球形核壳量子点中的电—声子相互作用及三元混晶效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用介电连续模型系统地研究了极性二元晶体构成的球形异质结构——双层和三层球形核壳量子点中的光学振动模及电—声子相互作用,并利用变分法对双层结构中的束缚极化子进行了讨论.在此基础之上,在球形异质结构中引入极性三元混晶材料,利用改进的无规元素孤立位移模型和有效声子近似,研究了含三元混晶的双层和三层球形核壳量子点中的三元混晶效应.主要研究结果如下:
     一、利用介电连续模型研究了非极性材料包覆的双层球形核壳量子点中的界面/表面(IO/SO)声子模,给出了声子模的色散关系和电子-IO/SO声子相互作用的哈密顿量,并对CdSe/ZnS核壳量子点进行了数值计算.结果表明,双层结构中存在三支频率不同的IO/SO声子模,其频率不仅取决于核壳结构材料的有关参数,而且依赖于外层非极性材料的介电常数εd.三支声子势的变化趋势各不相同,且随着壳层厚度的增加,IO/SO声子模在界面或表面附近的局域性显著增强.并且发现,当εd较小时,频率较高的两支类ZnS IO/SO模对电—声子相互作用的贡献起主要作用,当εd较大时,表面极化效应明显减弱,频率最高的类ZnS SO模转变为类ZnS IO模,对电—声子相互作用的贡献起主要作用.随着角量子数的增大,IO/SO声子模对电—声子相互作用的贡献逐渐减小.
     二、利用介电连续模型研究了三层球形核壳量子点中的IO/SO声子模,给出了声子模的色散关系和电—声子相互作用的哈密顿量,并对CdSe/ZnS/CdSe核壳量子点进行了数值计算.结果表明,三层结构中存在五支IO/SO声子模,其中频率较高的两支模为类ZnS IO模,频率较低的三支模为类CdSe IO/SO模,且五支模的频率均依赖于外层非极性材料的介电常数εd.同时发现,五支声子势的变化趋势各不相同,当εd较小时,类ZnS IO模及类CdSe SO模对电—声子相互作用的贡献起主要作用,当εd较大时,类CdSe SO模转变为类CdSe IO模,表面极化效应明显减弱.
     三、利用改进的无规元素孤立位移模型(MREI)和有效声子近似(EPMA),研究了含三元混晶的双层和三层球形核壳量子点中的三元混晶效应,并对GaAs/AlxGa1-xAs和GaAs/AlxGa1-xAs/GaAs核壳量子点进行了数值计算.结果表明,球形核壳量子点中存在特殊的混晶效应,具体表现在,在组分取不同值时,不仅类AlxGa1-xAs IO/SO声子模的频率变化范围明显不同,而且类GaAs IO声子模的频率在一定范围内也会受到组分的影响.同时发现,各支IO/SO声子模的静电势随混晶组分的不同呈现不同的分布形态,因此组分的变化对电—声子相互作用有重要影响.
     四、利用介电连续模型研究了三层球形核壳量子点中的受限LO声子模,给出了电子—LO声子相互作用的哈密顿量,并对CdSe/ZnS/CdSe核壳量子点进行了数值计算.结果表明,局域在CdSe核中的LO1声子和局域在ZnS壳层中的L02声子对电—声子相互作用的贡献是主要的,且LO2声子的声子势强度强烈依赖于ZnS壳层的厚度,随着壳层厚度的增加,声子势强度逐渐降低,对电—声子相互作用的贡献也相应地逐渐减小.
     五、利用本文导出的电—声子相互作用哈密顿量,采用有效质量近似和变分法研究了双层球形核壳量子点中的束缚极化子,讨论中同时考虑了电子—声子和杂质—声子的耦合作用,并对ZnS/CdSe核壳量子点进行了数值计算.结果表明,杂质态结合能和声子极化效应均明显依赖于核半径和阱宽,声子效应明显地降低了杂质态的结合能.随着核半径和阱宽的减小,杂质态结合能明显增大;同时发现,存在一个临界阱宽,当阱宽小于临界阱宽时,杂质态的结合能明显增加,而且声子的贡献也显著增大.
Using the dielectric continuum approach (DCA), we have systematically investigated the optical vibration modes and electron-phonon interaction in a polar spherical multilayer core-shell quantum dot (CSQD) hosted in a non-polar material. The bound polarons in a bilayer CSQD have also been studied with a variational approach. On top of these, we introduce the polar ternary mixed crystals (TMC) into the spherical multilayer heterostructures, and investigate the TMC effects by applying the modified random-element-isodisplacement model (MREI) and effective-phonon-mode approximation (EPMA). The main results obtained are as following:
     1. We have studied the optical vibration modes in a spherical bilayer CSQD in the framework of DCA. The dispersion relation and the corresponding electron-phonon interaction Hamiltonians for interface optical (IO) or surface optical (SO) phonons are derived. Numerical calculations are performed for a spherical CdSe/ZnS CSQD, and the results show that there are three branches frequencies of IO/SO phonon in the system, and phonon frequencies depend on the host medium. As shell thickness increases, the potentials of the IO/SO phonon modes more localized at a certain interface or surface. It is also found that the ZnS-like IO/SO modes with higher frequencies, compared with CdSe-like IO mode, have a strong electron-phonon coupling when εd is smaller. However for the bigger εd, ZnS-like SO mode is transformed into ZnS-like10mode, that means the surface polaron effect is greatly reduced. As the same time, the IO/SO phonon contribution to the electron-phonon interaction is decrease with increasing the angular quantum number.
     2. The IO/SO phonon modes in a spherical three-layer CSQD are investigated by employing the DCA. The dispersion relation and the corresponding electron-phonon interaction Hamiltonians for IO/SO phonons are derived. Numerical calculations are performed for a spherical CdSe/ZnS/CdSe CSQD, and the results reveal that there are five branches frequencies of IO/SO phonon. Among these, the two modes with higher frequencies are ZnS-like IO modes, and the others with lower frequencies are CdSe-like IO/SO modes. The phonon frequencies depend on the geometrical and host material. It is observed that the electron-phonon coupling related to ZnS-like IO modes and CdSe-like SO mode is more significant when εd is smaller. Similarly, the surface polaron effect is much weaken for the larger εd, and CdSe-like SO mode switch to the outer interface.
     3. We have studied the effects of TMC in spherical multilayer CSQD consisting of TMC by using MREI and EPMA. The numerical computations are performed for the spherical s and GaAs/AlxGa1-xAs/GaAs system. The results show that the frequencies of IO/SO modes strongly depend on the components of TMC, and the frequencies of GaAs-like IO modes also vary with the components in a certain range. Our investigations also indicate that the effects of TMC result in different distributions of IO/SO phonon potentials. Thus, the effects of TMC should be taken into account in the electron-phonon coupling investigation.
     4. The confined longitudinal-optical (LO) phonon modes in a spherical three-layer CSQD have been studied in detail, and the corresponding electron-phonon interaction Hamiltonian is obtained by using the DCA. Numerical calculations are performed for a spherical CdSe/ZnS/CdSe CSQD, and the results reveal that the confined LO1phonon modes in the core material and the confined LO2phonon modes in the shell material, compared with the confined LO3phonon modes, are dominated in the electron-phonon coupling. At the same time, the potentials strength of LO2phonon is strongly dependent on the shell thickness, and the potentials strength decreases with the increasing of the shell thickness.
     5. With the electron-phonon interaction Hamiltonians derived above, we have studied the polaron effects of an impurity in a spherical bilayer CSQD within the effective mass approximation. A adiabatic variational method is used to calculate the binding energy of the bound polaron, and both the electron-and ion-phonon effects are considered. It is indicated that phonon effects reduced obviously the impurity binding energy and depend on the core radius and the shell well width. When the shell well width is smaller than a critical value, both the impurity binding energy and the phonon effects increase significantly.
引文
[1]L.Esaki, R.Tsu. Supperlattice and negative differential conductivity in semiconductors. IBM J. Res. Devel.,1970,14:61-65.
    [2]A. Y. Cho. Growth of peridoic strcutures by the molecular-beam mehtod. Appl. Phys. Lett., 1971,19(11):467-468.
    [3]M. Reed, R. Bate, K. Bradshaw, etc. Spatial Quantization in GaAs-AlGaAs Multiple Quantum Dots. J. Vac. Sci. Tech. B,1986(6),4:358-360.
    [4]Y. Kayanuma. Wannier excitons in low-dimensional microstructures:shape dependence of the quantum size effect. Phys. Rev. B.,1991,44(23):13085-13088.
    [5]A.D.Yoffe. Low-dimensional systems:quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys.,1993,42(2):173-262.
    [6]U. Woggonand, V. Gaponenko. Excitons in quantum dots. Phys. Status Solidi B,1995, 189(2):285-343.
    [7]W. C. Bose. Binding energy of impurity states in spherical quantum dots with parabolic confinement. J.App. Phys.,1998,83(6):3089-3091.
    [8]J. L. Marin, R.Riera, S.A.Cruz. Confinement of excitons in spherical quantum dots. J. Phys.:Condens. Matter,1998,10(6):1349-1361.
    [9]B.Szafran, J. Adamowski, S.Bednarek. Few-electron systems in quantum cylinders. Phys. Rev. B.,2000,61(3):1971-1977.
    [10]G Cantele, D. Ninno, G Iadonisi. Confined states in ellipsoidal quantum dots. Phys.:Condens. Matter,2000,12(42):9019-9036.
    [11]G Cantele, D. Ninno, G Iadonisi. Shape effects on the one-and two-electron ground state in ellipsoidal quantum dots. Phys. Rev. B,2001,64(12):125325-125334.
    [12]M. K. Kuo, T.R.Lin, B.T.Liao and C.H.Yu. Strain effects on optical properties of pyramidal InAs/GaAs quantum dots. Physica E,2005,26 (1-4):199-202.
    [13]G S. Pearson, D. A. Faux. Analytical solutions for strain in pyramidal quantum dots. J. App. Phys.,2000,88(2):730-736.
    [14]F. Xie. Binding energy of negatively charged excitons in quantum disks, Physica B,1999, 270(3-4):238-243.
    [15]T. S. Koh, Y. P. Feng, X. Xu, etc. Excitonsin semiconductor quantum discs. J. Phys.:Condens. Matter.2001,13(7):1485-1498.
    [16]W. F. Xie. Exciton states in a disk-like quantum dot. Physica B,2000,279(4):253-256.
    [17]C.F. Lot, R. Sollie. The mass dependence of the ground-state properties of the Wannier exciton in a quantum box. J.Phys.:Condens. Matter,1993,5(45):8587-8594.
    [18]J. C. Lozano-Cetina, N. Porras-Montenegro. Effects of an electric field on the binding energy of shallow hydrogenic impurities in GaAs-(Ga, Al)As quantum boxes. Phys. Stat.501.(b), 1998,210(2):717-722.
    [19]C.I. Mendoza, GJ.Vazquez, M.del Castillo-Mussot, etc. Stark effect dependence on hydrogenic impurity position in a cubic quantum box. Phys. Rev.B,2005,71(7):075330-l-5.
    [20]H. C. Youn, S. Baral, J. H. Fendler. Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed CdS/ZnS semiconductor particles:preparation and utilization for photosensitized charge separation and hydrogen generation. J. Phys. Chem,1988, 92(22):6320-6327.
    [21]A. Kortan, R. Hull, R. Opila, etc. Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc,1990,112(4):1327-1332.
    [22]A. Hasselbarth, A. Eychmuller, R. Eichberger, etc. Chemistry and photophysics of mixed CdS/HgS colloids. J. Phys. Chem,1993,97(23):5333-5340.
    [23]A. Eychmuller, A. Mews, H. Weller. A quantum dot quantum well:CdS/HgS/CdS. Chem. Phys. Lett,1993,208(1):59-62.
    [24]A. Mews, A. Eychmuller, M. Giersig, etc. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem,1994,98(3):934-941.
    [25]A. Mews, A. V. Kadavanich, U. Banin, etc. Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells, Phys. Rev. B,1996,53(20):R13242-R13245.
    [26]A.T. Yeh. G. Cerullo, U. Banin, etc. Dynamics of exciton localization in CdS/HgS quantum-dot quantum wells, Phys. Rev B,1999,59(7):4973-4980.
    [27]H.E. Port,E.Lifshitz, M. Pflughoefft, etc. Optical Properties of CdS/HgS/CdS quantum dot-quantum well structures. Phys. Stat. Sol. (b),2001,226(1),219-232.
    [28]M. Braun, C. Burda, M. El-Sayed. Variation of the thickness and number of wells in the CdS/HgS/CdS quantum dot quantum well system. J. Phys. Chem. A,2001,105(23): 5548-5551.
    [29]M. Braun, S. Link, C. Burda, etc. Femtosecond time-resolved electron-hole dynamics and radiative transitions in the double-layer quantum well of the CdS/HgS/CdS quantum-dot-quantum-well nanoparticle. Phys. Rev.B,2001,64(3):035317-035324.
    [30]M. Braun, S. Link, C. Burda, etc. Determination of the localization times of electrons and holes in the HgS well in a CdS/HgS/CdS quantum dot-quantum well nanoparticle. Phys. Rev. B,2002,66(20):205312-205319.
    [31]M. Braun, S. Link, C. Burda, etc. Transfer times of electrons and holes across the interface in CdS/HgS/CdS quantum dot quantum well nanoparticles. Chem. Phys. Lett.,2002, 361(6)446-452.
    [32]H. Borchert, D. Dorfs, C. McGinley, etc. Photoemission study of onion like quantum dot quantum well and double quantum well nanocrystals of CdS and HgS. J. Phys. Chem. B,2003, 107(30):7486-7491.
    [33]D. Dorfs and A. Eychmuller. A series of double well semiconductor quantum dots. Nano Letters,2001,1(11):663-665.
    [34]D. Dorfs, H. Henschel, J. Kolny, etc. Multilayered nanoheterostructures:Theory and experiment. J. Phys. Chem. B,2004,108(5):1578-1583.
    [35]J. J. Li, Y. A. Wang, W. Guo, etc. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc,2003,125(41):12567-12575.
    [36]D. Battaglia, J. J. Li, Y. Wang and X. Peng. Colloidal two dimensional systems:CdSe quantum shells and wells. Angew Chem Int Ed Engl,2003,42(41):5035-5039.
    [37]B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, etc. (CdSe)ZnS Core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem.B,1997,10:9463-9475.
    [38]R. B. Little, M. A. El-Sayed, G W Bryant, etc. Formation of quantum-dot quantum-well heteronanostructures with large lattice mismatch:ZnS/CdS/ZnS. J. Chem. Phys,2001,114(4): 1813-1822.
    [39]L.X. Cao, S.H Huang, S.Z.Lu, etc. Effect of layer thickness on the luminescence properties of ZnS/CdS/ZnS quantum dot quantum well. Journal of Colloid and Interface Science,2005,284: 516-520.
    [40]A. V. Baranov, Yu. P. Rakovich, J. F. Donegan, etc. Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Phys. Rev. B,2003,68:165306-165313.
    [41]D. Battaglia, B. Blackman, X. Peng. Coupled and decoupled dual quantum systems in one semiconductor nanocrystal. J. Am. Chem. Soc,2005,127:10889-10897.
    [42]E.A.Dias, S. L. Sewall, P. Kambhampati. Light harvesting and carrier transport in core/barrier/shell semiconductor nanocrystals. J. Phys. Chem. C,2007,111:708-713.
    [43]Z. Fang, L. Liu, J.Wang, X.H. Zhong. Depositing a ZnxCd1-xS Shell around CdSe Core Nanocrystals via a Noninjection Approach in Aqueous Media. J. Phys. Chem. C,2009,113: 4301-4306.
    [44]P. Verma, A.C. Pandey. Capped semiconductor nanocrystals for device applications. Opt. Comm.,2011,284:881-884.
    [45]J. W. Haus, H. S. Zhou, I. Honma, etc. Quantum confinement in semiconductor heterostructure nanometer-size particles. Phys. Rev. B,1993,47(3):1359-1365.
    [46]D. Schooss, A. Mews, A. Eychmuer, etc. Quantum dot quantum well CdS/HgS/CdS:Theory and experiment. Phys. Rev. B,1994,49(24):17072-17078.
    [47]G W. Bryant. Theory for quantum dot quantum wells:Pair correlation and internal quantum confinement in nanoheterostructures. Phys.Rev.B,1995,52(24):R16997-R17000.
    [48]K. Chang, J. B. Xia. Spatially separated excitons in quantum-dot quantum well structures. Phys. Rev. B,1998,57(16):9780-9786.
    [49]J. Schrier and L. W. Wang. Electronic structure of nanocrystal quantum-dot quantum wells, Phys. Rev. B,2006,73(24):245332-245338.
    [50]M. Royo, J. Planelles, M. Pi. Effective mass and dielectric constant mismatch effects in spherical multishell quantum dots. Phys. Rev. B,2007,75(3):033302.
    [51]J. Perez-Condel, A. K. Bhattacharjee. CdS/HgS/CdS Quantum Dot Quantum Wells:A Tight-Binding Study. Phys. Stat. Sol. (b),2002,229(1):485-488.
    [52]A.C. Bartnik, F.W. Wise, A. Kigel, etc. Electronic structure of PbSe/PbS core-shell quantum dots. Phys. Rev. B,2007,75(24):245424-245430.
    [53]J. Licari, R. Evrard. Electron-phonon interaction in a dielectric slab:effect of the electronic polarizability. Phys. Rev. B,1977,15(4):2254-2264.
    [54]L. Wendler. Electron-phonon interaction in dielectric bilayer system effects of the electronic polarizability. Phys. Stat. Sol.(b),1985,129(2):487-510.
    [55]L. Wendler, R. Haupt. Electron-phonon interaction in semiconductor superlattices. Phys. Status Solidi B,1987,143:513-530.
    [56]N. Mori, T. Ando. Electron-optical-phonon interaction in single and double heterostructures. Phys. Rev. B,1989,40(9):6175-6186.
    [57]M. C. Klein, F. Hache, D. Ricard, etc. Size dependence of electron-phonon coupling in semiconductor nanospheres:The case of CdSe. Phys. Rev. B,1990,42(17):11123-11132.
    [58]J.C. Marini, B. Stebe, E.Kartheuser. Exciton-phonon interaction in CdSe and CuCl polar semiconductor nanospheres. Phys. Rev. B,1994,50(19):14302-14309.
    [59]M. Bouhassoune, R. Charrour, M. Fliyou, etc. Magnetopolaron effect in CdTe cylindrical quantum dot. J. Appl. Phys.,2000,88(6):3514-3522.
    [60]K. Oshiro, K. Akai, M. Matsuura. Polaron in a spherical quantum dot embedded in a nonpolar matrix. Phys. Rev. B,1998,59(12):7986-7993.
    [61]M. H. Degani, G A. Farias. Polaron effects in one-dimensional lateral quantum wires and parabolic quantum dots, Phys. Rev B,1990,42(18):11950-11952.
    [62]Q. H. Chen, Y. H. Ren, Z.K. Jiao, etc. Polaronic effect on the binding energy of an impurity with varying position in parabolic quantum dots. Phys.Lett. A,1999,252:251-256.
    [63]H. J. Xie, C.Y. Chen. Bound polaron in a spherical quantum dot. Eur. Phys. J. B,1998,5: 215-218.
    [64]D.V. Melnikov, W. B. Fowler. Bound Polaron in a spheical quantum dot:strong electron-phonon coupling case. Phys. Rev B,2001,63(16):165302-165310.
    [65]D.V. Melnikov, W. B. Fowler. Bound polaron in a spherical quantum dot:The all-coupling variational approach. Phys. Rev B,2001,64(19):195335-195347.
    [66]D.V. Melnikov, W. B. Fowler. Electron-phonon interaction in a spherical quantum dot with finite potential barriers:The Frohlich Hamiltonian. Phys. Rev B,2001,64(24):245320-245329.
    [67]K. Oshiro, K. Akai, M. Matsuura. Exciton-optical phonon interaction in a spherical quantum dot embedded in nonpolar matrix. Phys. Rev. B,2002,66(15):153308-153312.
    [68]W.S. Li, C.Y. Chen. Electron-phonon interaction in a cylindrical quantum dot. Physica B, 1997,229:375-382.
    [69]C. K. Malu, R.M. de la Cruz. Interface and longitudinal optical phonon modes in cylindrical quantum dots. Phys. Rev. B,1999,59(3):1621-1625.
    [70]F. Comas, C. Traller-Giner, S. Nelson, etc. Interface optical phonons in spheroidal dots: Raman selection rules. Phys. Rev. B,2002,65(7):073303-073306.
    [71]F. Comas, C. Trallero-Giner, N. Studart, etc. Interface optical phonons in spheroidal quantum dots. J. Phys.:Condens. Matter.,2002,14:6469-6481.
    [72]O. Reese, L. C. Lew Yan Voon, M. Willatzen. Surface optical phonons in a triaxial ellipsoidal quantum dot. Phys. Rev. B,2004,70(7):075401-075408.
    [73]Z.W. Zuo, H. J. Xie. Electron-interface-optical-phonon interaction in rectangular quantum wire and quantum dot. Phys. Lett. A,2011,375:2007-2016.
    [74]M. Tkach, V. Holovatsky, O. Voitsekhivska, etc. Exciton-phonon interaction in the spherical nanoheterosystem CdS/β-HgS/H2O. Phys. Stat. Sol.(b),1997,203(2):373-386.
    [75]L. Zhang, H. J. Xie, C.Y. Chen. Frohlich electron-phonon interaction Hamiltonian in a quantum dot quantum well. Phys. Rev. B,2002,66(20):205326.
    [76]L. Zhang, H. J. Xie, C.Y. Chen. A polaron in quantum dot quantum well. Commun. Theor. Phys.,2002,37(6):755-758.
    [77]F. Comas, C. Trallero-Giner. Interface optical phonons in spherical quantum dot quantum well heterostructures. Phys. Rev. B,2003,67(11):115301.
    [78]F. Comas, N. Studart. Electron-phonon interaction in quantum dot quantum well semiconductor heterostructures. Phys. Rev. B,2004,69(23):235321.
    [79]F. Comas, C. Trallero-Ginera. Surface optical phonons in spherically capped quantum-dot quantum-well heterostructures. J. Appl. Phys.,2003,94(9):6023-6029.
    [80]G. Bastard. Hydrogenic impurity states in a quantum well:A simple model. Phys. Rev. B, 1981,24(8):4714-4722.
    [81]J. L. Zhu, J. J. Xiong, B. L. Gu. Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1-xAlxAs. Phys. Rev. B,1990,41(9):6001-6007.
    [82]D. S. Chuu, C. M. Hsiao, W. N. Mei. Hydrogenic impurity states in quantum dots and quantum wires. Phys. Rev. B,1992,46(7):3898-3905.
    [83]N. Porras-Montenegro, S.T. Perez-Merchancano. Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. Phys. Rev.,1992, B46(15):9780-9783.
    [84]N. Porras-Montenegro, S.T. Perez-Merchancano, A. Latge. Binding energies and density of impurity states in spherical GaAs-(Ga,Al)As quantum dots. J. Appl. Phys,1993, 74(12):7624-7626.
    [85]C. Bose. Binding energy of impurity states in spherical quantum dots with parabolic confinement. J. Appl. Phys.,1998,83(6):3089-3091.
    [86]C. Bose, C.K. Sarkar. Effect of a parabolic potential on the impurity binding energy in spherical quantum dots. Physica B:Condens. Matter,1998,253(3-4):238-241.
    [87]D. El-Moghraby, R.G Johnson, P. Harrison. The effect of inter-dot separation on the finite difference solution of vertically aligned coupled quantum dots. Comput. Phys. Commun., 2003,155(3):236-243.
    [88]C. Bose. Perturbation calculation of impurity states in spherical quantum dots with parabolic confinement. Physica E,1999,4(1):180-184.
    [89]X. Z. Yuan and K. D. Zhu. Impurity states in a quantum dot with the shape of spherical cap. Physica E,2004,25(1):93-98.
    [90]C. L. N. Oliveira, J. A. K. Freire, V. N. Freire and G A. Farias. Effects of interfacial profiles on quantum levels in InxGa1-xAs/GaAs graded spherical quantum dots. Appl. Sur. Sci.,2004, 237(1-4):266-269.
    [91]A. J. Peter. Polarizabilities of shallow donors in spherical quantum dots with parabolic confinement. Phys. Lett. A,2006,355(1):59-62.
    [92]C. Y. Hsieh, D. S. Chuu. Donor states in a multi-layered quantum dot. J. Phys.:Condens. Matter,2000,12(40):8641-8653.
    [93]S. Aktas, F. K. Boz. The binding energy of hydrogenic impurity in multilayered spherical quantum dot. Physica E,2008,40(4):753-758.
    [94]F. K. Boz, S. Aktas, A. Bilekkaya,etc. Geometric effects on energy states of a hydrogenic impurity in multilayered spherical quantum dot. Appl. Sur. Sci.,2009,255(13-14):6561-6564.
    [95]I. F. I. Mikhail, S. B. A. El Sayed. Exact and variational calculations of a hydrogenic impurity binding energy in a multilayered spherical quantum dot. Physica E,2011,43(7):1371-1378.
    [96]H. Tas, M. Sahin. The electronic properties of a core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity. J. Appl. Phys.,2012,111(8):083702.
    [97]A. K. Manaselyan, A. A. Kirakosyan. Effect of the dielectric-constant mismatch and magnetic field on the binding energy of hydrogenic impurities in a spherical quantum dot[J]. Physica E, 2004,22(4):825-832.
    [98]F.K. Boz, S. Aktas, A. Bilekkaya, etc. The multilayered spherical quantum dot under a magnetic field. Appl. Sur. Sci.,2010,256(12):3832-3836.
    [99]R. F. Potter, D. L. Stierwatt. In proceeding of the international conference on physics of semiconductors. Paris:Dunod,1964,1111.
    [100]P. J. Gulisse, J. N. Pendl, L.C. Mansar, etc. Infrared properties of NiO and CoO and their mixed crystals. J. Appl. Phys.,1965,36(8):2446-2450.
    [101]W. S. Williams. Phonon scattering in KC1-KBr solid solutions at low temperatures. Phys. Rev., 1960,119(3):1021-1024.
    [102]H. Mahr. Ultraviolet absorption of the mixed system KC1-KBr. Phys. Rev.,1961,122 (5):1464-1468.
    [103]R. K. Chang, B. Lacina, P. S. Pershan. Raman scattering from mixed crystals (CaxSr1-x)F2 and (SrJBa1-x)F2. Phys. Rev. Lett.,1966,17(14):755-758.
    [104]H. W. Verleur, A.S.Barker, Jr.. Infrared lattice vibrations in GaAsyP1-y alloys. Phys. Rev.,1966, 149(2):715-729.
    [105]Y. S. Chen, W. Shockley, G L. Pearson. Lattice vibration spectra of GaAsP single crystals. Phys.Rev.,1966,151(2):648-656.
    [106]H. W. Verleur, A.S.Barker, Jr. Optical phonons in mixed crystals of CdSeyS1-y. Phys. Rev., 1967,155(3):750-763.
    [107]E. Ilegems, G L. Pearson, Infrared reflection spectra of Ga1-xAlxAs mixed crystals. Phys. Rev. B,1970,1(4):1576-1582.
    [108]I. F. Chang, S. S. Mitra. Optical phonons in Ga1-xAlxAs mixed crystals:a modified random-element isodisplacement-model calculation. Phys. Rev. B,1970,2(4):1215-1216.
    [109]J. Shah, A. E. DiGiovanni, T. C. Damen, etc.. Resonant Raman scattering from AlxGa1-xAs. Phys. Rev. B,1973,7(8):3481-3487.
    [110]K. Masu, M. Konagai, K. Takahashi. Acceptor energy level for Zn in Ga1-xAlxAs. J. Appl. Phys.,1980,51(2):1060-1064.
    [111]D. N. Talwar, M. Vandevyver, M. Zigone. Raman scattering spectra in mixed Ga1-xAlxAs(Sb) crystals. Phys. Rev. B,1981,23(4):1743-1752.
    [112]S. Adachi. GaAs, AlAs and AlxGa1-xAs:Material parameters for use in research and device applications. J. Appl. Phys.,1985,58(3):R1-R29.
    [113]I. Sela, V. V. Gridin, R. Beserman, etc. Resonant Raman study of the LO-phonon energy fluctuation in III-V alloy semiconductors. Phys. Rev. B,1988,37(11):6393-6396.
    [114]M. Bernaseoni, L. Colombo, L. Miglio, etc. Vibrational properties and infrared spectra of Ga1-xAlxAs systems. I. Average-t-matrix approximation versus supercell calculation for homogeneous alloys. Phys. Rev. B,1991,43(18):14447-14456.
    [115]M. P. Lisitsa, M.Y. Valakh, N. K. Konovets. Phonons in mixed CdxZn1-xS semiconductors. Phys. Stat. Sol.(b),1969,34(1):269-278.
    [116]Y. Brada, L. Samuel. Lattice vibrations in ternary II-VI compounds. Phys. Rev. B,1987, 35(15):8260-8261.
    [117]L. Samuel, Y. Brada, R. Beserman. Fundamental absorption edge in mixed single crystals of II-VI compounds. Phys. Rev. B,1988,37(9):4671-4677.
    [118]C.L. Mak, R. Sooryakumar, B. T. Jonker, etc. Vibrational modes in Zn1-xFexSe and Zn1-xCoxSe. Phys. Rev. B,1992,45(7):3344-3348.
    [119]S. Nakamura. The blue laser diode-GaN based light emitters and lasers. Berlin:Springer, 1997.
    [120]H. Harima, T. Inoue, S. Nakashima, etc. Raman studies on phonon modes in cubic AlGaN alloy. Appl. Phys. Lett.,1999,74(2):191-193.
    [121]H. Grille, C.Schnittler, F. Bechstedt. Phonons in ternary group-Ⅲ nitride alloys. Phys. Rev. B, 2000,61(9):6091-6105.
    [122]R. S. Zheng, T. Taguehi. Composition dependence of optical phonon properties and dielectric functions of group-Ⅲ arsenide ternary and quaternary mixed crystals. J. Appl. Phys.,2003, 93(11):9048-9052.
    [123]S.Yu. KarPov, N. I. Podolskaya, I.A.Zhmakin. Statistical model of ternary group-Ⅲ nitrides. Phys. Rev. B,2004,70(23):235203.
    [124]M. Kazan, P. Masri, M. Sumiya. Zone center optical phonons in AlxGa1-xN mixed crystals. J. Appl. Phys.,2006,100(l):013508.
    [125]J. S. Langer. Frequency spectrum of a disordered one-dimensional lattice. J. Math. Phys., 1961,2(4):584-591.
    [126]Y. S. Chen, W. Shockley, G. L. Reaeson. Lattice vibration spectra of GaAsxP1-x single crystal. Phys. Rev.,1966,151(2):648-656.
    [127]I. F. Chang, S. S. Mitra. Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev.,1968,172(3):924-933.
    [128]A. W. Verleur, A. S. Barker. Optic phonons in mixed crystals of CdSexS1-x. Phys. Rev.,1967, 155(3):750-763.
    [129]A. W. Verleur, A. S. Barker. Long wavelength optic phonons in crystals. Phys. Rev.,1967, 164(3):1169-1184.
    [130]M. Ilegems, G. L. Pearson. Infrared reflection spectra of Ga1-xAlxAs mixed crystals. Phys. Rev. B,1970,1(4):1576-1582.
    [131]L.Genzel, T. P. Martin, C. H. Perry. Model for long-wavelength optical-phonon modes of mixed crystals. Phys. Stat. Sol.(b),1974,62(2):83-92.
    [132]X. X. Liang, J.S. Yang. Effective-phonon approximation of ternary mixed crystal. Solid State Commun.,1996,100(9):629-634.
    [133]T. P. Martin. Reman scattering in mixed crystals. Phys. Stat. sol.(b),1975,67(1):137-142.
    [134]S. Mimotogi, T. Masumi. Transformation of phonon mode behaviour in the AgClxBr1-x system. J. Phys. Soc. Jpn.,1992,61:727-734.
    [135]S. Mimotogi, T. Masumi. Anomalous electron-LO-phonon interaction in cyclotron resonance of polarons in the mixed AgClxBr1-x system. J. Phys. Soc. Jpn.,1992,61:1701-1708.
    [136]X. Wang, X. X. Liang. Electron-phonon interaction in ternary mixed crystals. Phys. Rev. B, 1990,42(14):8915-8922.
    [137]X. X. Liang, Y. S. Zhang. Intermediate coupling polaron in a ternary mixed crystal. Z. Phys. B, 1993,91(4):445.
    [138]X. X. Liang, Z.P. Wang, S. L. Ban. Shallow Impurity states in ternary mixed crystals. Ada Scientiarum Naturalium Universitatis Neimongol.,1999,30:52.
    [139]J. S. Yang, X. X. Liang. Magnetopolarons and effective-phonon approximation in ternary mixed crystals. Acta Scientiarum Naturalium Universitatis Neimongol.,1999,30:567.
    [140]S. L. Ban, J. E. Hasbun. Interface polarons in a realistic heterojunction potential. Eur. Phys. J. B,1999,8(3):453-461.
    [141]X. X. Liang, S. L. Ban. Optical vibration modes and electron-phonon interaction in ternary mixed crystals of polar semiconductors. Chin. Phys.,2004,13(1):71-81.
    [142]X. X. Liang, S. L. Ban. Note to electron-phonon interaction in ternary mixed crystals. J. Luminescence,2001,94-95:781-785.
    [143]R. S. Zheng, M. Matsuura. Electron-phonon interaction in mixed crystals. Phys. Rev. B,1999, 59(23):15422-1542.
    [144]M. Born, K. Huang. Dynamical theory of crystal lattices. London:Oxford University Press, 1954.
    [145]S. Adachi, Properties of Semiconductor Alloys Group-Ⅳ, Ⅲ-Ⅴ and Ⅱ-Ⅴ Semiconductors (John Wiley & Sons Ltd,2009).
    [146]S. Strite, H. Morkoc. GaN, AlN, and InN:A review. J. Vac. Sci. Technol. B,1992,10:1237-1266.
    [147]R. Chen, D. L. Lin, T. F. George. Optical-phonon modes in a double heterostructure of polar crystals. Phys. Rev. B,1990,41(3):1435-1442.
    [148]X. X. Liang, X. Wang. Electron-phonon interaction in a quantum well. Phys. Rev. B,1991, 43(6):5155-5158.
    [149]X. X. Liang. The interaction of interface optical phonons with an electron in an asymmetric quantum well. J. Phys.:Condens. Matter,1992,4(49):9769-9778.
    [150]X. X. Liang, S.G. Davison. Coupling of interface TO and LO phonons with electrons in quantum wells and heterojunctions. Solid State Comm.,1992,84(5):581-584.
    [151]X. X. Liang, S.G Davison. Electron-optical-phonon interaction in a trilayer system of polar crystals. Sur. Sci.,1993,298(1):225-240.
    [152]P. M. Platzman. Ground-state energy of bound polarons. Phys. Rev.,1962,125(6):1961-1965.