精细定位控制抽穗期、株高和每穗颖花数的QTL与图位克隆汕优63中控制胶稠度、糊化温度的基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抽穗期、株高和每穗颖花数都是水稻生长发育过程中重要农艺性状,在以前研究中我们在第7染色体着丝粒区段鉴定到一个同时影响抽穗期、株高和每穗颖花数的QTL。为了弄清这3个性状是由一个基因还是多个紧密连锁的基因控制和分离克隆该QTL,我们构建了一个以珍汕97为背景的近等基因系Hd1。在Hd1中包含4个来自供体亲本的片段,其中仅第7染色体上来自供体亲本的区段与3个目标性状相关。用Hd1与珍汕97杂交构建用于精细定位的F_2大群体。F_2群体单株的表型可分为2类:一类为具有早抽穗、株高较矮和每穗颖花数较少等特征,与珍汕97表型类似;另一类具有晚抽穗、株高较高和每穗颖花数较多等特征,与明恢63表型类似。它们之间比例为1:3(随机挑选190个单株统计结果,x~2=0.11,P=0.740)。
     在具有8400个单株的F_2群体中,挑选1080个极端早抽穗的单株用于精细定位。这些极端早抽穗的单株都具有株高矮和每穗颖花数少的特征。通过对标记与目标性状之间的重组单株分析,将控制目标性状的基因定位在标记RM3859和C39之间,与标记RM5436和RM5499共分离。标记RM3859和C39之间物理距离约为2.5 Mb,标记RM5436和RM5499之间物理距离为912.4 kb。由于目标基因位于着丝粒区段,发生重组抑制,所以无法通过扩大群体来进一步缩小目标区间。
     直链淀粉含量、胶稠度、糊化温度是评价水稻蒸煮食味品质的重要指标。本课题组以前的研究结果将控制这三个性状的基因定位在第6染色体短臂末端与Wx基因紧密连锁的区段。为了弄清这3个性状是由一个多效基因还是三个紧密连锁的基因控制,我们利用本课题组构建好的近等基因系珍汕97(Wx~b)与珍汕97回交,得到5280个株系的F_2大群体。从大群体中挑选1084株性状与明恢63一致的单株用于图位克隆。通过分子标记分析将目标基因定位在一个明恢63 BAC克隆35M22和对应的珍汕97 BAC克隆2N1上,利用鸟枪法对这两个BAC克隆进行测序。对目标基因与在两个亲本之间有多态性的亚克隆标记进行重组事件分析,将目标基因定位在标记C6与P80之间,并与标记Mx4和C4共分离。将C6和P80的序列与35M22的序列比较显示这两个标记间的物理距离是14 kb,把目标基因限定在14kb的片段上,对14 kb片段的序列进行分析,其中仅包含一个完整的基因Wx基因和一个不完整的反转录转座子。结果表明,这3个性状均由Wx基因控制。
     在以前的研究中对认为,Wx基因编码合成颗粒淀粉合成酶,控制直链淀粉合成,而糊化温度主要由编码可溶性淀粉合成酶的Alk基因控制。但很少有报道关于Wx基因对糊化温度和胶稠度的影响。为了分析Wx基因与糊化温度及胶稠度的关系,本研究中分析了97个不同地方品种的Wx基因和Alk基因的多样性及其它们与这3个性状的关系。结果发现Wx基因对糊化温度有约7%的贡献率,Alk基因则解释了糊化温度约91%的变异,Wx基因和Alk基因对胶稠度都有贡献,Wx基因对胶稠度的影响大于Alk基因的影响(Wx基因解释了胶稠度约53%的变异,而Alk基因解释了胶稠度约37%的变异),而Alk基因与直链淀粉含量完全不相关。这两个基因可能都是通过改变胚乳淀粉组成来改变淀粉结构,从而影响淀粉理化性状。
     在对Wx基因序列多态性的分析中,发现一个新的突变位点。位于Wx基因ATG上游1126位置的碱基由A突变为G,导致这些材料的直链淀粉含量上升,由中等直链淀粉含量类型提升为高直链淀粉含量类型。
     本研究中还分析了淀粉合成相关23个重要基因的表达谱。这23个基因分为5个家族:ADP-葡萄糖焦磷酸化酶、可溶性淀粉合成酶、颗粒淀粉酶、淀粉分支酶和淀粉脱分支酶。ADP-葡萄糖焦磷酸化酶主要负责提供糖链延伸的原料:ADP-葡萄糖,在直链、支链淀粉合成中均起作用。颗粒淀粉酶主要参与直链淀粉和长链支链淀粉合成。可溶性淀粉合成酶,淀粉分支酶和淀粉脱分支酶则主要参与支链淀粉合成。这23个基因主要有3种表达模式:在胚乳中特异表达,在光合作用组织中特异表达,在这两类组织中都有表达。在胚乳中表达的基因主要是参与胚乳贮藏型淀粉合成。在光合作用组织中表达的基因主要是将光合作用固定下来的碳源转化为淀粉,保持细胞内渗透压平衡。还发现很多基因在幼穗发育早期表达,主要功能可能是将从光合作用组织中运输过来的碳源转化为临时淀粉,或者是参与雄蕊内淀粉颗粒的合成。在光合作用组织中表达的基因受到光调控,而在胚乳中特异表达的基因对光不敏感。
     通过扫描电镜观察珍汕97和珍汕97(Wx~b)成熟胚乳的细胞精细结构,发现珍汕97(Wx~b)胚乳细胞较珍汕97胚乳细胞更容易破裂,但淀粉颗粒却比珍汕97更为紧密。这可能导致珍汕97(Wx~b)较难糊化和延伸,从而使得珍汕97(Wx~b)较珍汕97有更高的糊化温度和较短的胶稠度。
Heading date, plant height and number of spikelets per panicle are 3 important agricultural traits in rice. In our previous studies, one putative QTL affecting heading date, plant height and number of spikelets per panicle were identified in the pericentromeric region of rice chromosome 7 using a recombinant inbred population. In order to determine that whether the 3 traits were controlled by a single locus with pleiotropic effects or by 3 tightly linked genes, we construct a near isogenic lines Hd1, with the background of Zhenshan 97 and 4 region from Minghui 63. Among them, only the region of chromosome 7 was relation with the 3 traits. In order to fine mapping the QTL, an F_2 population between Zhenshan 97 and the NIL containing 8400 individuals was developed. The phenotype of F_2 population was divided into two types: the type with shorter heading date, shorter plant height and much number of spikelets per panicle and the type with longer heading date, longer plant height and less number of spikelets per panicle, the ratio is 1:3(χ~2=0.11,P=0.740).
     1082 plants with extremely short heading date of the F_2 population were selected to fine mapping the QTL. All the extremely short heading date plants were with short plant height and less number of spikelets per panicle. No recombination were detected among the 3 traits in the extremely population. By analyzing the recombination of marker and the trait, the QTL were narrowed down to an interval between marker RM3859 and C39, and cosegregated with RM5436 and RM5499. The marker RM3859 and C39 spanning a physical distance of more than 2500kb, and the distance of RM5436 and RM5499 is 912.4kb. As the recombination suppression occurred in the region, it is difficult to narrow down the region by enlarge the population.
     Amylose content, gel consistency and gelatinization temperature are the three most important traits determining the cooking and eating quality of rice. Using populations derived from Shanyou 63, an elite rice hybrid, we previously mapped the major genes for these three traits to a region tightly linked to the Wx locus on the short arm of rice chromosome 6. In order to determine that whether the 3 traits were controlled by a single locus with pleiotropic effects or by 3 tightly linked genes, an F_2 population between Zhenshan 97 and the NIL containing 5280 individuals was developed. A total of 1080 plants with the trait combination of Minghui 63 were identified from this population. Molecular marker analysis located the gene(s) for the 3 traits to a single BAC clone, 35M22, isolated from a Minghui 63 BAC library, and got a corresponding Zhenshan 97 BAC, 2N1. The two BAC clones were then sequenced using the shotgun strategy. Further recombinant analysis using polymorphism between the parents identified by the subclones localized the genes(s) for the three traits to an interval between two polymorphic markers, C6 and P80. Comparing the sequences of C6 and P80 with 35M22 indicated that the distance between these two subclones is approximately 14kb. In the 14kb region,there are two ORFs. One is the Wx gene, encoding granule bound starch synthase. The other one is an uncomplete retrotransposon. The result show that the three traits were controlled by the Wx gene in the population.
     We identified the 3 traits to Wx gene, but some research thought the Alk gene has effect on GT and GC. So here we selected 97 cultivars to check the correction of the 2 genes and the 3 traits. Univariate analyzed of the traits of AC, GT and GC by two genes Wx and Alk by software of SPSS 15.0, respectively. The result showed that AC only is controlled by Wx gene and Alk gene no effect on AC and 91.8% of the total variation of GT is explained by Alk gene and 7.1% of variation is explained by Wx gene and 36.9% of variation of GC if explained by Alk gene and 55.9% of it is explained by Wx gene. And no epistatic effect was detected between the two genes.
     We sequenced a 6.2 kb DNA fragment including Wx gene of 33 cultivars. 43 single nucleotide polymorphisms (SNPs) and 8 insertion/deletions (InDels) were identified. Of them 2 SNPs and 2 InDels can explained all the variation of AC. A new SNP mutation of G substituted A at site of-1126 were detected, result in the AC increase from intermediate AC to high AC.
     We analyzed the expression of genes in the progress of starch synthesis, including 5 families 23 genes, by Affymetrix chip. The result showed the 23 genes were divided into 3 groups: the type expressing in endosperm tissue, the type expressing in photosynthesis tissue and the type expressing in both these tissues. The starch, synthesized in photosynthesis tissue, is the temporary starch, as source for plant development. And the starch, synthesized in endosporm cell, is storing starch, as the nutrition for seed pullulation.
     We checked the difference of Zhenshan 97 and Zhenshan 97 (Wx~b) in microstructure by transmission electron microscope, the result showed that the endosporm cell of Zhenshan 97 (Wx~b) was more easily broken but the starch graunle was tighter than Zhenshan 97. It maybe result to that Zhenshan 97 (Wx~b) more difficult to gelatinize and extend. Thus, it maybe is the reason of Zhenshan 97 (Wx~b) with higher GT and shorter GC.
引文
1.马国辉.播前化学药剂处理对制种亲本抽穗期的影响.杂交水稻,1995,10:38
    2.马洪丽,张书标,卢勤,方宣钧,杨蜀岚,杨仁崔.水稻长穗颈高秆突变体协青早eB1的遗传分析及其euil(t)定位.农业生物技术学报,2004,12:43-48
    3.中华人民共和国农业部标准.NY 147-1988米质测定方法.北京:中国标准出版社,1989
    4.王国校,程飞剑.钾肥用量对水稻产量,蛋白质及土壤钾素状况的影响.土壤肥料,1990,26:31-33
    5.卢永根,曾世雄,李镇帮.我国籼稻矮生陛基因源的表现型和遗传规律的研究.遗传学报,1979,6:311-321
    6.叶定池,林华,赵佩欧,许俊勇,严文潮.钾肥施用技术对水稻产量及稻米品质的影响.安徽农业学报,2007,13:91-92
    7.石春海,何慈信,朱军,陈建国.籼稻稻米外观品质性状的遗传主效应和环境互作效应分析.中国水稻科学,1999,13:179-182
    8.孙业盈,吕彦,董春林,王平荣,黄晓群,邓晓建.水稻竹基因与稻米AC、GC和GT的遗传关系.作物学报,2005,31:535-539
    9.朱立宏,赖贵贤,滕友仁.水稻显性矮杆遗传研究中关于KL908的矮生性遗传的性质.南京农业大学学报,1995,18:1-8
    10.朱旭东,熊振民.异季栽培对稻米品质的影响.中国水稻科学,1993,7:172-174
    11.朱宏波,方宣钧,杨仁崔.水稻长穗颈基因eui2(t)共分离SSR标记的获得.中国农业科学,2004,37:456-459
    12.朱宏波.水稻穗颈伸长基因eui2(t)精细定位与克隆.[博士学位论文].福建:福建农林大学图书馆,2003
    13.汤日圣,张远海,张金渝,吴光南。矮秆基因对水稻性状控制的机理探讨术.中国农业科学,1991,24:51-56
    14.邢永忠,徐才国,华金平,谈移芳,孙新立.水稻株高和抽穗期的定位和分离.植物学报,2001,43:721-726
    15.严长杰,徐辰武,裔传灯,梁国华,朱立煌,顾铭洪.利用SSR标记定位水稻糊化温度的QTLs.遗传学报,2001,28:1006-1011
    16.吴为人,李维明,翁清妹,陈剑洪.应用混合分布模型研究水稻株高的遗传.生物数学学报,1999.14:314-318
    17.吴关庭,夏英武.环境与栽培对稻米品质的影响.中国稻米,1994,4:37-39
    18.宋平,高红胜,曹显祖,谢迎兰.不同籼稻品种的矮生性与内源ABA水平及其结合蛋白的关系.西北植物学报,1998,18:380-385
    19.张书标,杨仁崔,黄荣华,章清杞.水稻eui基因及其e-杂交稻研究进展.西南农业学报,2005,18:669-674
    20.张国发,王绍华,龙娟,王强盛,丁艳锋,吉志军.结实期不同时段高温对稻米品质的影响.作物学报,2006,32:283-287
    21.李欣,朱立宏.粳稻矮生性的遗传研究.南京农学院学报,1982,3:12-25
    22.李欣,顾铭洪,梁国华,徐金风,陈宗祥,杨海生.水稻半矮秆基因sd-t的染色体定位研究.遗传学报,2001,28:33-40
    23.李欣,顾铭洪,潘薛彪.灌浆期间环境条件对稻米品质的影响.江苏农学院学报,1989,10:7-12
    24.杨仁崔.水稻eui种质的遗传评价和育种利用.中国工程科学,2005,7:26-30
    25.杨蜀岚,杨仁崔,曲雪萍,章清杞,黄荣华,王斌.水稻长穗颈高秆隐性基因eui2的遗传及其微卫星分析.植物学报,2001,43:67-71
    26.周国华,曾亚文,杜娟,杨树明,普晓英,刘昆,李本逊,母元丽,李家芳,凌青.缺磷红壤下云南稻核心种质施氮量对抽穗期的影响.西南农业学报,2006,19:54-58
    27.孟亚利,周治国.结实期温度与稻米品质的关系.1997,中国水稻科学,1997,11:51-54
    28.孟亚利,高如嵩.影响稻米品质的主要气候生态因子研究.西北农业大学学报,1994,22:40-43
    29.范桂枝,李军营,王春明,谢辉,许长亮,朱建国,万建民,蔡庆生.空气中CO_2浓度升高条件下水稻抽穗期的QTL定位.中国水稻科学,2006,20:259-264
    30.施标,万常照,全立勇.日本水稻保优栽培中的氮肥施用技术研究.上海农业学报,2001,17:45-48
    31.唐湘如,余铁桥.磷钾肥对饲用稻产量和蛋白质含量的影响及其机理研究.中国农业科学,2002,35:372-377
    32.顾铭洪,朱宏波.几个矮秆籼稻矮秆基因定位关系的初步分析.遗传,1979,1:10-13
    33.高振宇,曾大力,崔霞,周奕华,颜美仙,黄大年,李家洋,钱前.水稻稻米糊化温度控制基因Alk的图位克隆及其序列分析.中国科学,2003,33:481-487
    34.曹黎明,袁勤,倪林娟.优质稻保优栽培技术的研究进展.上海农业学报,2001,17:45-48
    35.隗溟,范玉亮,朱自均.不同移栽秧龄对杂交稻亲本抽穗期的影响.杂交水稻,2004,19:24-27
    36.黄小杰,张春红,赵增煜.直链淀粉含量对抗性淀粉形成的影响.食品科技,2006,31:18-20
    37.黄国寿,周开达.水稻显矮资源—粳D1半矮生性的遗传分析.四川农业大学学报,1991,9:93-97
    38.黄祖六,谭学林,Tragoonrung S,Vanavichit A.稻米直链淀粉含量基因座位的分子标记定位.作物学报,2000,26:777-782
    39.彭开蔓,张洪斌.优良水稻品种“明恢63”BAC文库的构建.植物学报,1998,40:1108-1114
    40.普晓英,曾亚文,申时全,李绅崇.低速磷胁迫对云南地方稻种核心种质抽穗期的影响.植物遗传资源学报,2004,5:271-275
    41.谢卡斌,张建伟,向勇,冯旗,韩斌,王石平,张启发,熊立仲.10828条籼稻全长cDNA 的分离和注释.中国科学,2005,135:6-12
    42.颜龙安,李季能,钟海明.优质稻米生产技术.北京:中国农业出版社,1999,13:30-37
    43.戴平安,刘向华.氮磷钾及有机肥不同配施量对水稻品质和产量效应的研究.作物研究,1999,3:26-30
    44.戴平安,黎用朝.优质食用稻营养特性及需肥规律研究.作物研究,1999,13:14-17
    45.Abenes M L P,Tabien R E,McCouch S R,Ikeda R,Ronald P,Khush G S and Huang N.Orientation and integration of classical and molecular genetic maps of chromosome 11 in rice.Euphytica,1994,76:81-87
    46.Akihiro T,Mizuno K,Fujimura T.Gene expression of ADpoglucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA.Plant Cell Physiol,2005,46:937-946
    47.Aluko R E,Reaney M,Mclntosh T,Ouellet F,Katepa-Mupondwa F.Characterization of a calcium-soluble protein fraction from yellow mustard(Sinapis alba) seed meal with potential application as an additive to calcium-rich drinks.J Agric Food Chem,2004,52:6030-6034
    48.Andersson M,Melander M,Pojmark P,Larsson H,Bulow L,Hofvander P.Targeted gene suppression by RNA interference:an efficient method for production of high-amylose potato lines.J Biotechnol,2006,123:137-148
    49.Ashikari M,Sakakibara H,Lin S Y,Yamamoto T,Takashi T,Nishimura A,Angeles E R,Qian Q,Kitano H,Matsuoka M.Cytokinin Oxidase Regulates Rice Grain Production.Science,2005,309:741-745
    50. Ashikari M, Wu J Z, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the a-subunit of GTR-binding protein. Proc Natl Acad Sci, 1999, 96:10284-10289
    
    51. Ayres N M, McClung A M, Larkin P D, Bligh H F J, Jones C A, Park W D. Microsatellites and a single nucleotide polymorphism differentiate apparent amylase classes in an extended pedigree of US rice germplasm. Theor Appl Genet, 1997, 94:773-781
    
    52. Baldwin T C, Domingo C, Schindler T, Seetharaman G, Stacey N, Roberts K. DcAGP1, a secreted arabinogalactan protein, is related to a family of basic proline-rich proteins. Plant Mol Biol, 2001, 45:421-435
    
    53. Ball S, Guan H P, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell, 1996, 86:349-352
    
    54. Ballicora M A, Laughlin M J, Fu Y, Okita T W, Preiss J. Adenosine 5'-diphosphate-glucose pyrophosphorylase from potato tuber. Significance of the N terminus of the small subunit for catalytic properties and heat stability. Plant Physiol, 1995, 109:245-251
    
    55. Bannayana M, Kobayashi K, Kimc H Y et al. Modeling the interactive effects of atmospheric CO_2 and N on rice growth and field. Field Crop Res, 2004, 5:1-15
    
    56. Bao J S, He P, Li S G, Xia Y W, Chen Y, Zhu L H. Comparative mapping quantitative trait loci controlling the cooking and eating quality of rice. Sci Agric Sin, 2000, 33:8-13
    
    57. Bao J S, Sun M, Zhu L H, Corke H. Analysis of quantitative trait loci for some starch properties of rice (Oryza sativa L.): thermal properties, gel texture and swelling volume. J Cereal Sci, 2004, 39:379-385
    
    58. Beckles D M, Smith A M, ap Rees T. A cytosolic ADP-glucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol, 2001, 125:818-827
    
    59. Bhave M R, Lawrence S, Barton C, Hannah L C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell, 1990, 2:581-588
    
    60. Blakeley S D, Dennis D T. Molecular approaches to the manipulation of carbon allocation in plants. Can. J. Bot, 1993, 71:765-778
    
    61. Blauth S L, Yao Y, Klucinec J D, Shannon J C, Thompson D B, Guilitinan M J. Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiol, 2001,125:1396-1405
    62. Bligh H F J, Larkin P D, Roach P S, Jones C A, Fu H, Park W D. Use of alternate splice sites in granule bound starch synthase mRNA from low-amylose rice varieties. Plant Mol Biol, 1998,38:407-415
    
    63. Bligh H F J, Till R I, Jones C A. A microsatellite sequence closely linked to the waxy gene of Oryza sativa. Euphytica, 1995, 86:83-85
    
    64. Boyer C D, Preiss J. Multiple forms of starch branching enzyme of maize: evidence for independent genetic control. Biochem Biophys Res Commu, 1978, 80:169-175
    
    65. Brondani C, Rangel P H N, Brondani R P V, Ferreira M E. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002, 104:1192-1203
    
    66. Buchanan S, Robertson G W, Hocking P M. Effects of food restriction or delayed photostimulation on ovarian follicle number, plasma oestradiol concentration and vaginal collagen content in male-line turkeys. Br Poult Sci, 2000,41:502-507
    
    67. Buleon A, Colonna P, Planchot V, Ball S. Starch granules: structure and biosynthesis. Int J Biol Macromol, 1998,23:85-112
    
    68. Burger B T, Cross J M, Shaw J R, Caren J R, Greene T W, Okita T W, Hannah L C. Relative turnover numbers of maize endosperm and potato tuber ADP-glucose pyrophosphorylases in the absence and presence of 3-phosphoglyceric acid. Planta, 2003, 217:449-456
    
    69. Burton R A, Jenner H, Carrangis L, Fahy B, Fincher G B, Hylton C, Laurie D A, Parker M, Waite D, van Wegen S, Verhoeven T, Denyer K. Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant J, 2002, 31:97-112
    
    70. Byrnes W M, Goldberg R N, Holden M J, Mayhew M P, Tewari Y B. Thermodynamics of reactions catalyzed by anthranilate synthase. Biophys Chem, 2000, 84:45-64
    
    71. Cagampang G B, Perez C M, Juliano B O. A gel consistency test for the eating quality of rice. J Sci Food Agric, 1973,24:1589-1594
    
    72. Cameron R E, Donald A M. A small-angle X-ray scattering study of the absorption of water into the starch granule. Carbohydr Res, 1983,244:225-236 Chang T T, Zuno C, Marciano-Remena A, Loresto G C. Semidwarfing genes in rice germplasm collection. Rice Genet Newsl, 1984, 1:94-95
    
    73. Cheng F M, Zhong L J, Zhao N C, Liu Y, Zhang G P. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul, 2005, 46:87-95
    74. Cheng H H, Lai M H. Fermentation of resistant rice starch produces propionate reducing serum and hepatic cholesterol in rats. J Nutr, 2000, 130:1991-1995
    
    75. Collings P, Williams C, MacDonald I. Effects of cooking on serum glucose and insulin responses to starch. Br Med J, 1981, 282:1032
    
    76. Craig J, Lloyd J R, Tomlinson K, Barber I, Edwards A, Wang T L, Martin C, Hedley C L, Smith A M. Mutations in the gene encoding starch synthase II profoundly alter amylopeciin structure in pea embryos. Plant Cell, 1998, 10:413-426
    
    77. Dang J M C, Copeland L. Imaging rice grains using atomic force microscopy. J Cereal Sci, 2003, 37:165-170
    
    78. Denyer K, Dunlap F, Thorbjornsen T, Keeling P, Smith A M. The maor form of ADP glucose pyrophosphorylase in maize endosperm is extra-plastidiai. Plant Physiol, 1996, 112:779-785
    
    79. Denyer K, Waite D, Edwards A, Martin C, Smith A M. Interaction with amylopectin influences the ability of granule-bound starch synthase I to elongate malto-oligosaccharides. Biochem J, 1999, 342:647-653
    
    80. Dian W M, Jiang H W, Chen Q S, Liu F Y, Wu P. Cloning and characterization of the granule-bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta, 2003a, 218:261-268
    
    81. Dian W M, Jiang H W, Wu P. Evolution and expression analysis of starch synthase III and IV in rice. J Exp Bot, 2005, 56:623-632
    
    82. Doi K, Izaw T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18:926-936
    
    83. Doi K, Yoshimura A, Iwata N. RFLP mapping and QTL analysis of heading date and pollen sterility using backross population between Oryza sativa L. and Oryza glaberrima Steud. Breed Sci, 1998, 48:395-399
    
    84. Domon E, Saito A, Takeda K. Comparison of the waxy locus sequence from a non-waxy strain and two waxy mutants of spontaneous and artificial origins in barley. Genes Genet Syst, 2002, 77:351-359
    
    85. Englyst H N, Cummings J H. Digestion of the polysaccharides of some cereal foods in the human small intestine. ClinNutr, 1985, 42:778-787
    
    86. Englyst H N, Trowell H, Southgate D A, Cummings J H. Dietary fiber and resistant starch. Am J ClinNutr, 1987,46:873-874
    87. Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet, 2005, 110:1445-1452
    
    88. Feil B. Breeding progress in small grain cereals. A comparison of old and modern cultivars. Plant Breed, 1992, 108:1-11
    
    89. French D. Organization of starch granules. In: Whistler R L, BeMiller J N, Paschall E F eds., Starch. Orlando:Academic, 1984
    
    90. Fujita N, Kubo A, Suh D S, Wong K S, Jane J L, Ozawa K, Takaiwa F, Inaba Y, Nakamura Y. Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm. Plant Cell Physi, 2003,44:607-618
    
    91. Fulton D C, Edwards A, Pilling E, Robinson H L, Fahy B, Seale R, Kato L, Donald A M, Geigenberger P, Martin C, Smith A M. Role of granule-bound starch synthase in determination of amylopectin structure and starch granule morphology in potato. J Biol Chem, 2002, 277:10834-10841
    
    92. Furbank R T, Scofield G N, Hirose T, Wang X D, Patrick J W, Offler C E. Cellular localisation and function of a sucrose transporter OsSUT1 in developing rice grains. Aust. J. Plant Physiol, 2001,28:1187-1196
    
    93. Gao Z Y, Zeng D L, Cui X, Zhou Y H, Yan M X, Huang D N, Li J Y, Qian Q. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci China Ser C, 2003,46:661-668
    
    94. Geigenberger P, Regierer B, Nunes-Nesi A, Leisse A, Urbanczyk-Wochniak E, Springer F, van Dongen J T, Kossmann J, Fernie, A R. Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell, 2005, 17:2077-2088
    
    95. Ghosh H P, Preiss J. Adenosine Diphosphate Glucose Pyrophosphorylase: A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem, 1966, 241:4491-4504
    
    96. Giroux M J, Hannah L C. ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize. Mol Gen Genet, 1994, 243:400-408
    
    97. Gravais K A, McNew R M. Genetic relationships among and selection for rice yield and yield components. Crop Sci, 1993 33:249-252
    98. Hannah L C, Shaw J R, Giroux M J, Reyss A, Prioul J L, Bae J M, Lee J Y. Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase. Plant Physiol, 2001, 127:173-183
    
    99. Haralampu S G. Resistant starch a review of the physical properties and biological impact of RS3. Carbohydr Polym, 2000, 41:285-292
    
    100. He P, Li J Z, Zheng X W, Shen L S, Lu C F, Chen Y, Zhu L H. Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross. Crop Sci, 2001, 41:1240-1246
    
    101. He P, Li S G, Qian Q, Ma YQ, Li J Z, Wang W M, Chen Y, Zhu L H. Genetic analysis of rice grain quality. Theor Appl Genet, 1999, 98:502-508
    
    102. Hendriks J H, Kolbe A, Gibon Y, Stitt M, Geigenberger P. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol, 2003, 133:838-849
    
    103. Hirochika H, Guiderdoni E, An G, Hsing Y, Eun MY, Han C, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H. Rice mutant resources for gene discovery. Plant Mol Biol, 2004, 54:325-334
    
    104. Hirose T, Ideue T, Nagai M, Hagiwara M, Shu M D, Steitz J A. A Spliceosomal Intron Binding Protein, IBP160, Links Position-Dependent Assembly of Intron-Encoded BoxC/Dsno RNA to Pre-mRNA Splicing. Mol. Cell, 2006, 23:673-684
    
    105. Hizukuri S. Polymodal distribution of the chain lengths of amylopectins, and its significance Carbohydr. Res, 1986, 147:342-347
    
    106. Hong Y P. Influence of fertilizer levels and cultivated regions on changes of chemical components in rice grains. RDAJ Agri Sci, 1994, 36:38-51
    
    107. Hori Y, Fujimoto R, Sato Y, Nishio T. A novel wx mutation caused by insertion of a retrotransposon-like sequence in a glutinous cultivar of rice (Oryza sativa). Theor Appl Genet, 2007,115:217-224
    
    108. Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162:1885-1895
    
    109. Ideta O, Yoshimura A, Ashikati M, Iwata N. Integration ofconventional and RFLP linkage maps in rice. III. Chromosomes 5, 7, 8 and 12. Rice Genet Newsl, 1994, 11:116-117
    
    110. Ideta O, Yoshimura A, Matsumoto T, Tsunematsu H, Iwata N. Integration of conventional an d RFLP linkage maps in rice. I. Chromosome 1, 2, 3 and 4. Rice Genet Newsl, 1992, 9:128-129
    111. Inouchi N, Glover D V, Lafayette W, Fuwa H. Chain Length Distribution of Amylopectins of Several Single Mutants and the Normal Counterpart, and Sugary-1 Phytoglycogen in Maize (Zea mays L.). starch, 1987, 39:259-266
    
    112. Inukai T, Sako A, Hirano H Y, Sano Y. Analysis of intragenic recombination at wx in rice: correlation between the molecular and genetic maps within the locus. Genome, 2000, 43:589-596
    
    113. Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitanol H, Ashikari M, Ichihara S, Matsuokal M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54:533-547
    
    114. James M G, Denyer K, Myers A M. Starch synthesis in the cereal endosperm. Curr Opin Plant Biol, 2003, 6:215-222
    
    115. Jenkins D J, Thorne M J, Wolever T M, Jenkins A L, Rao A V, Thompson L U. The effect of starch-protein interaction in wheat on the glycemic response and rate of in vitro digestion. Am J Clin Nutr, 1987,45:946-951
    
    116. Jenkins P J, Cameron R E, Donald A M, Bras W, Derbyshire G E, Mant G R, Ryan A J. In situ simultaneous small and wide angle X-ray scattering: a new technique to study starch gelatinisation. J Polym Sci, 1994, 32:1579-1583
    
    117. Jenkins P J, Donald A M. The influence of amylose on starch granule structure. Int J Biol Macromol, 1995, 17:315-321
    
    118. Jiang H W, Dian W M, Liu F Y, Wu P. Molecular cloning and expression analysis of three genes encoding starch synthase II in rice. Planta, 2004, 218:1062-1070
    
    119. Jiang H W, Dian W M, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry, 2003, 63:53-59
    
    120. Johnson P E, Patron N J, Bottrill A R, Dinges J R, Fahy B F, Parker M L, Waite D N, Denyer K. A low-starch barley mutant, riso 16, lacking the cytosolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit. Plant Physiol, 2003, 131:684-696
    
    121. Juliano B O. Rice chemistry and technology, 2nd American Association of Cereal Chemists, 1985, Paul, Minn
    
    122. Kende H, vna der Knaap E, Cho H T. Deepwater rice: A model plant to study stem elongation. Plant Physiol, 1998, 118:1105-1110
    123. Kim K N and Guiltinan M J. Identification of cis-Acting Elements Important for Expression of the Starch-Branching Enzyme I Gene in Maize Endosperm. Plant Physiology, 1999, 121:225-236
    
    124. Kinoshita T. Report of the committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newsl, 1993, 10:7-39
    
    125. Kishida T, Nogami H, Himeno S, Ebihara K. Heat Moisture Treatment of High Amylose Cornstarch Increases Its Resistant Starch Content but Not Its Physiologic Effects in Rats. J. Nutr, 2001, 131:2716-2721
    
    126. Kishimoto N, Shimosaka E, Niatsuura S, Saito A. A current RFLP linkage map of rice: alignment of the molecular map with the classical map. Rice Genet Newsl, 1992, 9:118-124
    
    127. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T,Araki T, and Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions, Plant Cell Physiol, 2002, 43:1096-1105
    
    128. Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc NatlAcadSci USA, 2005, 102:11118-11123
    
    129. Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology, 1999, 121:399-409
    
    130. Lanceras J C, Huang Z L, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S. Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Res, 2000, 7:93-101
    
    131. Lanceras J C, Pantuwan G, Jongdee B, Toojinda T. Quantitative trait Loci associated with drought tolerance at reproductive stage in rice. Plant physiol, 2004, 135:384-399
    
    132. Larkin P D, Park W D. Transcript accumulation and utilization of alternate and non-consensus splice sites in rice granule-bound starch synthase are temperature-sensitive and controlled by a single-nucleotide polymorphism. Plant Mol Biol, 1999, 40:719-727
    
    133. Li Z K, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91:374-381
    
    134. Li Z K, Pinson S R M, Stansel J W, Park W D. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet, 1995, 91:374-381
    135. Librojo L, Khush G S. Chromosomal location of some mutant genes through the use of primary trisomics in rice. In Rice Genetics, Manilaz: IRRI, 1986, 249-255
    
    136. Lin H X, Ashikari M, Yamanouchi U, Sasaki T and Yano M. Identification and characterization of quantitative trait locus, Hd9 controlling heading date in rice. Breeding Sci, 2002, 52:35-41
    
    137. Lin H X, Liang Z W, Sasaki T, Yano M. Fine mapping and characterization of quantitative trait loci, Hd4 and Hd5, controlling heading date in rice. Breeding Sci, 2003, 53:51-59
    
    138. Lin H X, Qian H R, Zhuang J Y, Lu J, Min S K, Xiong Z M, Huang N, Zheng K L. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92:920-927
    
    139. Lin H X, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet, 2000, 101:1021-1028
    
    140. Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza satiava L., using backcross inbred lines. Theor Appl Genet, 1998, 96:997-1003
    
    141. Lin T P, Preiss J. Characterization of d-Enzyme (4-alpha-Glucanotransferase) in Arabidopsis Leaf. Plant Physiol, 1988, 86:260-265
    
    142. Liu K D, Wang J, Li H B, Xu C G, Liu A M, Li X H, Zhang Q F. A genome-wide analysis of wide compatibility in rice and the precise location of the S5 locus in the molecular map. Theor Appl Genet, 1997,95:809-814
    
    143. Lu C F, Shen L H, Tan Z B, Xu Y B, He P, Chen Y, Zhu L H. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled-haploid population. Theor Appl Genet, 1996,93:1211-1217
    
    144. Luo A D, Qian Q, Yin H F, Liu X Q, Yin C X, Lan Y, Tang J Y, Tang Z S, Cao S Y, Wang X J, Xia K, Fu X, D, Luo D, Chu C C. EUII, Encoding a putative cytochrome P450 monooxygenase, regulates the intemodes elongation by modulating GA responses in rice. Plant Cell Physiol, 2006, 47:181-191
    
    145. Luo C, Dejardin A, Villand P, Doan D N, Kleczkowski L A. Differential processing of homologues of the small subunit of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissues. Z Naturforsch, 1997, 52:807-811
    
    146. Ma H L, Zhang S B, Ji L, Zhu H B, Yang S L, Fang X J, Yang R C, Fine mapping an in silico isolation of the EUII gene controlling upper internode elongation in rice. Plant Mol Bio], 2006, 60:87-94
    147. MacDonald F D, Press J. Partial purification and characterization of granulebound starch synthase from normal and Waxy maize. Plant Physiol, 1985, 78:849-852
    
    148. Mackill D J. A major photoperiod-sensitivity gene tagge with RPLP and isozyme markers in rice. Theor Appl Genet, 1993, 85:536-540
    
    149. Maddelein M L, Libessart N, Bellanger F, Delrue B, D'Hulst C, Van den Koornhuyse N, Fontaine T, Wieruszeski J M, Decq A, Ball S. Toward an understanding of the biogenesis of the starch granule. Determination of granule-bound and soluble starch synthase functions in amylopectin synthesis. J Biol Chem, 1994, 269:25150-25157
    
    150. Maria L F, Suheeta R, Marcela V J. Resistant starch and cholestyramine have distinct efects on hepatic cholesterol metabolism in guinea pigs fed a hypercholesterolemic diet. Nutr res, 2000, 20:837-849
    
    151. Martin C, Smith A M. Starch biosynthesis. Plant Cell, 1995, 7:971-985
    
    152. Mehetre S S, Mahajan C R, Pati, P A, Lad S K, Dhumal P M. Variability, heritability, correlation, path analysis, and genetic divergence studie in upland rice. IRRN, 1994, 19:8-10
    
    153. Monna L, Lin X, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet, 2002, 104:772-778
    
    154. Morales A. Analysis of yield and yield components of rice (Oryza sativa L.) cultivars and lines. Cultivars Tropicales, 1986, 8:79-85
    
    155. Morita T, Oh-hashi A, Ikai M, Morioka Y, Kiriyama S. Physiological function of resistant starch and its use. Shokuhinn to Kaihatsu, 1996, 31:34-38
    
    156. Morrison W R. Starch lipids and how they relate to starch granule structure and functionality. Cereal Foods World, 1995, 40:437-446
    
    157. Mouille G, Maddelein M L, Libessart N, Talaga P, Decq A, Delrue B, Ball S. Preamylopectin Processing: A Mandatory Step for Starch Biosynthesis in Plants. Plant Cell, 1996, 8:1353-1366
    
    158. Muir J G, Brikett A, Brown L. Digestion of the polysaccharides of some Cereal foods in the human small intestine. Am J Clin Nutr, 2000, 15:89-95
    
    159. Mukerjea R, Robyt J F. Starch biosynthesis: sucrose as a substrate for the synthesis of a highly branched component found in 12 varieties of starches. Carbohydr Res, 2003, 338:1811-1822
    
    160. Mukerjea R, Yu L, Robyt J F. Starch biosynthesis: mechanism for the elongation of starch chains. Carbohydr Res, 2002, 337:1015-1022
    161. Muller-Rober B T, Kossmann J, Hannah L C, Willmitzer L. One of two different ADP glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet, 1990, 224:136-146
    
    162. Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8:4321-4325
    
    163.Nagata K, Fukuta Y, Shimizu H, Yagi T, Terao T. Quantitative Trait Loci for Sink Size and Ripening Traits in Rice (Oryza sativa L.). Breed Sci, 2002, 52:259-273
    
    164. Nakamura T, Vrinten P, Hayakawa K, Ikeda J. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiol, 1998, 118:451-459
    
    165. Nakamura Y, Yamanouchi H. Nucleotide Sequence of a cDNA Encoding Starch-Branching Enzyme, or Q-Enzyme I, from Rice Endosperm. Plant Physiol, 1992, 99:1265-1266
    
    166. Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: Rice endosperm as a model tissue. Plant Cell Physi, 2002,43:718-725
    
    167. Nakata P A, Greene T W, Anderson J M, Smith-White B J, Okita T W, Preiss J. Comparison of the primary sequences of two potato tuber ADP-glucose pyrophosphorylase subunits. Plant Mol Biol, 1991, 17:1089-1093
    
    168. Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol, 2001, 127:459-472
    
    169. Ohdan T, Francisco P B Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot, 2005, 56:3229-3244
    
    170. Okita T W, Nakata P A, Anderson J M, Sowokinos J, Morell M, Preiss J. The subunit structure of potato tuber ADP-glucose pyrophosphorylase. Plant Physiol, 1990, 93:785-790
    
    171. Oostergetel G T, van Bruggen E F. The crystalline domains in potato starch granules are arranged in a helical fashion. Carbohydr Polym, 1993, 21:7-12
    
    172. Patron N J, Greber B, Fahy B F, Laurie D, A.Parker M L, Denyer K. The Iys5 mutations of barley reveal the nature and importance of plastidial ADP-Glc transporters for starch synthesis in cereal endosperm. Plant Physiol, 2004, 135:2088-2097
    
    173. Peat S, Whelan W J, Hinson K A. Synthetic action of almond emulsion. Nature, 1952, 170:1056-1057
    174. Rahman B B, Gruissem W, Jones R L. Carbohydrate metabolism. In: Rahman B B, Gruissem W, Jones R L eds., Biochemistry and molecular biology of plants. Berkeley: University of California Berkeley Press, 2000. 630-666
    
    175. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z Y, Rahman S, Morell M. High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA, 2006, 103:3546-3551
    
    176. Roldan I, Wattebled F, Mercedes Lucas M, Delvalle D, Planchot V, Jimenez S, Perez R, Ball S, D'Hulst C, Merida A. The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J, 2007, 49:492-504
    
    177. Romano C P, Cooper M L, Klee H J. Uncoupling auxin and ethylene effets in transgenic tobacco and Arabidpois plants. Plant Cell, 1993, 5:181 -189
    
    178. Rood S B, Williams P H, Pearce D, Murofushi N, Mander L N, Pharis R P. A mutant gene that increases gibberellin production in Brassica. Plant Physiol, 1990, 93:1168-1174
    
    179. Russurrection A P. Effect of environment on rice amylase content. Soil Sci plant Nutr, 1977, 23:109-112
    
    180. Rutger J N, Carnahan H L. A fourth genetic element to facilitate hybrid cereal production-a recessive tall in rice. CropSci, 1981, 21:373-376
    
    181. Saito M, Konda M, Vrinten P, Nakamura K, Nakamura T. Molecular comparison of waxy null alleles in common wheat and identification of a unique null allele. Theor Appl Genet, 2004,108:1205-1211
    
    182. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A et al. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416:701-702
    
    183. Sato Y, Sentoku N, miura Y, Hirochika H, Kitano H, Matsuoka M. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. The EMBOJ, 1999, 19:992-1002
    
    184. Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol, 2003, 133:1111-1121
    
    185. Schwiertz A, Lehmann U. Influence of resistant starch on the SCFA production and cell counts of butyrateproducing Eubacterium spp. in the human intestine. J Appl Microbiol, 2002, 93:157-162
    
    186. Septiningsih E M, Prasetiyono J, Lubis E, Tai T H, Tjubaryat T, Moeljopawiro S, McCouch S R. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 2003, 107:1419-1432
    
    187. Shannon J C, Pien F M, Cao H, Liu K C. Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADP-glucose into amyloplasts of maize endosperms. Plant Physiol, 1998,117:1235-1252
    
    188. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008, 40:1023-1028
    
    189. Shure M, Wessler, Federoff S. Molecular identification and isolation of the Waxy gene in maize. Cell, 1983, 35:225-233
    
    190. Sikka V K, Choi S B, Kavakli I H, Sakulsingharoj C, Gupta S, Ito H, Okita T W. Subcellular compartmentation and allosteric regulation of the rice endosperm ADP glucose pyrophosphorylase. Plant Sci, 2001, 161:461-468
    
    191. Smith A M, Bettey M, Bedford I D. Evidence that the rb Locus Alters the Starch Content of Developing Pea Embryos through an Effect on ADP Glucose Pyrophosphorylase. Plant Physiol, 1989,89:1279-1284
    
    192. Smith A M, Denyer K, Martin C. The synthesis of the starch granule. Annu Rev Plant Physioi Plant Mol Biol, 1997,48:67-87
    
    193. Smith A M. The biosynthesis of starch granules. Biomacromolecules, 2001, 2:335-341
    
    194. Smith-White B J, Preiss J. Comparison of proteins of ADPglucose pyrophosphorylase from diverse sources. J. MOL Evol, 1992, 34:449-464
    
    195. Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39:623-630
    
    196. Spielmeyer W, Ellis M H and Chandler P M. Semidwarf(sd-1), 'green revolution' rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99:9043-9048
    
    197. Sunohara H, Satoh H, Nagato Y. Mutations in panicle development affect culm elongation in rice. Breed Sci, 2003, 53:109-117
    
    198. Takahashi Y, Shomura A, Sasaki T and Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001,98:7922-7927
    
    199. Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym, 1977, 16:1-18
    200. Takeda Y, Tomooka S, Hizukuri S. Structure of Branched and Linear Molecules of Rice Amylose. Carbohydr Res, 1993, 246:267-272
    
    201. Talwar S N. Selection index for grain yield and its contributing characters in parietal collection of rice. Indian Agric Jour, 1976, 20:35-37
    
    202. Tan Y F, Li J X, Yu SB, Xing Y Z, Xu C G, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet, 1999,99:642-648
    
    203. Tanaka K, Ohnishi S, Kishimoto N, Kawasaki T, Baba T. Structure, organization, and chromosomal location of the gene encoding a form of rice soluble starch synthase. Plant Physiol, 1995, 108:677-683
    
    204. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S R. Computational and experimental analysis of microsatellites in rice (Oryza sativa L): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11:1441-1452
    
    205. Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L). Theor Appl Genet, 2000, 100:697-712
    
    206. Tetlow I J, Bowsher C G, Ernes M J. Reconstitution of the hexose phosphate translocator from the envelope membranes of wheat endosperm amyloplasts. Biochem J, 1996, 319:717-723
    
    207. Tetlow I J, Wait R, Lu Z, Akkasaeng R, Bowsher C G, Esposito S, Kosar-Hashemi B, Morell M K, Ernes M J. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell, 2004, 16:694-708
    
    208. Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003, 107:479-493
    
    209. Thorbjornsen T, Villand P, Denyer K, Olsen O A, Smith A M. Distinct isoforms of ADP glucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J, 1996, 10:243-250
    
    210. Thorbjornsen T, Villand P, Kleczkowski L A, Olsen O A. A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare). Biochem J, 1995,313:149-154
    211. Tian F, Zhu Z F, Zhang B S, Tan L B, Fu Y G, Wang X K, Sun C Q. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Otyza rufipogon Griff.). Theor Appl Genet, 2006, 113:619-629
    
    212. Tian R, Jiang G H, Li H S, Wang L Q, He Y Q. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol Breed, 2005, 15:117-124
    
    213. Tiessen A, Hendriks J H, Stitt M, Branscheid A, Gibon Y, Farre E M, Geigenberger P. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell, 2002, 14:2191-2213
    
    214. Tolmasky D S, Krisman C R. The degree of branching in (alpha 1,4)-(alpha 1,6)-linked glucopolysaccharides is dependent on intrinsic properties of the branching enzymes. Eur J Biochem, 1987,168:393-397
    
    215. Topping D L and Clifton P M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol Rew, 2001, 81:1031-1064
    
    216. Umemoto T, Aoki N, Lin H X, Nakamura Y, Inouchi N, Sato Y, Yano M, Hirabayashi H, Maruyama S. Natural variation in rice starch synthase Ha affects enzyme and starch propertiys. Functional Plant Bio, 2004, 31:671-684
    
    217. van de Wal M, D'Hulst C, Vincken J P, Buleon A, Visser R, Ball S. Amylose is synthesized in vitro by extension of and cleavage from amylopectin. J Biol Chem, 1998, 273:22232-22240
    
    218. Venkateswarlu B, Vergara B S, Parao F T, Visperas R M. Enhancing grain yield potentials in rice by increasing the number of high density grains. Philippine J Crop Sci, 1986, 11:145-152
    
    219. Villand P, Olsen O A, Kleczkowski L A. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana. Plant Mol Biol, 1993, 23:1279-1284
    
    220. Wanchana S, Yamashita F, Hashida M. QSAR analysis of the inhibition of recombinant CYP 3A4 activity by structurally diverse compounds using a genetic algorithm-combined partial least squares method. Pharm Res, 2003, 20:1401-1408
    
    221. Wang C M, Yasui H, Yoshimura A, Wan J M, Zhai H Q. Identification of quantitative trait loci controlling F2 sterility and heading date in rice. Acta genetica Sin, 2002, 29:339-342
    
    222. Wang L Q, Liu W J, Xu Y, He Y Q, Luo L J, Xing Y Z, Xu C G, Zhang Q. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor Appl Genet, 2007, 115:463-476
    223. Wang S M, Chu B, Lue W L, Yu T S, Eimert K, Chen J. adg2-l represents a missense mutation in the ADPG pyrophosphorylase large subunit gene of Arabidopsis thaliana. Plant J, 1997, 11:1121-1126
    
    224. Wang Z Y, Wu Z L, Xing Y Y, Zheng F Q, Guo X L, Zhang W G, Hong M M. Nucleotide sequence of the rice waxy gene. Nucleic Acids Res, 1990, 18:5898
    
    225. Wang Z Y, Zheng F Q, Shen G Z, Gao J P, Snustad D P, Li M G, Zhang J L, Hong M M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J, 1995, 7:613-622
    
    226. Waters D L, Henry R J, Reinke R F, Fitzgerald M A. Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnol J, 2006,4:115-122
    
    227. Wessler S R, Varagona M J. Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map. Proc NatlAcadSci USA, 1985, 82:4177-4181
    
    228. Wong K S, Kubo A, Jane J L, Harada K, Satoh H, Nakamura Y. Structures and properties of arnylopectin and phytoglycogen in the endosperm of sugary-1 mutants of rice. J Cereal Sci, 2003, 37:139-149
    
    229. Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet, 1993, 241:225-235
    
    230. Xiao J H, Li J M, Yuan L P, Tanksley S R. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996,92:230-244
    
    231. Xiao J H, Li J, Grandillo S, Ann S N, Yuan L, Tanksley S D, McCouch S R. Identification of trait improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, 1998, 150:899-909
    
    232. Xie X B, Jin F X, Song M H, Suh J P, Hwang H G, Kim Y G, McCouch S R, Ahn S N. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativaxO. rufipogon cross. Theor Appl Genet, 2008, 116:613-622
    
    233. Xie X B, Song M H, Jin F G, Ahn S N, Suh J P, Hwang H G, McCouch S R. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet, 2006, 113:885-894
    
    234. Xiong L Z, Wang S P, Liu K D, Dai X K, Saghai Maroof M A, Hu J G, Zhang Q F. Distribution of simple sequence repeat and AFLP markers in a molecular linkage map of rice. Acta Bot Sin, 1998,40:605-614
    235.Xu Y H,Zhu Y Y,Zhou H C,Li Q,Sun Z X,Liu Y G,Lin H X,He Z H.Identification of a 98 kb DNA segment containing the rice Eui gene controlling uppermost intemode elongation,and construction of a TAC transgene sublibrary.Mol Genet Gen,2004,27:149-155
    236.Yamakawa H,Hirose T,Kuroda M,Yamaguchi T.Comprehensive Expression Profiling of Rice Grain Filling-Related Genes under High Temperature Using DNA Microarray.Plant Physiol,2007,144:258-277
    237.Yamamoto T,Lin H X,Sasaki T and Yano M.Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interaction with Hd2 in rice using advanced backcross progeny.Genetics,2000,154:885-891
    238.Yamazaki M,Tsugawa H,Miyao A,Yano M,Wu J,Yamamoto S,Matsumoto T,Sasaki T,Hirochika H.The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets.Mol Genet Genomics,2001,265:336-344
    239.Yano M,Harushima Y,Nagaruma Y,Kurata N,Minobe Y,Sasaki T.Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map.Theor Appl Genet,1997,95:1025-1032
    240.Yano M,Katayose Y,Ashikari M,Yamanouchi U,Monna Let al.Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant cell,2000,12:2473-2484
    241.Yano M,Okuno K,Kawakami J,Satoh H,Omura T.High amylose mutants of rice,Oryza sativa L.Theor Appl Genet,1985,69:253-257
    242.Yu Z H,Kinoshita T,Sato S,Tanksley S D,1992,Morphological and RFLP markers are associated in rice.Rice Genet Newsl,1992,9:116-118
    243.Zeeman S C,Umemoto T,Lue W L,Au-Yeung P,Martin C,Smith A M,Chen J.A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen.Plant Cell,1998,10:1699-1712
    244.Zeng D L,Yan M X,Wang Y H,Liu X F,Qian Q,Li J Y.Dul,encoding a novel Prpl protein,regulates starch biosynthesis through affecting the splicing of Wx~b pre-mRNAs in rice(Oryza sativa L.).Plant Mol Biol,2007,65:501-509
    245.Zhang J,Li C,Wu C,Xiong L,Chen G,Zhang Q,Wang S.RMD:a rice mutant database for functional analysis of the rice genome.Nucl.Acids Res,2006,34:745-748
    246.Zhang Q F,Shen B Z,Dai X K,Mei M H,Saghai Maroof M A,Li Z B.Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice.Proc Natl Acad Sci USA,1994,91:8675-8679
    247. Zheng X, Wu J G, Lou X Y, Xu H M, Shi C H. The QTL analysis on maternal and endosperm genome and their environmental interactions for characters of cooking quality in rice (Oryza sativa L.). Theor Appl Genet, 2008, 116:335-342
    
    248. Zhi H, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant Cell, 2003,15:2900-2910
    
    249. Zhou P H, Tan Y F, He Y Q, Xu C G, Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet, 2003, 106:326-331
    
    250. Zhu Y Y, Nomura T, Xu Y H, Zhang Y Y, Peng Y, Mao B Z, Hanada A, Zhou H C, Wang R X, Li P J, Zhu X D, Mander L N, Kamiya Y, Yamaguchi S, He Z H., ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006, 18: 442-456
    
    251. Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L. Analysis on additive effects and additive by additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet, 2002, 105:1137-1145
    
    252. Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL x environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95:799-808
    
    253. Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet, 2000, 101:569-573