(±x方向运动和±y方向运动)、磨具与骨头的接触角(0°、15°和30°)以及磨削切深(0.10mm、0.25mm和0.40mm)等磨削条件对磨削区热源分布的影响,并分析了不同磨削条件下骨头的三维瞬态温度场。
     (2)进行了新鲜牛大腿皮质骨的骨头干磨削(未加冷却液)实验研究,获得了在8种不同磨削工况下测点的瞬态温度信息。利用实验研究结果和Active set优化方法反演了不同磨削工况下进入骨头的磨削热,在此基础上重构了不同磨削工况下骨头的三维瞬态温度场。结果表明,当接触角为30°,磨削切深为0.40mm,进给速度为20mm/min时,骨头的瞬时最高温度接近210°C;此时,若以50°C作为人体组织出现热损伤的临界值,沿横向方向(y方向)热损伤范围将扩散到离磨削槽约3mm的区域,沿深度方向(z方向)热损伤范围将扩散到磨削表面下3mm的位置。
     (3)根据磨削实验获得的电机脉冲宽度调制(PWM)信号,以及通过反演获得的进入骨头的磨削热,探索了磨削过程电机占空比与磨削热之间的函数关系。结果表明,电机占空比与磨削热之间具有良好的线性相关性;当磨具沿±y方向进给时,函数的线性斜率略低于磨具沿±x方向进给时的斜率。对于所选择的三种模型条件,利用该线性函数估算了骨头的磨削热并利用前述的磨削过程瞬态有限元热分析模型获得了骨头的瞬态温度场,并与实验过程中获得的测点温度响应进行了对比,验证了该线性函数模型的有效性。上述构造为实现磨削温度的实时监控创造了条件。
     (4)针对前述利用机械磨削理论的磨具与骨头接触表面的热流分配估算模型存在的问题,将骨头磨削热问题归结为具有未知分布式移动热源的非稳态传热问题,通过空间函数和时间函数的叠加,构造了磨削区热流密度的瞬态分布函数,并分别利用顺序函数法(SFSM)和序列二次优化(SQP)方法对磨具与骨头接触表面的瞬时平均热流密度和热流密度的瞬时分布函数进行同时反演。文中通过数值仿真实验对上述的瞬态分布热源反演方法的有效性进行了验证,并结合骨头磨削实验获得的实测温度信息,反演了实验过程磨具与骨头接触表面的瞬时分布热流,在此基础上对实验过程骨头的瞬态温度场进行了重构。
     (5)针对临床中常用的常温滴灌冷却技术存在的问题,设计了一种适用于骨头磨削的低温喷雾冷却实验系统。通过实验获得了磨削槽正下方0.5mm、1.0mm和1.5mm处被磨削骨头的瞬态温度。实验结果表明,当磨具向后进给,冷却液温度为3°C,喷雾流量为120ml/h时,低温喷雾冷却具有明显的预冷效果,磨削槽正下方0.5mm处最高平均温度约为21.0°C;当磨具向前进给时,由于喷嘴朝向限制了冷却液进入磨削区,磨削槽正下方0.5mm处最高平均温度约为70.0°C,无法获得理想的降温效果。进一步,根据实验测量结果,采用考虑对流换热的有限元热分析模型和传热学反问题方法重构了喷雾冷却条件下骨头的温度场。数值结果表明,采用低温喷雾冷却技术,当磨具向后进给时,能够明显抑制43°C的热损伤边界向磨削表面下方的扩散范围。
Neurosurgery has entered the period of minimally invasive operation. Endoscopicendonasal approach, could avoid the damage to the normal tissues during the invasiveprocedures, thus has received extensively attention due to the less damage to humanbody and the fast recovery after operation. Bone grinding is common procedure in theneursurgery. The heat generated during the grinding process could bring thermaldamage to the key tissues, such as the bone and the adjacent cranial nerves, and thevascular structure. Till now, there are few researches concerning the thermal problem ofgrinding the neurosurgery bones.
     In this work, experimental and numerical simulation methods are combined tostudy the heat transfer in bone grinding using miniature spherical grinding tool. Thethermal model was established for the bone grinding process, and the transienttemperature field during this process was simulated. Using the experimental data ofbone grinding, the inverse problems were investigated on the transient heat fluxintensity and its spatial distribution. On the basis, the3-D transient temperature fieldduring bone grinding was reconstructed. The relationship between the duty cycle ratioof motor and the amount of heat flowing into bone during grinding was also studied,and a real-time model was preliminarily built to predict the grinding heat, whichestablished the foundation for the real-time monitoring of the temperature of boneduring the grinding. The heat transfer during grinding with the addition of cooling liquidwas investigated as well. The more detailed description of the research contents and theconclusions is as follows,
     (1) The heat flux distribution coefficient on the interface between bone andgrinding tool was determined based on mechanical grinding theory, and a3-D transientfinite element model was constructed for analyzing the temperature distribution duringbone grinding process using miniature spherical grinding tool. The effects of grindingconditions, such as motion direction of grinding tool (X direction and Y direction), thecontact angle (0°,15°and30°) between the grinding tool and the bone, and the cuttingdepth (0.10mm,0.25mm, and0.40mm), on the heat distribution in ground zone wasdiscussed with numerical simulation. Additionally, the3-D transient temperature fieldsof bone under different grinding conditions were analyzed as well.
     (2) The grinding experiments using fresh bovine cortical were carried out when no cooling is applied, and the measured temperature information was obtained for8grinding conditions. Then the optimization method of ‘Active set’ was utilized toinversely estimate the thermal conductivity of bone and the amount of heat entering tothe bone under different grinding conditions, and the3-D transient temperature fieldwas established. The results show that the instantaneous maximum temperature of thebone could reach up to210°C when the contact angle of tool is30°, the cutting depthand the feed rate are0.4mm and20mm/min, respectively. If50°C was set to be thecritical value for thermal damage of body tissue, the thermal damage could reach thearea of3mm from the surface of the grinding slot.
     (3) The relationship between the duty cycle ratio and the grinding heat wasexplored, on the basis of the PWM signal obtained from the grinding experiment andthe grinding heat entering the bones that calculated via the inversion method. A goodliner relationship was demonstrated between the duty cycle ratio and the grinding heat.It was found that the linear slope was slightly lower when the grinding tool moves alongthe x direction than that along the z direction. For the three selected grinding conditions,the linear function was used to predict the grinding heat, and the aforementionedtransient finite element thermal analysis model was utilized to get the transienttemperature field. By comparison with the temperature response obtained in experiment,the effectiveness of the linear function model was validated. All these results couldcontribute to the realization of the real-time monitoring of the grinding temperature.
     (4) The heat generation during bone grinding was considered as transient heattransfer problem with unknown distributed moving heat source, according to the existedproblems in the model of heat flux distribution within the interface between bone andgrinding tool, which was derived from the mechanical grinding theory. The transientdistribution function of heat flux in the grinding zone was constructed by combing thespatial and the time functions. Moreover, inversion was implemented for the transientaverage heat flux and the transient distribution function of heat flux on the interfacebetween bone and grinding tool using the sequential function specification method(SFSM) and the sequential quadratic programming method (SQP). The validity of theabove method was verified through numerical simulation. In addition, the transientdistribution of heat flux on the contact surface was inverted by integrating the real-timetemperature information obtained in the grinding experiments. The transienttemperature field during the measurement was inverted as well.
     (5) According to the disadvantages of room temperature irrigation technology commonly used in clinic, a cryogenic mist cooling experiment system was developedfor bone grinding. During experiment, transient bone temperature was measured at thelocation0.5,1.0, and1.5mm underneath the ground groove. The experimental resultsshow that when the grinding tool moves backward, the cryogenic (3°C) mist cooling at120ml/h flow rate has obvious pre-cooling effect, and the maximum averagetemperature measured at the location0.5mm beneath ground groove was about21.0°C; when the grinding tool moves forward, the position of the nozzle relative to thegrinding tool limits the coolant flowing to the ground zone, which results in poorcooling effect that the maximum average temperature measured at the location0.5mmbeneath ground groove was about70.0°C. Futher, with experimentally measuredtemperautre, the FEA thermal analysis model with convection heat transfer boundaryand inverse heat transfer method are applied to reconstruct the bone temperature fieldunder mist cooling. The numerical results indicate that with backward grinding motion,the cryogenic mist cooling technique can significantly surpress the43°C thermal injuryboundary propogating under the ground surface.
引文
[1]赵赋,王博,杨智君,吴胜田,王振民,张晶,刘丕楠.内镜下经鼻入路治疗颅底中央区恶性肿瘤[J].中国微侵袭神经外科,2013,18(5):193-196.
    [2] Eloy J A, Vivero R J, Hoang K, Civantos F J, Weed D T M, J.J. Casiano, R.R. Comparisonof transnasal endoscopic and open craniofacial resection for malignant tumors of theanterior skull base[J]. Laryngoscope,2009,119(5):834-840.
    [3] Hellwig D, Bauer B L. Minimally invasive neurosurgery by means of ultrathinendoscopes[J]. Acta Neurochirurgica Supplement (Wien),1992,54:63-8.
    [4] Jankowski R, Auque J, Simon C, al. e. Endoscopic pituitary tumor surgery[J]. Laryngoscope,1992,102(2):198-202.
    [5] Jho H D, Carrau R L. Endoscopic endonasal transsphenoidal surgery: experience with50patients[J]. Journal of Neurosurgery,1997,87(1):44-51.
    [6]张亚卓,王忠诚,赵德安.内镜经鼻蝶手术治疗颅底脊索瘤[J].中华神经外科杂志,2007,23(3):163-166.
    [7]鲁晓杰,王清,季卫阳.神经内镜下经鼻内-扩大蝶窦入路切除鞍结节脑膜瘤[J].中华神经医学杂志,2005,4(10):1045-1048.
    [8] Wang Q, Lu X J, Li B, al. e. Extended endoscopic endonasal transsphenoidal removal oftuberculum sellae meningiomas: a preliminary report[J]. Journal of Clinical Neuroscience,2009,16(7):889-93.
    [9]王清.神经内镜下经鼻扩大入路至中线腹侧颅底的解剖学研究[D].江苏:苏州大学,2010.
    [10] http://www.mayfieldclinic.com/PE-EndoPitSurg.htm.
    [11] Roitberg B Z, Dujovny M, Lim J. UltraPower surgical drill system evaluation[J]. SurgicalNeurology,1997,47(4):392-3.
    [12] Kondo S, Okada Y, Iseki H, Hori T, Takakura K, Kobayashi A, Nagata H. ThermologicalStudy of Drilling Bone Tissue with a High-speed Drill[J]. Neurosurgery,2000,46(5):1162-1168.
    [13] Udiljak T, Ciglar D, Skoric S. Investigation into bone drilling and thermal bone necrosis[J].Advanced Manufacturing Engineering Manager,2007,2:103-12.
    [14] Lundskog J. Heat and bone tissue. An experimental investigation of the thermal propertiesof bone and threshold levels for thermal injury[J]. Scandinavian journal of plastic andreconstructive surgery,1972,9:1-80.
    [15] Eriksson A, Albrektsson T, Grane B, D. M. Thermal injury to bone: A vital-microscopicdescription of heat effects[J]. International Journal of Oral Surgery,1982,11(2):115-121.
    [16] Bonfield W, Li C H. The temperature dependence of the deformation of bone[J]. Journal ofBiomechanics,1968,1(4):323-329.
    [17] Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S. Cortical bonedrilling and thermal osteonecrosis[J]. Clinical Biomechanics,2012,27:313-325.
    [18] Aslan A, Vatansever H S, Aslan G G, Eskiizmir G, Giray G. Effect of thermal energyproduced by drilling on the facial nerve: histopathologic evaluation in guinea pigs[J]. TheJournal of Laryngology&Otology,2005,119:600-605.
    [19] Abbas G M, Jones R O. Measurements of drill-induced temperature change in the facialnerve during mastoid surgery: a cadaveric model using diamond burs[J]. Ann Otol RhinolLaryngol,2001,110(9):867-870.
    [20] Xu D, Pollock M. Experimental nerve thermal injury[J]. Brain,1994,117(2):375-384.
    [21] Walsh P C, Marschke P, Ricker D. Patient-reported urinary continence and sexual functionafter anatomic radical prostatectomy[J]. Urology,2000,55(1):58-61.
    [22] Ong A M, Su L, Varkarakis I, Inagaki T, Link R E, Bhayani S B, Patriciu A, Crain B, WalshP C. Nerve sparing radical prostatectomy: effects of hemostatic energy sources on therecovery of cavernous nerve function in a canine model[J]. Journal of Urology,2004,172(4):1318-1322.
    [23] Brown J S, Sawaya G, Thom D H, Grady D. Hysterectomy and urinary incontinence: asystematic review[J]. Lancet,2000,356(9229):535-539.
    [24] Elliott-Lewis E W, Jolette J, Ramos J, Benzel E C. Thermal damage assessment of novelbipolar forceps in a sheep model of spinal surgery[J]. Neurosurgery,2010,67(1):166-171.
    [25] Bunch T J, Bruce G K, Mahapatra S, Johnson S B, Miller D V, Sarabanda A V, Milton M A,Packer D L. Mechanisms of Phrenic Nerve Injury During Radiofrequency Ablation at thePulmonary Vein Orifice[J]. Journal of Cardiovascular Electrophysiology,2005,16(12):1318-1325.
    [26] Hosono N, Miwa T, Mukai Y, Takenaka S, Makino T, Fuji T. Potential risk of thermaldamage to cervical nerve roots by a high-speed drill[J]. The Journal of Bone&JointSurgery (British Volume),2009,91:1541-4.
    [27] Sezek S, Aksakal B, Karaca F. Influence of drill parameters on bone temperature andnecrosis: A FEM modelling and in vitro experiments[J]. Computational Materials Science,2012,60(13-18).
    [28] Hillery M T, Shuaib I. Temperature effects in the drilling of human and bovine bone[J].Journal of Materials Processing Technology,1999,92-93302-308.
    [29] Matthews L S, C. H. Temperatures Measured in Human Cortical Bone when Drilling[J]. TheJournal of Bone&Joint Surgery,1972,54:297-308.
    [30] Shin H C, Yoon Y S. Bone temperature estimation during orthopaedic round bur millingoperations[J]. Journal of Biomechanics,2006,39(1):33-39.
    [31] Davidson S R, James D F. Measurement of Thermal Conductivity of Bovine CorticalBone[J]. Medical Engineering&Physics,2000,22:741-7.
    [32] Biyikli S, M.F. M, R. T. Measurements of thermal properties for human femora[J]. Journalof Biomedical Materials Research,1986,20:1335-1345
    [33] Sasaki M, Morris S, Goto T, Iwatsuki K, Yoshimine T. Spray-irrigation system attached tohigh-speed drills for simultaneous prevention of local heating and preservation of a clearoperative field in spinal surgery.[J]. Neurologia medico-chirurgica,2010,50(10):900-904.
    [34] Malkin S, Guo C, Grinding Technology: Theory and Applications of Machining withAbrasives,2008, Industrial Press: New York.
    [35] Malkin S, Guo C. Thermal Analysis of Grinding[J]. CIRP Annals-ManufacturingTechnology,2007,56(2):760-782.
    [36] Jaeger J C. Moving sources of heat and the temperature at sliding contacts[J]. Journal of theRoyal Society of New South Wales,1942,76:203-224.
    [37] Outwater J O, Shaw M C. SurfaceTemperatures in Grinding[J]. Transactions of the ASME,1952,74:73-86.
    [38] Hahn R S. The relation between grinding conditions and thermal damage in theWorkpiece[J]. Transactions of the ASME,1956,78:807-812.
    [39] Malkin S, Anderson R B. Thermal aspects of grinding. Part1-Energy Partition[J]. Journalof Engineering for Industry,1974,96(4):1177-1183.
    [40] Outwater J O, Shaw M C. Surface temperatures in grinding[J]. Trans. ASME,1952,74:73-78.
    [41] Takazawa K. Effects of grinding variables on the surface of hardened steel[J]. Japan Soc.Prec. Eng,1966,2:14-21.
    [42] Demetriou M D, Lavine A S. Thermal aspects of grinding, the case of upgrinding[J]. Journalof Manufacturing Science and Engineering,1999,122(4):605-611.
    [43] DesRuisseaux N R, Zerkle R D. Thermal analysis of the grinding process[J]. Journal ofEngineering for Industry,1970,92(2):428-434.
    [44] Guo C, Malkin S. Inverse Heat Transfer Analysis of Grinding, Part1: Methods[J]. Journalof Engineering for Industry,1996,118:137-142.
    [45] Guo C, Malkin S. Inverse Heat Transfer Analysis of Grinding, Part2: Applications[J].Journal of Engineering for Industry,1996,118:143-149.
    [46] Ju Y, Chandrasekar S, Farris T N. Theoretical analysis of heat partition and temperatures ingrinding[J]. Journal of Tribology,1998,120(4):789-794.
    [47] Lavine A S. A simple model for convective cooling during the grinding process[J]. Journalof Engineering for Industry,1988,110(1):1-6.
    [48] M.C. S. A simplified approach to workpiece temperature in fine grinding[J]. CIRP Annals-Manufacturing Technology,1990,39(1):345-347.
    [49]贝季瑶.磨削温度的分析与研究[J].上海交通大学学报,1964,33.
    [50] Li B, Zhu D, Pang J, J. Yang J. Quadratic curve heat flux distribution model in the grindingzone[J]. The International Journal of Advanced Manufacturing Technology,2011,54(9-12):931-940.
    [51] Doman D A, Warkentin A, Bauer R. Finite element modeling approaches in grinding[J].International Journal of Machine Tools&Manufacture,2009,49:109-116.
    [52] Anderson D, Warkentin A, Bauer R. Experimental validation of numerical thermal modelsfor dry grinding[J]. Journal of Materials Processing Technology,2008,204(1-3):269-278.
    [53] Linke B, Duscha M, Vu A T, Klocke F K. FEM-based simulation of temperature in speedstroke grinding with3D transient moving heat sources[J]. Advanced Materials Research,2011,223:733-742.
    [54] Jin T, Stephenson D J. Three Dimensional Finite Element Simulation of Transient HeatTransfer in High Efficiency Deep Grinding[J]. CIRP Annals-Manufacturing Technology,2004,53(1):259-262.
    [55] Wang L, Qin Y, Liu Z C, Ge P Q, Gao W. Computer simulation of a workpiece temperaturefield during the grinding process[J]. Proceedings of the Institution of Mechanical Engineers,Part B: Journal of Engineering Manufacture,2003,217(7):953-959.
    [56] Davies M A, Ueda T, M'Saoubi R, Mullany B, Cooke A L. On The Measurement ofTemperature in Material Removal Processes [J]. CIRP Annals-Manufacturing Technology,2007,56(2):581-604.
    [57] Hwang J, Farris T N, Kompella S, Chandrasekar S. Measurement of temperature field insurface grinding using Infra-Red (IR) imaging system[J]. Journal of Tribology,2003,125(2):377-383.
    [58] Sakagami T, Madhavan V, Harish G, Krishnamurthy K, Ju Y, Farris T N, Chandrasekar S.Full-field IR measurement of subsurface grinding temperatures[J]. Proceedings of SPIE,1990,3361:234-245.
    [59] Curry A C, Shih A J, Kong J, Scattergood R O, McSpadden S B. Grinding TemperatureMeasurements in Magnesia-Partially-Stabilized Zirconia Using Infrared Spectrometry[J].Journal of the American Ceramic Society,2003,86(2):333-341.
    [60] Ueda K Y, Sugita T. Measurement of grinding temperature of ceramics using infraredradiation pyrometer with optical fiber[J]. Journal of Engineering for Industry,1992,114(3):317-321.
    [61] Ueda T, Yamamoto A, Hosokawa A. Measurement of grinding temperature using infraredradiation pyrometer with optical fiber[J]. Journal of Engineering for Industry,1986,108(4):247-251.
    [62] Batako A D, Rowe W B, Morgan M N. Temperature measurement in high efficiency deepgrinding[J]. International Journal of Machine Tools and Manufacture,2005,45(11):1231-1245.
    [63] Huang H, Xu X P. Interfacial interactions between diamond disk and granite during verticalspindle grinding[J]. Wear,2004,256(6):623-629.
    [64] Lefebvre A, Vieville P, Lipinski P, Lescalier C. Numerical analysis of grinding temperaturemeasurement by the foil/workpiece thermocouple method[J]. International Journal ofMachine Tools and Manufacture,2006,46(14):1716-1726.
    [65] Rowe W B, Black S C E, Mills B. Temperature control in CBN grinding[J]. TheInternational Journal of Advanced Manufacturing Technology,1996,12(6):387-392.
    [66] Xu X, Yu Y, Huang, H. Mechanisms of abrasive wear in the grinding of titanium (TC4) andnickel (K417) alloys[J]. Wear,2003,255(7-12):1421-1426.
    [67] Kim H J, Kim N K, Kwak J S. Heat flux distribution model by sequential algorithm ofinverse heat transfer for determining workpiece temperature in creep feed grinding[J].International Journal of Machine Tools&Manufacture,2006,46:2086-2093.
    [68] Kohli S, Guo C, Malkin S. Energy partition for grinding with aluminum oxide and CBNabrasive wheels[J]. Journal of Engineering for Industry,1995,117(2):160-168.
    [69] Upadhyaya R P, Malkin S. Thermal aspects of grinding with electroplated CBN wheels[J].Journal of Manufacturing Science and Engineering,2004,126:107-114.
    [70] Xu X P, Malkin S. Comparison of methods to measure grinding temperatures[J]. Journal ofManufacturing Science and Engineering,2001,123(2):191-195.
    [71]杨永军.温度测量技术现状和发展概述[J].计测技术,2009,29(4):62-65.
    [72] Sugita N, Takayuki O, Mitsuishi M. Analysis and estimation of cutting-temperaturedistribution during end milling in relation to orthopedic surgery[J]. Medical Engineering&Physics,2009,31:101-107.
    [73] A. S, Piattelli A, Assenza B, Carinci F, Donato L D, Romani G L, Merla A. InfraredThermographic Evaluation of Temperature Modifications Induced during Implant SitePreparation with Cylindrical versus Conical Drills[J]. Clin Implant Dent Relat Res,13(4):319-323.
    [74] Augustin G, Davila S, Udiljak T, Vedrina D S, Bagatin D. Determination of spatialdistribution of increase in bone temperature during drilling by infrared thermography:preliminary report[J]. Archives of Orthopaedic and Trauma Surgery,2009,129:703–709.
    [75] Soriano J, Iriarte L M, Eguren J A, Aristimu o P, Garay A, Arrazola P J. Effects ofRotational Speed and Feed Rate on Temperature Rise, Feed Force and Cutting Torque whenDrilling Bovine Cortical Bone[J]. AIP Conference Proceedings,2012,1431:408-416.
    [76] Lee J, Ozdoganlar O B, Rabin Y. An experimental investigation on thermal exposure duringbone drilling [J]. Medical Engineering&Physics,2012,34(10):1510-1520.
    [77] Hillery M T, Shuaib I. Temperature effects in the drilling of human and bovine bone[J].Journal of Materials Processing Technology,1999,92-93302-308.
    [78] Lin D T W, Yang C Y. The estimation of the strength of the heat source in the heatconduction problems [J]. The estimation of the strength of the heat source in the heatconduction problems,2007,31(12):2696-2710.
    [79]高思云,杨晨.利用贝叶斯模型进行热参数估计[J].系统仿真学报,2006,18(6):1462-1465.
    [80]谭建宇,刘林华,杨建国.管道内壁侵蚀形状识别的无网格法研究[J].工程热物理学报,2010,31(1):124-126.
    [81] Brosse A, Naisson P, Hamdi H, Bergheau J M. Temperature measurement and heat fluxcharacterization in grinding using thermography[J]. Journal of Materials ProcessingTechnology,2008,201(1-3):590-595.
    [82] Alifanov O M, Inverse Heat Transfer Problems,1994, SpringerVerlag: New York.
    [83] Beck J V, Arnold K J, Parameter Estimation in Engineering and Science,1977, WileyInterscience: New York.
    [84] Beck J V, Blackwell B, St. Clair C R, Inverse Heat Conduction: Ill-Posed Problems,1985,Wiley Interscience: New York.
    [85] Colaco M J, Orlande H R B, Dulikravich G S. Inverse and Optimization Problems in HeatTransfer[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2006,XXVIII(1):1-24.
    [86] Ozisik M N, Orlande H R B, Inverse Heat Transfer: Fundamentals and Applications,2000,Taylor and Francis: New York.
    [87] Woodbury K, Inverse Engineering Handbook,2002, CRC Press: Boca Raton.
    [88] Bono M, Ni J. A model for predicting the heat flow into the workpiece in dry drilling[J].Journal of Manufacturing Science and Engineering,2002,124:773-777.
    [89] Bono M a N, J. The location of the maximum temperature on the cutting edges of a drill[J].International Journal of Machine Tools&Manufacture,2006,46:901-907.
    [90] Tai L J. Thermal Modeling of Workpiece Temperature and Distortion in MQL Deep-HoleDrilling[D]. University of Michigan,2011.
    [91] Gostimirovic M, Kovac P, Sekulic M. An inverse heat transfer problem for optimization ofthe thermal process in machining[J]. Sadhana,2011,36:489-504.
    [92] Hong K K, Lo C Y. An inverse analysis for the heat conduction during a grinding process[J].Journal of Materials Processing Technology,2000,105:87-94.
    [93]王春燕.基于红外热成像技术的热源反问题研究[D].硕士论文.苏州大学,2012.
    [94] Gayzik F S, Scott E P, Loulou T. Experimental validation of an inverse heat transferalgorithm for optimizing hyperthermia treatments.[J]. Journal of BiomechanicalEngineering,2006,128(4):505-515.
    [95] Tunnell J W, Torres J H, Anvari B. Methodology for estimation of time-dependent surfaceheat flux due to cryogen spray cooling.[J]. Annals of Biomedical Engineering,2002,30(1):19-33.
    [96]朱丽娜.二维稳态传热系统的模糊反演及其应用[D].博士论文.重庆大学2011.
    [97] Lin S M, Chen C K, Yang Y T. A modified sequential approach for solving inverse heatconduction problems[J]. International Journal of Heat and Mass Transfer,2004,47(12-13):2669-2680.
    [98]钱炜祺,蔡金狮.再入航天飞机表面热流密度辨识[J].宇航学报,2000,21(4):1-6.
    [99] Huang C H, Ju T M, Tseng A A. The estimation of surface thermal behaviour of the workingroll in hot rolling process[J]. International Journal of Heat and Mass Transfer,1995,38(6):1019-1031.
    [100] Keanini R G. Inverse estimation of surface heat flux distributions during high speed rollingusing remote thermal measurements [J]. Journal of Heat and Mass Transfer,1998,41(2):275-285.
    [101] Huang C H, Yuan I C, Ay H. A three-dimensional inverse problem in imaging the local heattransfer coefficients for plate finned-tube heat exchangers[J]. International Journal of Heatand Mass Transfer,2003,46(19):3629-3638.
    [102] Huang C H, Jan L C, Li R. A three-dimensional inverse problem in estimating the appliedheat flux of a titanium drilling[J]. International Journal of Heat and Mass Transfer,2007,50:3265-3277.
    [103] Huang C H, Lo H C. A three-dimensional inverse problem in estimating the internal heatflux of housing for high speed motors[J]. Applied Thermal Engineeing,2006,26:1515-1529.
    [104] Huang C H, Chiang M T. A transient three-dimensional inverse geometry problem inestimating the space and time-dependent irregular boundary shpaes[J]. International Journalof Heat and Mass Transfer,2008,51:5238-5246.
    [105] Liu L H, Tan H P. Inverse radiation problem in three-dimensinal complicated geometricsystems with opaque boundaries[J]. Journal of Quantitative Spectroscopy and RadiativeTranfer,2001,68(5):559-573.
    [106]朱丽娜,王广军,陈红.采用共轭梯度法求解多变量稳态传热反问题[J].中国电机工程学报,2011,31(8):58-61.
    [107] Tai B L, Stephenson D A, Shih A J. An Inverse Heat Transfer Method for DeterminingWorkpiece Temperature in Minimum Quantity Lubrication Deep Hole Drilling[J]. Journalof Manufacturing Science and Engineering,2012,134:1-8.
    [108] Kim J T, Lim C H, Choi J K, Lee Y K. A Method for the Evaluation of Heat TransferCoefficient by Optimization Algorithm[J]. Solid State Phenomena,2007,124-126:1637-1640.
    [109]谢桂芝.工程陶瓷高速深磨机理及热现象研究[D].湖南:湖南大学,2009.
    [110] Shen B, Xiao G, Guo C, Malkin S, Shih A J. Thermocouple Fixation Method for GrindingTemperature Measurement [J]. Journal of Manufacturing Science and Engineering,2008,130(5):051014-1-051014-8.
    [111] Abouzgia M B. Bone temperatures rise during drilling[D]. Ph. D. Thesis. Toronto, Canada.:University of Toronto,1995.
    [112] Davidson S R H, James D F. Measurement of thermal conductivity of bovine corticalbone[J]. Medical Engineering&Physics,2000,22(10):741-747.
    [113] Kim N K, Guo C, Malkin S. Heat Flux Distribution and Energy Partition in Creep-FeedGrinding[J]. Annals of the ClRP,1997,46(1):227-232.
    [114]孙莉.基于有效集识别和多维滤子技术的优化算法研究[D].博士论文.上海交通大学,2009.
    [115]闰秀娟.界约束优化问题的有效集方法研究[D].硕士学位论文.山东科技大学,2011.
    [116]马昌凤,最优化方法及其Matlab程序设计,2010,科学出版社.
    [117] Udiljak T, Ciglar D, Skoric S. Investigation into bone drilling and thermal bonenecrosis.[J].Advances in Production Engineering&Management,2007,2(103–112).
    [118] Axinte D, Gindy N. Assessment of the effectiveness of a spindle power sig-nal for toolcondition monitoring in machining processes[J]. International Journal of ProductionResearch,2004,42(13):2679-2691.
    [119] Byrne G, Dornfeld D, Inasaki I, Ketteler W K, K nig R T. Tool Condition Monitoring(TCM)–the status of research and industrial application[J]. CIRP Annals-ManufacturingTechnology,1995,44(2):541–567.
    [120] Hughes A, Electric Motors and Drives: Fundamentals, Types, and Applications3rd edition.,2006, Newnes: Massachusetts
    [121] Behbahani-nia A, Kowsary F. A dual reciprocity BE-based sequential function specificationsolution method for inverse heat conduction problems[J]. Inf. J. Hear Mars Transfer,2004,47:1247-1255.
    [122] Blanc G, Beck J V, Raynaud M. Solution of the Inverse Heat Conduction Problem with aTime-Variable Number of Future Temperatures[J]. Numerical Heat Transfer, Part B:Fundamentals,1997,32(4):437-451.
    [123] Woodbury K A, Thakur S K. Redundant data and future times in the inverse heat conductionproblem[J]. Inverse Problems in Engineering,1996,2(4):319-333.
    [124] Boggs P T, Tolle J W Sequential Quadratic Programming.1996.
    [125] Shen B, Shih A J, Tung S C. Application of Nanofluids in Minimum Quantity LubricationGrinding[J]. Tribology Transactions,2008,51:730-737.
    [126] Shen B, Shih A J. Minimum Quantity Lubrication (MQL) Grinding Using Vitrified CBNWheels[J]. Transactions of NAMRI/SME,2009,37:129-136.