微波光子信号处理中若干关键问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波光子学是一门新兴的交叉学科,其研究范围包括微波信号的光子学发生、微波光子信号处理、基于光子技术的微波频率测量、微波光子传输链路、工作于微波频率的光电子器件、以及光控微波器件等。与传统的微波系统相比,微波光子系统具有带宽大、损耗低、结构紧凑及抗电磁干扰等诸多优点,可以有效的解决“电子瓶颈”的限制。很多在传统微波系统中很难实现的功能都可以利用微波光子技术来实现。因此,微波光子学近年来受到了国际研究人员的广泛关注,被广泛地应用于军事、医疗、通信及航空航天等诸多领域。
     本文首先介绍了微波光子学的发展历史、主要应用方向及主要器件,然后针对微波光子信号处理中的三个关键问题进行了研究,分别为基于光子学的微波任意波形发生、基于光子学的微波频率测量及光单边带调制和可调谐微波分数阶希尔伯特变换器,论文主要的创新点和学术贡献如下:
     1、提出并实验论证了两种基于电光调制器和光纤布拉格光栅(FBG)的频率大范围可调谐相位编码微波/毫米波信号发生的方案。实验中分别成功获得了22-27 GHz和40-50 GHz的相位编码射频信号,并使用伪随机二进制序列作为编码信号验证了所得相位编码信号的抗噪声压缩性能,压缩比分别达到了67.5和128。两种方案的频率可调谐范围在理论上分别可以达到12.5-100 GHz和40-110 GHz,如此大的可调谐频率范围使用传统的电子学方法是难以实现的。
     2、用理论研究和数值仿真的方法详细研究了基于相位调制器的时域脉冲整形(TPS)系统中三阶色散和色散不匹配引起的脉冲失真。首先对基于相位调制器的TPS系统进行了详细的理论分析,然后用数值仿真的方法验证了理论分析的正确性,其中,匹配三阶色散的存在会使系统输出脉冲展宽,且越高阶脉冲展宽就越严重;二阶色散不匹配会对各个输出脉冲引起同样的展宽;三阶色散不匹配则会使输出脉冲产生振荡衰减拖尾。最后,提出了用调制信号预失真技术来补偿三阶色散引起的脉冲展宽的方法,并进行了仿真验证。
     3、提出并实验论证了三种基于微波频率到功率比映射方法的微波光子瞬时频率测量方案。其中,前两种方案基于微波频率到光功率比映射的方法,实验得到了10 GHz的测量带宽。方案一使用了定标-查表的方法,这种方法对FBG的形状无严格要求,可以消除方案二中由形状误差引起的测量误差,这使得方案一的测量误差在0.08 GHz以内。方案二构造了微波频率到光功率比的线性映射关系,这一方面使得测频系统在最大的测量范围内得到了一个恒定的分辨率,另一方面,与方案一相比,系统在功率比函数斜率较小的低频段的分辨率在理论上得到了提高,但由于方案二对FBG频谱形状的精确度要求较高,因此测量误差在0.2GHz左右。方案三使用了微波频率到微波功率比线性映射的方法,测频范围为0.5-40 GHz,其中一路利用了正弦传递函数的线性段,但由于线性段存在固有误差且功率较低,这使得噪声的影响相对较大,系统的测频误差在0.5 GHz左右。
     4、用理论分析和数值仿真的方法提出并论证了一种基于光频梳和波分复用器的可重构微波光子信道化接收机。仿真中用两个串联的强度调制器产生了11根均匀谱线,这些谱线被用作11个光载波,而多个信道则是通过使用自由频谱范围(FSR)与相邻光载波的频率间隔稍有不同的多通道光滤波器实现的。仿真中对系统测频精度的可调谐性进行了较详细的分析和论证,对系统的动态范围进行了分析,并证明了使用优化的滤波器可以提高系统的动态范围。
     5、提出并论证了一种利用基于FBG的光希尔伯特变换器和马赫曾德尔干涉仪结构来实现光单边带调制的新方案。实验中,在6-15GHz工作频率范围得到了约20 dB的边带抑制比,所得到的光单边带信号在标准单模光纤中传输了45.6km,并成功克服了色散引起的射频功率衰减效应。
     6、提出并实验论证了两种分别基于等间隔和不等间隔抽头微波光子延迟线滤波器的阶数连续可调分数阶希尔伯特变换器(FHT)。其中,基于等间隔抽头微波光子滤波器的FHT利用了偏振调制器互补的相位调制特性和检偏器偏振调制到强度调制转换的特性,成功得到了负抽头,并通过调节中心抽头的系数实现了FHT分数阶的连续调节,实验中通过恒定输出功率掺铒光纤放大器的使用而使得不同阶FHT的频率响应功率波动在3 dB以内。实验演示了0.3-1阶的连续可调谐FHT,且通带内的相位误差小于5°。而基于不等间隔抽头微波光子滤波器的FHT通过正抽头的额外延时而引入了等效的负抽头,系统简单且易调节。实验演示了0.24-1阶的连续可调谐FHT,通带内的相位误差同样小于5°。
Microwave photonics is an emerging interdisciplinary subject, the research areas of which include photonic generation, processing and measurement of microwave signals; radio-over-fiber systems; opto-electronic devices processing signals at microwave rates and optical control of microwave devices. Compared with the conventional microwave systems, microwave photonic systems could not only effectively solve the "electronic bottleneck" restrictions, but also lead to some unique advantages, such as large bandwidth, low loss, light weight, and immunity to electromagnetic interference. Microwave photonic technologies could even achieve many functions that are difficult for conventional microwave systems. Therefore, microwave photonics are widely used in many fields, such as military and defense systems, medical treatments, communication systems, and aeronautics & astronautics in recent years.
     In this thesis, we first give a brief introduction to the historical development, the main application areas and the main devices of microwave photonics. Then, three topics in microwave photonic signal processing area are discussed, which are microwave arbitrary waveform generation, photonic measurement of microwave frequency, optical single-sideband modulation and microwave photonic fractional Hilbert transformers. The major innovations and contributions are as follows:
     1. Two novel photonic approaches to realizing phase-coded microwave/mm-wave signal generation with large frequency tunability are proposed and demonstrated based on electro-optic modulators and fiber Bragg gratings (FBG). The generation of frequency tunable phase-coded microwave/mm-wave signals with the tuning range of 22-27 GHz and 40-50 GHz are achieved. A pseudo-random binary sequence is used as a phase-coding signal to verify the robustness of the pulse compression technique to noise. A pulse compression ratio of 67.5 or 128 is achieved, respectively. A theoretical frequency tuning range of 12.5-100 GHz or 40-110 GHz is obtained. Such a large tunable frequency range is difficult to achieve using conventional electronic techniques.
     2. A thorough analysis on pulse distortions due to the third-order dispersion (TOD) and dispersion mismatches in a phase-modulator-based temporal pulse shaping (TPS) system for the generation of a repetition-rate-multiplied pulse burst is performed. We demonstrate that the profile of a repetition-rate-multiplied pulse burst and the shape of the individual pulses in the pulse burst are distorted due to the TOD and the dispersion mismatches of the dispersive elements. The tolerance of the system to the TOD and the dispersion mismatches when employing an input optical pulse with different pulse width is studied. A technique to use predistortion of the RF modulation signal to tackle the pulse distortions is discussed.
     3. Three novel photonic approaches to realizing instantaneous microwave frequency measurement based on frequency-to-power mapping are proposed and demonstrated. The first two approaches are based on microwave frequency to optical power mapping, in which a measurement range of 1-10 GHz is realized. The first approach is based on the calibration-look-up-table method, which sets no strict requirements on the shape of the FBG Thus, the measurement error caused by the shape error of the FBG in the second approach could be eliminated, which makes the measurement error of the first approach within 0.08 GHz. In the second approach, a linear power ratio function is constructed, leading to a constant resolution in the maximum measurement range. However, as this approach requires a high accuracy of the FBG spectral shape, the measurement error is about 0.2 GHz. The third approach is based on frequency to microwave power mapping, in which the measurement range is 0.5-40 GHz. However, as the linear segment of the sinusoidal transfer function is used, and there is an inherent error, which makes the impact of noise relatively large, the measurement error of the third approach is about 0.5 GHz.
     4. A photonic approach to implementing a microwave channelized receiver based on wavelength division multiplexing using an optical comb is proposed. In the approach, a flat optical comb with 11 comb lines is generated using two cascaded Mach-Zehnder modulators. Frequency analysis of a microwave signal with multiple-frequency components is realized by using the optical comb together with an optical etalon with a periodic transfer function, a wavelength division multiplexer (WDM) and a photodetector array. The system is investigated numerically. The reconfigurability of the system realized by tuning the comb-line spacing and the peak positions of the etalon is also evaluated. The improvement of the dynamic range of the system using an optimized periodic filter is also discussed.
     5. An all-optical approach to realizing optical single sideband (OSSB) modulation based on optical Hilbert transform implemented using an FBG is proposed and demonstrated. In the experiment, an OSSB signal with a frequency from 6 to 15 GHz and a sideband suppression ratio as large as 20 dB is generated. The transmission of the OSSB signal over a single mode fiber of 45.6 km is also studied, and the power fading effect resulted from the chromatic dispersion is eliminated successfully.
     6. Two approaches to realizing continuously tunable microwave fractional Hilbert transformer (FHT) based on a uniformly-spaced microwave photonic delay-line filter (MPF) and a nonuniformly-spaced MPF are proposed and demonstrated. In the first approach, the MPF with true negative coefficients is realized based on a polarization modulator and polarization-modulation to intensity-modulation conversion in an optical polarizer. The tunability of the fractional order is achieved by tuning the coefficient of the 0th tap. An FHT with a tunable order from 0.3 to 1 is demonstrated. The accuracy of the FHT is evaluated; a phase deviation less than 5°within the passband is achieved. In the second approach, nonuniformly-spaced MPF is used. The advantage of using nonuniform spacing is that an equivalent negative coefficient can be achieved by introducing an additional time delay leading to aπphase shift, corresponding to a negative coefficient. An FHT with a tunable order between 0.24 and 1 is implemented. The accuracy of the FHT is also evaluated and the phase deviation within the passband is also less than 5°.
引文
[1]A. J. Seeds, "Microwave photonics," IEEE Trans. Microw. Theory Tech., vol.50, no.3, pp.877-887, Mar.2002.
    [2]J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photonics, vol.1, pp.319-330, Jun.2007.
    [3]李建强,基于铌酸锂调制器的微波光子信号处理技术与毫米波频段ROF系统设计[学位论文],北京:北京邮电大学,2009
    [4]T. H. Maiman, "Stimulated optical radiation in ruby masers," Nature, vol.187, no.4736, pp.493-494, Aug.1960.
    [5]A. Javan, W. R. Bennett, Jr., and D. R. Herriott, "Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture," Phys. Rev. Lett., vol.6, no.3, pp.106-110, Feb.1961.
    [6]R. H. Blumenthal, "Design of a microwave frequency light modulator," Proc. IRE, vol.50, no.4, pp.452-456, Apr.1962.
    [7]K. M. Johnson, "Microwave light modulation by the Pockel effect," Microwave J., vol.7, pp.51-56,1964.
    [8]R. D. Standley and G. D. Mandeville, "Performance of an 11 GHz optical modulator using LiTaO3," Appl. Opt., vol.10, no.5, pp.1022-1023, May 1971.
    [9]Z. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Y. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Triofim, "Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature," Fiz. Tekh. Poluprovodn., vol.4, p.1826,1970.
    [10]I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, "Junction lasers which operate continuously at room temperature," Appl. Phys. Lett., vol.17, no.3, pp.109-111, Aug. 1970.
    [11]T. Ikegami and Y. Suematsu, "Resonance-like characteristics of the direct modulation of a junction laser," Proc. IEEE, vol.55, no.1, pp.122-123, Jan.1967.
    [12]R. S. Tucker and D. J. Pope, "Microwave circuit models of semiconductor injection lasers," IEEE Trans. Microw. Theory Tech., vol.31, no.3, pp.289-294, Mar.1983.
    [13]S. E. Miller, "Communication by laser," Sci. Amer., vol.214, no.1, pp.19-27,1966.
    [14]K. C. Kao and G. A. Hockham, "Dielectric-fiber surface waveguides for optical frequencies," Proc. Inst. Elect. Eng., vol.113, no.7, pp.1151-1158, Jul.1966.
    [15]F. P. Kapron, D. B. Keck, and R. D. Maurer, "Radiation losses in glass optical waveguides," Appl. Phys. Lett., vol.17, no.10, pp.423-425, Aug.1970.
    [16]D. N. Payne and W. A. Gambling, "Zero material dispersion in optical fibers," Electron. Lett., vol.11, no.8, pp.176-178, Apr.1975.
    [17]T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, "Ultimate low-loss single mode fiber at 1.55 μm," Electron. Lett., vol.15, no.4, pp.106-108, Feb.1979.
    [18]R. P. Rietz, "High speed semiconductor photodiodes," Rev. Sci. Inst., vol.33, no.8, pp. 994-999, Sept.1962.
    [19]K. M. Johnston, "High speed photodiode signal enhancement at avalanche breakdown voltage," IEEE Trans. Electron Devices, vol.12, no.2, pp.55-63, Feb.1965.
    [20]J. E. Bowers, C. A. Burrus, and R. J. McCoy, "InGaAs PIN photodetectors with modulation response to millimeter wavelengths," Electron. Lett., vol.21, no.18, pp. 812-814, Aug.1985.
    [21]K. Berchtold, O. Krumpholz, and J. Suri, "Avalanche photodiodes with a gain-bandwidth product of more than 200 GHz," Appl. Phys. Lett., vol.26, no.10, pp.585-587, May 1975.
    [22]P. Guetin, "Interaction between a light beam and a Gunn oscillator near the fundamental edge of GaAs," J. Appl. Phys., vol.40, no.10, pp.4114-4122, Sept.1969.
    [23]R. A. Kiehl, "Behavior and dynamics of optically controlled TRAPATT oscillators," IEEE Trans. Electron. Devices, vol.25, no.6, pp.703-710, Jun.1978.
    [24]H. P. Vyas, R. J. Gutmann, and J. M. Borrego, "Leakage current enhancement in IMPATT oscillators by photo-excitation," Electron. Lett., vol.13, no.7, pp.189-190, Mar.1977.
    [25]H. W. Yen, M. K. Barnoski, R. G. Hunsperger, and R. T. Melville, "Switching of GaAs IMPATT diode oscillator by optical illumination," Appl. Phys. Lett., vol.31, no.2, pp. 120-122, Jul.1977.
    [26]H. W. Yen and M. K. Barnoski, "Optical injection locking and switching of transistor oscillators," Appl. Phys. Lett., vol.32, no.3, pp.182-184, Feb.1978.
    [27]A. J. Seeds and J. R. Forrest, "Initial observations of optical injection locking of an X-band IMPATT oscillator," Electron. Lett., vol.14, no.25, pp.829-830, Dec.1978.
    [28]K. Giboney, et al., "110-GHz GaInAs/InP double heterostructure p-i-n photodetectors," IEEE/OSA J. Lightw. Technol., vol.13, no.7, pp.1490-1499, Jul.1995.
    [29]J. P. Yao, "Microwave photonics," IEEE/OSA J. Lightw. Technol., vol.27, no.3, pp. 314-335, Feb.2009.
    [30]W. Li and J. P. Yao, "Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability," IEEE Photon. J., vol.2, no.6, pp.954-959, Dec.2010.
    [31]J. B. Y. Tsui, Microwave receivers with electronic warfare applications. New York:Wiley, 1986.
    [32]K. Wilner and A. P. Van Den Heuvel,"Fiber-optic delay lines for microwave signal processing," Proc. IEEE, vol.64, no.5, pp.805-807, May 1976.
    [33]J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," IEEE/OS A J. Lightw. Technol., vol.24, no.1, pp.201-229, Jan.2006.
    [34]R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech., vol.54, no.2, pp.832-846, Feb.2006.
    [35]B. Ortega et al., "Highly selective microwave photonic filters based on new FBGs—EDF recirculating cavities and tuned modulators," in Proc. IEEE Int. Topical Meeting Microwave Photonics (Seoul, Korea),2005. Paper 103.
    [36]F. Coppinger, A. S. Bhushan, and B. Jalali, "Photonic time stretch and its application to analog-to-digital conversion," IEEE Trans. Microw. Theory and Tech. vol.47, no.7, 1309-1314, Jul.1999.
    [37]Y. Han, and B. Jalali, "Time-bandwidth product of the photonic time-stretched analog-to-digital converter," IEEE Trans. Microw. Theory and Tech. vol.51, no.7, 1886-2003, Jul.2003.
    [38]Y. Han and B. Jalali, "Photonic time-stretched analog-to-digital converter:fundamental concepts and practical considerations," IEEE/OSA J. Lightwave Technol. vol.21, no.12, 3085-3103, Dec.2003.
    [39]Y. Han, O. Boyraz, and B. Jalali, "Ultrawide-band photonic time-stretch A/D converter employing phase diversity," IEEE Trans. Microw. Theory and Tech. vol.53, no.4, 1404-1408, Apr.2005.
    [40]J. Chou, O. Boyaz, D. Solli, and B. Jalali, "Femtosecond real-time single-shot digitzer," Appl. Phys. Lett., vol.91, no.16, pp.161105-161105-3, Oct.2007.
    [41]A. Casini and P. Faccin, "Radio over fiber technologies and systems:new opportunities" in Proc. IEEE Int. Topical Meeting Microwave Photonics (Budapest, Hungary),2003, pp. 123-128.
    [42]A. Molony, C. Edge, and I. Bennion, "Fibre grating time delay element for phased array antennas." Electron. Lett., vol.31, no.17, pp.1485-1486, Aug.1995.
    [43]J. E. Roman, M. Y. Frankel, P. J. Matthews, and R. D. Esman, "Time-steered array with a chirped grating beamformer," Electron. Lett.,1997, vol.33, no.8, pp.652-653, Apr. 1997.
    [44]D. E. Leaird and A. M. Weiner, "Femtosecond direct space-to-time pulse shaping," IEEE J. Quantum Electron., vol.37, no.4, pp.494-504, Apr.2001.
    [45]J. D. McKinney, D. E. Leaird, and A. M. Weiner, "Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper," Opt. Lett., vol.27, no.15, pp. 1345-1347, Aug.2002.
    [46]S. J. Xiao, J. D. McKinney, and A. M. Weiner, "Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper," IEEE Photon. Technol. Lett., vol.16, no.8, pp.1936-1938, Aug.2004.
    [47]J. P. Heritage and A. M. Weiner, "Optical systems and methods based upon temporal stretching, modulation and recompression of ultrashort pulses," United States Patent, No. 4928316,1990.
    [48]J. Azana, N. K. Berger, B. Levit, and B. Fischer, "Reconfigurable generation of high repetition-rate optical pulse sequences based on time-domain phase-only filtering," Opt. Lett., vol.30, no.23, pp.3228-3230, Dec.2005.
    [49]R. E. Saperstein, N. Alic, D. Panasenko, R. Rokitski, and Y. Fainman, "Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses," J.Opt. Soc. Am. B, vol.22, no.11, pp.2427-2436, Nov.2005.
    [50]H. Chi and J. Yao, "Waveform distortions due to second-order dispersion and dispersion mismatches in a temporal pulse-shaping system," IEEE/OSA J. Lightwave Technol., vol. 25, no.11, pp.3528-3535, Nov.2007.
    [51]T. Jannson, "Real-Time Fourier Transformation in Dispersive Optical Fibers," Opt. Lett., vol.8, no.4, pp.232-234, Apr.1983.
    [52]J. Azana, L. R. Chen, M. A. Muriel, and P. W. E. Smith, "Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings," Electron. Lett., vol.35. no.25, pp.2223-2224, Dec.1999.
    [53]M. A. Muriel, J. Azana, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett., vol.24, no.1, pp.1-3, Jan.1999.
    [54]J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator,' IEEE Photon. Technol. Lett., vol.15, no.4, pp.581-583, Apr.2003.
    [55]A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci.Instrum., vol.71, no.5, pp.1929-1960, May.2000.
    [56]A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-Resolution Femtosecond Pulse Shaping," J. Opt. Soc. Am. B, vol.5, no.8, pp.1563-1572, Aug.1988.
    [57]T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, "Toward a photonic arbitrary waveform generator using a mode locked external cavity semiconductor laser,' IEEE Photon. Technol. Lett., vol.14, no.11, pp.1608-1610, Nov.2002.
    [58]Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett., vol.30, no.12, pp.1557-1559, Jun.2005.
    [59]Z. Jiang, D. E. Leaird, and A. M. Weiner, "Optical arbitrary waveform generation and characterization using spectral line-by-line control," IEEE/OSA J. Lightwave Technol., vol.24, no.7, pp.2487-2494, Jul.2006.
    [60]C. B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, "Spectral line by-line shaping for optical and microwave arbitrary waveform generations," Laser Photonics Rev., vol.2, no.4, pp.227-248, Aug.2008.
    [61]Y. Dai and J. P. Yao, "Microwave pulse phase encoding using a photonic microwave delay-line filter," Opt. Lett., vol.32, no.24, p.3486-3488, Dec.2007.
    [62]Y. Dai and J. P. Yao, "Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response," IEEE Photon. Technol. Lett., vol.21, no.9, pp.569-571, May 2009.
    [63]J. P. Yao, "Photonics for Ultrawideband communications," IEEE Microwav. Mag., vol. 10, no.4, pp.82-95, Jun.2009.
    [64]W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, "Characterization of a coherent optical RF channelizer based on a diffraction grating," IEEE Trans. Microw. Theory Tech., vol.49, no.10, pp.1996-2001, Oct.2001.
    [65]D. B. Hunter, L. G. Edvell, and M. A. Englund, "Wideband microwave photonic channelised receiver," in Proc. IEEE Int. Microw. Photon. Top. Meeting, pp.249-251, Oct.2005.
    [66]S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A.Mitchell, "A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system," IEEE Trans. Microw. Theory Tech., vol.54, no.2, pp.868-892, Feb.2006.
    [67]F. A. Volkening, "Photonic channelized RF receiver employing dense wavelength division multiplexing," U.S. patent 7245833B1, Jul.2007.
    [68]X. Zou, W. Pan, B. Luo, and L. Yan, "Photonic approach for multiple-frequency component measurement using spectrally sliced incoherent source," Opt. Lett., vol.35, no. 3, pp.438-440, Feb.2010.
    [69]C. Bres, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, "Reconfigurable parametric channelized receiver for instantaneous spectral analysis," Opt. Express, vol.19, no.4, pp. 3531-3541, Feb.2011.
    [70]S. T.Winnall and A. C. Lindsay, "A Fabry-Perot scanning receiver for microwave signal processing," IEEE Trans. Microw. Theory Tech., vol.47, no.7, pp.1385-1390, Jul.1999.
    [71]P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand and W. Margulis, "Photonic scanning receiver using an electrically tuned fiber Bragg grating," Opt. Lett., vol.34, no.24, pp.3794-3796, Dec.2009.
    [72]H. Guo, G. Xiao, N. Mrad, and J. P. Yao, "Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating," IEEE Photon. Technol. Lett., vol.21, no.1, pp.45-47, Jan.2009.
    [73]L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett., vol.18, no.10, pp.1188-1190, May 2006.
    [74]H. Chi, X. Zou, and J. P. Yao, "An approach to the measurement of microwave frequency based on optical power monitoring," IEEE Photon. Technol. Lett., vol.20, no.14. pp. 1249-1251, Jul.2008.
    [75]H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform," Optics Express, vol.16, no.18, pp.13707-13712, Sept.2008.
    [76]X. Zou and J. P. Yao, "An optical approach to microwave frequency measurement with adjustable measurement range and resolution," IEEE Photon. Technol. Lett., vol.20, no.23, pp.1989-1991, Dec.2008.
    [77]M. Attygalle and D. B. Hunter, "Improved Photonic Technique for Broadband Radio-Frequency Measurement," IEEE Photon. Technol. Lett., vol.21, no.4, pp.206-208, Feb.2009.
    [78]S. Pan and J. P. Yao, "Instantaneous photonic microwave frequency measurement with a maximized measurement range," in Proc. IEEE Int. Microw. Photon. Top. Meeting (Valencia, Spain), Oct.14-16,2009, paper Fr 4.3.
    [79]Z. Li, B. Yang, H. Chi, X. M. Zhang, S. L. Zheng and X. F. Jin, "Photonic instantaneous measurement of microwave frequency using fiber Bragg grating," Opt. Commun., vol. 283, no.3, pp.396-399, Feb.2010.
    [80]D. Wake, C. R. Lima, and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microw. Theory Tech., vol.43, no.9, pp.2270-2276, Sept.1995.
    [81]L. A. Johansson and A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase lock loop," IEEE Photon. Technol. Lett., vol.12, pp.690-692, Jun.2000.
    [82]J. Park, W. V. Sorin, and K. Y. Lau, "Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission," Electron. Lett., vol.33, no.6, pp.512-513, Mar.1997.
    [83]G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE Trans. Microw. Theory Tech., vol.45, no.8, pp.1410-1415, Aug.1997.
    [84]B. Davies, and J. Conradi, "Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband," IEEE Photon. Technol. Lett., vol.10, no.4, pp. 600-602, Apr.1998.
    [85]M. Izutsu, S. Shikama, and T. Sueta, "Integrated optical SSB modulator/frequency shifter," IEEE J. Quantum Electron., vol.17, no.11, pp.2225-2227, Nov.1981.
    [86]E. Vergnol, F. Devaux, D. Tanguy, and E. Penard, "Integrated lightwave millimetric single side-band source:Design and issues," IEEE/OSA J. Lightw. Technol., vol.16, no.7, pp.1276-1284, Jul.1998.
    [87]M. Sieben, J. Conradi, and D. E. Dodds, "Optical single sideband transmission at 10 Gbit/s using only electrical dispersion compensation," IEEE/OSA J. Lightw. Technol., vol.17, no.10, pp.1742-1749, Oct.1999.
    [88]A. Loayssa, D. Benito, and M. J. Garde,"Design and performance of the bidirectional optical single-sideband modulator," IEEE/OSA J. Lightw. Technol., vol.21, no.4, pp. 1071-1082, Apr.2003.
    [89]Rajiv Ramaswami, and Kumar N. Sivarajan, Optical networks:a practical perspective, Morgan Kaufmann,2002,2nd Edition.
    [90]阎吉祥等,激光原理与技术,北京:高等教育出版社,2004
    [91]G. L. Li and P. K. L. Yu, "Optical intensity modulators for digital and analog applications," IEEE/OSA J. Lightw. Technol., vol.21, no.9, pp.2010-2030, Sept.2003.
    [92]Amnon Yariv(著),陈鹤鸣,施伟华,张力(译),现代通信光电子学(第5版),北京:电子工业出版社,2004
    [93]F. Koyama and K. Iga, "Frequency chirping in external modulators," IEEE/OSA J. Lightw. Technol., vol.6, no.1, pp.87-93, Jan.1988.
    [94]R. V. Schmidt and I. P. Kaminow, "Metal diffused optical waveguides in LiNbO3," Appl. Phys. Lett., vol.25, no.8, pp.458-460, Oct.1974.
    [95]K. S. Giboney, et al., "Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product," IEEE Photon. Technol. Lett., vol.7, no.4, pp. 412-414, Apr.1995.
    [96]T. Ishibashi, H. Fushimi, H. Ito, and T. Furuta, "High power uni-travelling-carrier photoiodes," in Proc. IEEE Int. Topical Meeting on Microwave Photonics (Melbourne, Austrailia),1999, pp.75-78.
    [97]H. Ito, T. Furata, S. Kodama, and T. Ishibashi, "InP/InGaAs unitravelling-carrier photodiode with 310 GHz bandwidth," Electronics Letters, vol.36. no.21, pp.1809-1810, Oct.2000.
    [1]J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photonics, vol.1, pp.319-330, Jun.2007.
    [2]M. G. M. Hussain, "Ultra-wideband impulse radar-an overview of the principles," IEEE AES Systems Magazine, vol.13, no.9, pp.9-14, Sept.1998.
    [3]Federal Communications Commission, "Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems," Apr.2002. Technical Report, ET-Docket 98-153, FCC02-48.
    [4]W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett., vol.17, no.11, pp.2418-2420, Nov.2005.
    [5]X. Chen and S. Kiaei, "Monocycle shapes for ultra wideband system," in IEEE International Symposium on Circuits and Systems,2002, vol.1, pp.I-597-I-600.
    [6]F. Zeng and J. P. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett., vol.18, no.7, pp.823-825, Mar.2006.
    [7]Q. Wang, F. Zeng, S. Blais, and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett., vol.31, no.21, pp.3083-3085, Oct.2006.
    [8]J. Yao, F. Zeng, and Q. Wang, "Photonic generation of ultrawideband signals," IEEE/OSA J. Lightwave Tcchnol., vol.25, no.11, pp.3219-3235. Nov.2007.
    [9]H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar. Boston, MA:Artech House,1994.
    [10]M. I. Skolnik, Introduction to Radar. NewYork:McGraw-Hill,1962.
    [11]H. Kwon and B. Kang, "Linear frequency modulation of voltage-controlled oscillator using delay-line feedback," IEEE Microwav. Wireless Compon. Lett., vol.15, no.6, pp. 431-433,Jun.2005.
    [12]A. M. Kawalec, "SAW dispersive delay lines in radar signal processing," in IEEE Int. Radar Conf., May 1995, pp.732-736.
    [13]D. E. Leaird and A. M. Weiner, "Femtosecond direct space-to-time pulse shaping," IEEE J. Quantum Electron., vol.37, no.4, pp.494-504, Apr.2001.
    [14]J. D. McKinney, D. E. Leaird, and A. M. Weiner, "Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper," Opt. Lett., vol.27, no.15, pp. 1345-1347, Aug.2002.
    [15]S. J. Xiao, J. D. McKinney, and A. M. Weiner, "Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper." IEEE Photon. Technol. Lett., vol.16, no.8, pp.1936-1938, Aug.2004.
    [16]J. P. Heritage and A. M. Weiner, "Optical systems and methods based upon temporal stretching, modulation and recompression of ultrashort pulses," United States Patent, No. 4928316,1990.
    [17]J. Azana, N. K. Berger, B. Levit, and B. Fischer, "Reconfigurable generation of high repetition-rate optical pulse sequences based on time-domain phase-only filtering," Opt. Lett., vol.30, no.23, pp.3228-3230, Dec.2005.
    [18]R. E. Saperstein, N. Alic, D. Panasenko, R. Rokitski, and Y. Fainman, "Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses," J.Opt. Soc. Am. B, vol.22, no.11, pp.2427-2436, Nov.2005.
    [19]H. Chi and J. Yao, "Waveform distortions due to second-order dispersion and dispersion mismatches in a temporal pulse-shaping system," J. Lightwave Technol., vol.25, no.11, pp.3528-3535, Nov.2007.
    [20]T. Jannson, "Real-Time Fourier Transformation in Dispersive Optical Fibers," Opt. Lett., vol.8, no.4, pp.232-234, Apr.1983.
    [21]J. Azana, L. R. Chen, M. A. Muriel, and P. W. E. Smith, "Experimental demonstration of real-time Fourier transformation using linearly chirped fibre Bragg gratings," Electron. Lett., vol.35, no.25, pp.2223-2224, Dec.1999.
    [22]M. A. Muriel, J. Azana, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett., vol.24, no.1, pp.1-3, Jan.1999.
    [23]J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett., vol.15, no.4, pp.581-583, Apr.2003.
    [24]A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci.Instrum., vol.71, no.5, pp.1929-1960, May.2000.
    [25]A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-Resolution Femtosecond Pulse Shaping," J. Opt. Soc. Am. B, vol.5, no.8, pp.1563-1572, Aug.1988.
    [26]T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, "Toward a photonic arbitrary waveform generator using a mode locked external cavity semiconductor laser,' IEEE Photon. Technol. Lett., vol.14, no.11, pp.1608-1610, Nov.2002.
    [27]Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Opt. Lett., vol.30, no.12, pp.1557-1559, Jun.2005.
    [28]Z. Jiang, D. E. Leaird, and A. M. Weiner, "Optical arbitrary waveform generation and characterization using spectral line-by-line control," IEEE/OSA J. Lightwave Technol., vol.24, no.7, pp.2487-2494, Jul.2006.
    [29]C. B. Huang, Z. Jiang, D. E. Leaird, J. Caraquitena, and A. M. Weiner, "Spectral line by-line shaping for optical and microwave arbitrary waveform generations," Laser Photonics Rev., vol.2, no.4, pp.227-248, Aug.2008.
    [30]Y. Dai and J. P. Yao, "Microwave pulse phase encoding using a photonic microwave delay-line filter," Opt. Lett., vol.32, no.24, p.3486-3488, Dec.2007.
    [31]Y. Dai and J. P. Yao, "Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response," IEEE Photon. Technol. Lett., vol.21, no.9, pp.569-571, May 2009.
    [32]K. O. Hill, Y. Fujii, D. C. Johnson, and B.S. Kawasaki, "Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication," Appl. Phys. Lett., vol.32, no.10, pp.647-649, May 1978.
    [33]K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett., vol.26, no.16, pp.1270-1272, Aug.1990.
    [34]K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol., vol.15, no.8, pp.1263-1276, Aug.1997.
    [35]J. Capmany, D. Pastor, B. Ortega, J. L. Cruz, and M. V. Andres, "Applications of fiber Bragg gratings to microwave photonics," Fiber Integrated Opt., vol.19, no.4, pp. 483-494, Jul.2000.
    [36]R. Kashyap, Fiber Bragg Gratings, San Diego:Academic Press,1999.
    [37]A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron., vol.9, no.9, pp.919-933, Sept.1973.
    [38]M. McCall, "On the application of coupled mode theory for modeling fiber Bragg gratings," IEEE/OSA J. Lightwave Technol., vol.18, no.2, pp.236-242, Feb.2000.
    [39]M. Yamada and K. Sakuda, "Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach," Appl. Opt., vol.26, no.16, pp.3474-3478, Aug.1987.
    [40]K. A. Winick and J. E. Roman, "Design of corrugated waveguide filters by Fourier transform techniques," IEEE J. Quantum Electron., vol.26, no.11, pp.1918-1929, Nov. 1990.
    [41]E. Peral, J. Capmany, and J. Marti, "Iterative solution to the Gel'Fand-Levitan-Marchenko coupled equations and application to synthesis of fiber gratings," IEEE J. Quantum Electron., vol.32, no.12, pp.2078-2084, Dec.1996.
    [42]R. Feced, M. N. Zervas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings," IEEE J. Quantum Electron., vol.35, no.8, pp.1105-1115, Aug.1999.
    [43]J. Skaar, L. G. Wang, and T. Erdogan, "On the synthesis of fiber Bragg gratings by layer peeling," IEEE J. Quantum Electron., vol.37, no.2, pp.165-173, Feb.2001.
    [44]J. Skaar, L. Wang, and T. Erdogan, "Synthesis of Thick Optical Thin-Film Filters with a Layer-Peeling Inverse-Scattering Algorithm," Appl. Opt., vol.40, no.13, pp.2183-2189. May 2001.
    [45]G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett., vol.14, no.15, pp.823-825, Aug.1989.
    [46]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett., vol.62, no.10, pp.1035-1037. Mar.1993.
    [47]M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, "Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett., vol.31, no.17, pp.1488-1490. Aug.1995.
    [48]P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, "High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres," Electron. Lett., vol.19, no.13, pp.1191-1193, Jun.1993.
    [49]J. P. Yao, "Microwave photonics," IEEE/OSA J. Lightw. Technol., vol.27, no.3, pp. 314-335, Feb.2009.
    [50]阎吉祥等,激光原理与技术,北京:高等教育出版社,2004
    [51]J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, "Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber," IEEE Photon. Technol. Lett., vol.10, no.7, pp.941-943, Jul.1998.
    [52]Y. Liu, K. S. Chiang, and P. L. Chu, "Generation of dual-wavelength picosecond pulses from a self-seeded Fabry-Perot laser diode and a polarization-maintaining fiber Bragg grating," IEEE Photon. Technol. Lett., vol.16, no.7, pp.1742-1744, Jul.2004.
    [53]J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communications systems," in Proc. SPIE, Dec.2004, vol.5577, pp.133-143.
    [54]H. Chi and J. P. Yao, "Photonic generation of phase-coded millimeter-wave signal using a polarization modulator," IEEE Microwav. Wireless Compon. Lett., vol.18, no.5, pp. 371-373, May 2008.
    [55]G. P. Agrawal, Nonlinear Fiber Optics,3rd ed., San Diego:Academic Press,2001.
    [1]J. B. Y. Tsui, Microwave receivers with electronic warfare applications. New York:Wiley, 1986.
    [2]李兵舰、吴小强,现代雷达侦察技术特点及发展方向,舰船电子对抗,vol.30,no.1,pp.19-21,Feb.2007.
    [3]张永顺、童宁宁、赵国庆,雷达电子战原理,国防工业出版社,北京,2005.
    [4]J. D. Schwartz, J. Azana, and D. V. Plant, "Experimental demonstration of real-time spectrum analysis using dispersive microstrip," IEEE Microw. Wireless Compon. Lett., vol.16, no.4, pp.215-217, Apr.2006.
    [5]M. A. G. Laso, T. Lopetegi, M. J. Erro, et al, "Real-time spectrum analysis in microstrip technology," IEEE Trans. Microw. Theory Tech., vol.51, no.3, pp.705-707, Mar.2003.
    [6]林镇辉、姚骑均、杨戟,“用于射电天文数字频谱仪的新进展”,天文学进展,vol.26,no.2,pp.175-183,2008.
    [7]G. M. Pacheco and E. Scalise, Jr, "Acousto-optic spectrometer for radio astronomy research:problems and solutions," Proc. SPIE, vol.2266, pp.522-526,1994.
    [8]A. O. Benz, P. C. Grigi, V. Hungerbuhler, et al, "A broadband FFT spectrometer for radio and millimeter astronomy," Astronomy & Astrophysics, vol.442, no.2, pp.767-773, Nov. 2005.
    [9]J. Zmuidzinas, "Technology for submillimeter astronomy," IEEE/MTT-S International Microwave Symposium, pp.1861-1864,2007.
    [10]J. E. B. Oliveira, F. D. P. Alves, and A. L. P. Mattei, "Trends in photonics applied to electronic warfare at Brazilian airforce," Proc. SBMO/IEEE MTT-S IMOC,1999, pp.599-602.
    [11]蒋跃,“基于Bragg衍射的声光频谱分析仪”,压电与声光,vol.28,no.3,pp.269-271,2006.
    [12]W. Wang, R. L. Davis, T. J. Jung, R. Lodenkamper, L. J. Lembo, J. C. Brock, and M. C. Wu, "Characterization of a coherent optical RF channelizer based on a diffraction grating," IEEE Trans. Microw. Theory Tech.. vol.49, no.10, pp.1996-2001, Oct.2001.
    [13]D. B. Hunter, L. G. Edvell, and M. A. Englund, "Wideband microwave photonic channelised receiver," in Proc. IEEE Int. Microw. Photon. Top. Meeting, pp.249-251, Oct.2005.
    [14]S. T. Winnall, A. C. Lindsay, M. W. Austin, J. Canning, and A.Mitchell, "A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system," IEEE Trans. Microw. Theory Tech., vol.54. no.2, pp.868-892, Feb.2006.
    [15]F. A. Volkening, "Photonic channelized RF receiver employing dense wavelength division multiplexing," U.S. patent 7245833B1, Jul.2007.
    [16]X. Zou, W. Pan, B. Luo, and L. Yan, "Photonic approach for multiple-frequency component measurement using spectrally sliced incoherent source," Opt. Lett., vol.35, no. 3, pp.438-440, Feb.2010.
    [17]C. Bres, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, "Reconfigurable parametric channelized receiver for instantaneous spectral analysis," Opt. Express, vol.19, no.4, pp. 3531-3541, Feb.2011.
    [18]S. T.Winnall and A. C. Lindsay, "A Fabry—Perot scanning receiver for microwave signal processing," IEEE Trans. Microw. Theory Tech., vol.47, no.7, pp.1385-1390, Jul.1999.
    [19]P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand and W. Margulis, "Photonic scanning receiver using an electrically tuned fiber Bragg grating," Opt. Lett., vol.34, no.24, pp.3794-3796, Dec.2009.
    [20]H. Guo, G. Xiao, N. Mrad, and J. P. Yao, "Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating," IEEE Photon. Technol. Lett., vol.21, no.1, pp.45-47, Jan.2009.
    [21]L. V. T. Nguyen and D. B. Hunter, "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett., vol.18, no.10, pp.1188-1190, May 2006.
    [22]H. Chi, X. Zou, and J. P. Yao, "An approach to the measurement of microwave frequency based on optical power monitoring," IEEE Photon. Technol. Lett., vol.20, no.14, pp. 1249-1251, Jul.2008.
    [23]N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, "Reduced cost photonic instantaneous frequency measurement system," IEEE Photon. Technol. Lett., vol.20, no.18, pp.1521-1523, Sept.2008.
    [24]H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform," Optics Express, vol.16, no.18, pp.13707-13712, Sept.2008.
    [25]X. Zou, H. Chi, and J. P. Yao, "Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair," IEEE Trans. Microw. Theory Tech., vol.57, no.2, pp.505-511, Feb.2009.
    [26]X. Zou and J. P. Yao, "An optical approach to microwave frequency measurement with adjustable measurement range and resolution," IEEE Photon. Technol. Lett., vol.20, no.23, pp.1989-1991, Dec.2008.
    [27]M. Attygalle and D. B. Hunter, "Improved Photonic Technique for Broadband Radio-Frequency Measurement," IEEE Photon. Technol. Lett., vol.21, no.4, pp.206-208, Feb.2009.
    [28]X. M. Zhang, H. Chi, X. M. Zhang, S. L. Zheng, X. Jin, and J. P. Yao, "Instantaneous Microwave Frequency Measurement Using an Optical Phase Modulator," IEEE Microw. Wireless Compon. Lett., vol.19, no.6, pp.422-424, Jun.2009.
    [29]X. Zou, S. Pan, and J. P. Yao, "Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation," IEEE/OSA J. Lightw. Technol., vol.27, no.23, pp.5314-5320, Dec.2009.
    [30]S. Pan and J. P. Yao, "Instantaneous photonic microwave frequency measurement with a maximized measurement range," in Proc. IEEE Int. Microw. Photon. Top. Meeting (Valencia, Spain), Oct.14-16,2009, paper Fr 4.3.
    [31]Z. Li, B. Yang, H. Chi, X. M. Zhang, S. L. Zheng and X. F. Jin, "Photonic instantaneous measurement of microwave frequency using fiber Bragg grating," Opt. Commun., vol. 283, no.3, pp.396-399, Feb.2010.
    [32]L. Menager, I. Lorgere and J.-L. Gouet, "Demonstration of a radio-frequency spectrum analyzer based on spectral hole burning,"Optics Letters, vol.26, no.16, pp.1245-1247, Aug.2001.
    [33]I. Lorgere, L. Menager, V. Lavielle, J. L. Gouet, D. Dolfi, S. Tonda and J. P. Huignard, "Demonstration of a radio-frequency spectrum analyzer based on spectral hole burning," Journal of Modern Optics, nol.49, no.14/15, pp.2459-2475, Nov.2002.
    [34]G. W. Yoffe, Peter A. Krug, F. Ouellette, and D. A. Thorncraft, "Passive temperature-compensating package for optical fiber gratings," Appl. Opt., vol.34, no.30, 6859-6861, Oct.1995.
    [35]R. Slavik, S. Doucet, and S. LaRochelle, "High-Performance All-Fiber Fabry-Perot Filters With Superimposed Chirped Bragg Gratings," J. Lightw. Technol., vol.21, no.4, pp.1059-1065. Apr.2003.
    [36]S. Pan and J. P. Yao, "Optical clock recovery using a polarization modulator-based frequency-doubling optoelectronic oscillator," IEEE/OSA J. Lightw. Technol., vol.27, no. 16, pp.3531-3539, Aug.2009.
    [37]J. P. Yao and Q. Wang, "Photonic microwave bandpass filter with negative coefficients using a polarization modulator," IEEE Photon. Technol. Lett., vol.19, no.9, pp.644-646, May 2007.
    [38]T. Healy, F. C. G. Gunning, A. D. Ellis, and J. D. Bull, "Multi-wavelength source using low drive-voltage amplitude modulators for optical communications," Opt. Express, vol. 15, no.6, pp.2981-2986, Feb.2007.
    [39]G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE Trans. Microw. Theory Tech., vol.45, no.8, pp.1410-1415, Aug.1997.
    [40]A. Oehler, S. Zeller, K. Weingarten, and U. Keller, "Broad multiwavelength source with 50 GHz channel spacing for wavelength division multiplexing applications in the telecom C band," Opt. Lett., vol.33, no.18, pp.2158-2160, Sept.2008.
    [41]R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, "Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms," Opt. Lett., vol.35, no.19, pp.3234-3236, Oct.2010.
    [1]C. H. Cox, Ⅲ, Analog Optical Links. Cambridge, U.K.:Cambridge Univ. Press,2004.
    [2]C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microw. Theory Tech., vol.54, no.2, pp.906-920, Feb.2006.
    [3]M. Sauer, A. Kobyakov, and J. George, "Radio over fiber for picocellular network architectures," IEEE/OSA J. Lightw. Technol., vol.25, no.11. pp.3301-3320, Nov.2009.
    [4]G. J. Simonis and K. G. Purchase, "Optical generation, distribution, and control of microwaves using laser heterodyne," IEEE Trans. Microwave Theory Tech., vol.38, no.5, pp.667-669, May 1990.
    [5]D. Wake, C. R. Lima, and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser," IEEE Trans. Microwave Theory Tech., vol.43, no.9, pp.2270-2276, Sept.1995.
    [6]D. Novak, Z. Ahmed, R. B. Waterhouse, and R. S. Tucker, "Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links," IEEE Trans. Microwave Theory Tech., vol.43, no.9, pp.733-734, Sept.1995.
    [7]D. Kim, M. Pelusi, Z. Ahmed, D. Novak, H.-F. Liu, and Y. Ogawa, "Ultrastable millimeter-wave signal generation using hybrid modelocking of a monolithic DBR laser," Electron. Lett., vol.31, no.9, pp.733-734, Apr.1995.
    [8]G. J. Meslener, "Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection," IEEE J. Quantum Electron., vol.20, no.10, pp. 1208-1216, Oct.1984.
    [9]H. Schmuck, "Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion," Electron. Lett., vol.31, no.21, pp.1848-1849, Oct.1995.
    [10]G. H. Smith, D. Novak, and Z. Ahmed, "Optimization of link distance in fiber-radio systems incorporating external modulators," in Proc. Australian Conf. Opt. Fiber Technol., Gold Coast, Australia, Dec.1996, pp.141-144.
    [11]U. Gliese, S. Norskov, and T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links," IEEE Trans. Microwave Theory Tech., vol.44, no. 10, pp.1716-1724, Oct.1996.
    [12]M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, "Dispersion compensation fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett., vol.30, no.2, pp.161-163, Jan.1994.
    [13]F. Ouellette, J. Cliche, and S. Gagnon, "All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling," IEEE/OSA J. Lightwave Technol., vol.12, no.10, pp.1728-1738, Oct.1994.
    [14]A. Djupsjobacka and O. Sahlen, "Dispersion compensation by differential time delay,' IEEE/OSA J. Lightwave Technol., vol.12, no.10, pp.1849-1853, Oct.1994.
    [15]R. M. Jopson, A. H. Gnauck, and R. M. Derosier, "10 Gb/s 360-km transmission over normal-dispersion fiber using mid-system spectral inversion," in Proc. OFC'93, paper PD3,1993.
    [16]K. Iwashita and N. Takachio, "Chromatic dispersion compensation in coherent optical communications," IEEE/OSA J. Lightwave Technol., vol.8, no.3, pp.367-375, Mar. 1990.
    [17]J. H. Winters, "Equalization in coherent lightwave systems using microwave waveguides," IEEE/OSA J. Lightwave Technol., vol.7, no.5, pp.813-815, May 1989.
    [18]J. H. Winters, "Equalization in coherent lightwave systems using a fractionally spaced equalizer," IEEE/OSA J. Lightwave Technol., vol.8, no.10, pp.1487-1491, Oct.1990.
    [19]G. May, A. Solheim, and J. Conradi, "Extended 10 Gb/s fiber transmission distance at 1538 nm using a duobinary receiver," IEEE Photon. Technol. Lett., vol.6, no.5, pp. 648-650, May 1994.
    [20]K. Yonenaga, S. Kuwano, S. Norimatsu, and N. Shibata, "Optical duobinary transmission system with no receiver sensitivity degradation," Electron. Lett., vol.31, no.4, pp. 302-304, Feb.1995.
    [21]D. Penninckx, M. Chbat, L. Pierre, and J.-P. Thiery, "The phase-shaped binary transmission (PSBT):A new technique to transmit far beyond the chromatic dispersion limit," IEEE Photon. Technol. Lett., vol.9, no.2, pp.259-261, Feb.1997.
    [22]C. Bungarzeanu, "Limitations of dispersion supported transmission over standard single-mode fiber," IEEE Photon. Technol. Lett., vol.6, no.7, pp.858-859, Jul.1994.
    [23]R. Olshansky, "Single sideband optical modulator for lightwave systems," U.S. patent 5301058,1994.
    [24]G. H. Smith, D. Novak, and Z. Ahmed, "Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems," Electron. Lett., vol.33, no.1, pp. 74-75,Jan.1997.
    [25]M. J. Wale, R. G. Walker, and C. Edge, "Single-sideband modulator in GaAs integrated optics for microwave frequency operation," in OSA Tech. Dig. Series,10, Integrated Photon. Res.,1992, postdeadline paper PD-8.
    [26]B. Davies, and J. Conradi, "Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband," IEEE Photon. Technol. Lett., vol.10, no.4, pp. 600-602, Apr.1998.
    [27]J. L. Corral and J. Marti, "Single sideband optical modulation on chirped fiber grating based delay lines for optically controlled phased array antennas," Electron. Lett., vol.35, no.10, pp.761-762, May 1999.
    [28]J. M. Fuster, D. Novak, A. Nirmalathas, and J. Marti, "Single-sideband modulation in photonic time-stretch analogue-to-digital conversion," Electron. Lett., vol.37, no.1, pp. 67-68,Jan.2001.
    [29]J. E. Roman, M. Y. Frankel, and R. D. Esman, "Spectral characterization of fiber gratings with high resolution," Opt. Lett., vol.23, no.12, pp.939-941, Jun.1998.
    [30]J. Conradi, B. Davies, M. Sieben, D. Dodds, and S. Walklin, "Optical single sideband (OSSB) transmission for dispersion avoidance and electrical dispersion compensation in microwave subcarrier and baseband digital systems," in Proc. Optical Fiber Commun. Conf.'97, Feb.1997, postdeadline paper PD-29.
    [31]L. A. Johansson and A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase lock loop," IEEE Photon. Technol. Lett., vol.12, pp.690-692, Jun.2000.
    [32]J. Park, W. V. Sorin, and K. Y. Lau, "Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission," Electron. Lett., vol.33, no.6, pp.512-513, Mar.1997.
    [33]E.Vourch, D. Le Berre, and D. Herve, "Lightwave single sideband wavelength self-tunable filter using an InP:Fe crystal for fiber-wireless systems," IEEE Photon. Technol. Lett., vol.14, pp.194-196, Feb.2002.
    [34]U. S. Lee, H. D. Jung, and S. K. Han, "Optical single sideband signal generation using phase modulation of semiconductor optical amplifier," IEEE Photon. Technol. Lett., vol. 16, no.5, pp.1373-1375, May 2004.
    [35]G. Ning, J. Q. Zhou, L. Cheng, S. Aditya, and P. Shum, "Generation of different modulation formats using Sagnac fiber loop with one electroabsorption modulator," IEEE Photon. Technol. Lett., vol.20, no.4, pp.297-299, Feb.2008.
    [36]H. K. Sung, E. K. Lau, and M. C. Wu, "Optical single sideband modulation using strong optical injection-locked semiconductor lasers" IEEE Photon. Technol. Lett., vol.19. no. 13, pp.1005-1007, Jul.2007.
    [37]G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE Trans. Microw. Theory Tech., vol.45, no.8, pp.1410-1415, Aug.1997.
    [38]M. Izutsu, S. Shikama, and T. Sueta, "Integrated optical SSB modulator/frequency shifter," IEEE J. Quantum Electron., vol.17, no.11, pp.2225-2227, Nov.1981.
    [39]E. Vergnol, F. Devaux, D. Tanguy, and E. Penard, "Integrated lightwave millimetric single side-band source:Design and issues," J. Lightwave Technol., vol.16, pp. 1276-1284, Jul.1998.
    [40]M. Sieben, J. Conradi, and D. E. Dodds, "Optical single sideband transmission at 10 Gbit/s using only electrical dispersion compensation," IEEE/OSA J. Lightwave Technol., vol.17, no.10, pp.1742-1749, Oct.1999.
    [41]A. Loayssa, D. Benito, and M. J. Garde, "Design and performance of the bidirectional optical single-sideband modulator," IEEE/OSA J. Lightw. Technol., vol.21, no.4, pp. 1071-1082, Apr.2003.
    [42]S. L. Hahn, in Transforms and Applications Handbook,3rd ed., A. D. Poularikas, Ed. Boca Raton, FL:CRC Press,2010, ch 7.
    [43]A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, "Fractional Hilbert transform," Opt. Lett., vol.21, no.4, pp.281-283, Feb.1996.
    [44]S. C. Pei and M. H. Yeh, "Discrete fractional Hilbert transform," IEEE Trans. Circuits Syst, II:Analog Digital Signal Process., vol.47, no.11, pp.1307-1311, Nov.2000.
    [45]C. C. Tseng and S. C. Pei, "Design and application of discrete-time fractional Hilbert transformer," IEEE Trans. Circuits Syst., Ⅱ:Analog Digital Signal Process., vol.47, no. 12, pp.1529-1533, Dec.2000.
    [46]C. D. Holdenried, J. W. Haslett, and B. Davies, "A fully integrated 10-Gb/s tapped delay Hilbert Transformer for optical single sideband," IEEE Microwav. Wireless Compon. Lett., vol.15, no.5, pp.303-305, May 2005.
    [47]M. H. Asghari and J. Azana, "All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating:Design and analysis," Opt. Lett., vol.34, no.3, pp. 334-336, Feb.2009.
    [48]M. Li and J. P. Yao, "All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating," Opt. Lett., vol.35, no.2, pp.223-225, Jan. 2010.
    [49]M. Li and J. P. Yao, "Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating," IEEE Photon. Technol. Lett., vol.22, no.21, pp.1559-1561, Nov.2010.
    [50]X. Y. Wang, M. Hanawa, K. Nakamura, K. Takano, and K. Nakagawa, "Sideband suppression characteristics of optical SSB generation filter with sampled FBG based 4-taps optical Hilbert transformer," in Proc. APCC 2009,2009, pp.622-625.
    [51]K. Takano, N. Hanzawa, S. Tanji, and K. Nakagawa, "Experimental demonstration of optically phase-shifted SSB modulation with fiber-based optical Hilbert transformers," in Tech. Digest of OFC/NFOEC 2007,2007, paper JThA48.
    [52]H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Wideband RF photonic in-phase and quadrature-phase generation," Opt. Lett., vol.33, no.2, pp.98-100, Jan.2008.
    [53]H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, "Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform," Opt. Express, vol.16, no.18, pp.13707-13712, Sep.2008.
    [54]Z. Li, W. Li, H. Chi, X. Zhang, and J. P. Yao, "A continuously tunable microwave fractional Hilbert transformer based on a photonic microwave delay-line filter using a polarization modulator," IEEE Photon. Technol. Lett., vol.23, no.22, pp.1694-1699, Nov. 2011.
    [55]陈邦媛,射频通信电路,北京:科学出版社,2002
    [56]吴微,微波滤波器综合技术的研究[学位论文],西安:西安电子科技大学,2008
    [57]程佩青,数字信号处理教程,北京:清华大学出版社,2007,第三版
    [58]J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," IEEE/OSA J. Lightw. Technol., vol.24, no.1, pp.201-229, Jan.2006.
    [59]李建强,基于铌酸锂调制器的微波光子信号处理技术与毫米波频段ROF系统设计[学位论文],北京:北京邮电大学,2009
    [60]G. A. Ball, W. H. Glenn, and W. W. Morey, "Programmable fiber optic delay line," IEEE Photon. Technol. Lett., vol.6, no.6, pp.741-743, Jun.1994.
    [61]D. B. Hunter and R. A. Minasian, "Tunable transversal filter based on chirped gratings.' Electron. Lett., vol.31, no.25, pp.2205-2207, Dec.1995.
    [62]W. Zhang, J. A. R. Williams, L. A. Everall, and I. Bennion, "Fibre-optic radio frequency notch filter with linear and continuous tuning by using a chirped fibre grating," Electron. Lett., vol.34, no.18, pp.1770-1772, Sept.1998.
    [63]D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, "Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers," IEEE Photon. Technol. Lett., vol.13, no.11, pp.1224-1226, Nov.2001.
    [64]D. B. Hunter and R. A. Minasian, "Reflectivity tapped fibre-optic transversal filter using in-fibre Bragg gratings," Electron. Lett., vol.31, no.12, pp.1010-1012, Jun.1995.
    [65]D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, andM. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations," Electron. Lett., vol.40, no.16, pp.997-999, Aug.2004.
    [66]J. W. Goodman and L. M. Woody, "Method for performing complexvalued linear operations on complex-valued data using incoherent light," Appl. Opt., vol.16, no.10, pp. 2611-2612, Oct.1977.
    [67]S. Sales, J. Capmany, J. Marti, and D. Pastor, "Experimental demonstration of fibre-optic delay line filters with negative coefficients," Electron. Lett., vol.31, no.13, pp. 1095-1096, Jun.1995.
    [68]N. You and R. A. Minasian, "Synthesis of WDM grating-based optical microwave filter with arbitrary impulse response," in Proc. Int. Topical Meeting Microwave Photonics (MWP), Melbourne, Australia,1999, vol.1, pp.223-226.
    [69]T. Yost, P. Herczfeld, A. Rosen, and S. Singh, "Hybrid transversal filter utilizing MMIC and optical fiber delay lines," IEEE Microw. Guided Wave Lett., vol.5, no.9, pp. 287-289, Sept.1995.
    [70]B. E. Swelka and R. I. MacDonald, "Optoelectronic transversal filter," Electron. Lett., vol.27, no.19, pp.1769-1770, Sept.1991.
    [71]F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, "All-optical RF filter using amplitude inversion in a SOA," IEEE Trans. Microw. Theory Tech., vol.45, no.8, pp. 1473-1477, Aug.1997.
    [72]S. Li, S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, "A novel tunable all-optical incoherent negative tap fiber-optic transversal filter based on a DFB laser diode and Fiber Bragg Gratings," IEEE Photon. Technol. Lett., vol.12, no.9, pp. 1207-1209, Sept.2000.
    [73]J.Mora, B. Ortega,M. V. Andres, J. Capmany, J. L. Cruz, D. Pastor, and S. Sales, "Tunable all-optical negative multi-tap microwave filters based on uniform fiber Bragg gratings," Opt. Lett., vol.28, no.15, pp.1308-1310, Aug.2003.
    [74]J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, "Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator," Opt. Lett., vol.28, no.16, pp.1415-1417, Aug.2003.
    [75]B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Efficient architecture for WDM photonic microwave filters," IEEE Photon. Technol. Lett., vol.15, no.1, pp.257-259, Jan.2004.
    [76]B. Vidal, V. Polo, J. L. Corral, and J. Marti, "Photonic microwave filter with tuning and reconfiguration capabilities using optical switches and dispersive media," Electron. Lett., vol.39, no.6, pp.547-548, Mar.2003.
    [77]Y. Dai and J. P. Yao, "Nonuniformly-spaced photonic microwave delay-line filter," Opt. Express, vol.16, no.7, pp.4713-4718, Mar.2008.
    [78]Y. Dai and J. P. Yao, "Microwave correlator based on a nonuniformly spaced photonic microwave delay-line filter," IEEE Photon. Technol. Lett., vol.21, no.14, pp.969-971, Jul.2009.
    [79]Y. Dai and J. P. Yao, "Nonuniformly spaced photonic microwave delay-line filters and applications," IEEE Trans. Microw. Theory Tech., vol.58, no.11, pp.3279-3289, Nov. 2010.
    [80]Y. Park, M. Asghari, R. Helsten, and J. Azana, "Implementation of broadband Microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor," IEEE Photon. J., vol.2, no.6, pp.1040-1050, Dec.2010.
    [81]N. Q. Ngo and Y. Song, "On the interrelations between an optical differentiator and an optical Hilbert transformer," Opt. Lett., vol.36, no.6, pp.915-917, Mar.2011.